Adjusting mis-specified likelihood functions

Richard Chandler
richard@stats.ucl.ac.uk
Department of Statistical Science, University College London

Overview of talk

1. Problem statement (setup and notation; log-likelihoods; potential applications)
2. Standard asymptotics for mis-specified likelihoods (definition of estimator; large-sample properties of estimator and log likelihood ratio)
3. Adjusting the working log-likelihood (motivation; options for adjustment; geometry of adjustment in 1-D; multiparameter example; comparing nested models; other applications)
4. Open questions
5. Problem statement
6. Standard asymptotics for mis-specified likelihoods
7. Adjusting the working log-likelihood
8. Open questions

Setup and notation

- Data arise as k 'clusters' $\left\{\mathbf{y}_{j}: j=1, \ldots, k\right\}$ (k could be 1)

Setup and notation

- Data arise as k 'clusters' $\left\{\mathbf{y}_{j}: j=1, \ldots, k\right\}$ (k could be 1)
- $\mathbf{y}_{j}=\left(y_{1 j} \ldots y_{n_{j} j}\right)^{\prime}$ is vector of n_{j} observations in cluster j

Setup and notation

- Data arise as k 'clusters' $\left\{\mathbf{y}_{j}: j=1, \ldots, k\right\}$ (k could be 1)
- $\mathbf{y}_{j}=\left(y_{1 j} \ldots y_{n_{j} j}\right)^{\prime}$ is vector of n_{j} observations in cluster j
- Let C_{j} be conditioning set for \mathbf{y}_{j} (may include covariates and "history" - allow $\mathbf{y}_{i} \in C_{j}$ for $i<j$, but not for $i \geq j$, hence clusters may be interdependent)

Setup and notation

- Data arise as k 'clusters' $\left\{\mathbf{y}_{j}: j=1, \ldots, k\right\}$ (k could be 1)
- $\mathbf{y}_{j}=\left(y_{1 j} \ldots y_{n_{j} j}\right)^{\prime}$ is vector of n_{j} observations in cluster j
- Let C_{j} be conditioning set for \mathbf{y}_{j} (may include covariates and "history" - allow $\mathbf{y}_{i} \in \mathcal{C}_{j}$ for $i<j$, but not for $i \geq j$, hence clusters may be interdependent)
- Observations from family of distributions with joint density

$$
\prod_{j=1}^{k} f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)
$$

for parameter vectors θ, α

Setup and notation

- Data arise as k 'clusters' $\left\{\mathbf{y}_{j}: j=1, \ldots, k\right\}$ (k could be 1)
- $\mathbf{y}_{j}=\left(y_{1 j} \ldots y_{n_{j} j}\right)^{\prime}$ is vector of n_{j} observations in cluster j
- Let C_{j} be conditioning set for \mathbf{y}_{j} (may include covariates and "history" - allow $\mathbf{y}_{i} \in \mathcal{C}_{j}$ for $i<j$, but not for $i \geq j$, hence clusters may be interdependent)
- Observations from family of distributions with joint density

$$
\prod_{j=1}^{k} f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)
$$

for parameter vectors θ, α

- Interested in / tractable model available for low-dimensional margins of joint distributions.

Setup and notation

- Data arise as k 'clusters' $\left\{\mathbf{y}_{j}: j=1, \ldots, k\right\}$ (k could be 1)
- $\mathbf{y}_{j}=\left(y_{1 j} \ldots y_{n_{j} j}\right)^{\prime}$ is vector of n_{j} observations in cluster j
- Let C_{j} be conditioning set for \mathbf{y}_{j} (may include covariates and "history" - allow $\mathbf{y}_{i} \in \mathcal{C}_{j}$ for $i<j$, but not for $i \geq j$, hence clusters may be interdependent)
- Observations from family of distributions with joint density

$$
\prod_{j=1}^{k} f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)
$$

for parameter vectors θ, α

- Interested in / tractable model available for low-dimensional margins of joint distributions.
- Conditionally upon C_{j}, low-dimensional margins are fully determined by $\theta \rightarrow \alpha$ is nuisance parameter for high-dimensional joint structure.

Log-likelihoods

- Full log-likelihood function is $\ell_{\text {FULL }}(\theta, \alpha)=\sum_{j=1}^{k} \log f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)$, but joint distributions usually difficult to model.

Log-likelihoods

- Full log-likelihood function is $\ell_{\text {FULL }}(\theta, \alpha)=\sum_{j=1}^{k} \log f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)$, but joint distributions usually difficult to model.
- Alternative: use 'working' log-likelihood based on low-dimensional margins:

$$
\ell_{\mathrm{WORK}}(\theta)=\sum_{j=1}^{k} \log \tilde{f}_{j}\left(y_{j} \mid C_{j} ; \theta\right)
$$

where $\log \tilde{f}_{j}\left(y_{j} \mid \mathcal{C}_{j} ; \theta\right)$ is contribution from cluster j (NB α missing here)

Log-likelihoods

- Full log-likelihood function is $\ell_{\text {FULL }}(\theta, \alpha)=\sum_{j=1}^{k} \log f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)$, but joint distributions usually difficult to model.
- Alternative: use 'working' log-likelihood based on low-dimensional margins:

$$
\ell_{\mathrm{WORK}}(\theta)=\sum_{j=1}^{k} \log \tilde{f}_{j}\left(y_{j} \mid C_{j} ; \theta\right)
$$

where $\log \tilde{f}_{j}\left(y_{j} \mid \mathcal{C}_{j} ; \theta\right)$ is contribution from cluster j (NB α missing here)

- Examples:
- Independence log-likelihood: $\ell_{\mathrm{IND}}(\theta)=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \log f_{i j}\left(y_{i j} \mid C_{j} ; \theta\right)$ so that $\log \tilde{f}_{j}\left(y_{j} \mid \mathcal{C}_{j} ; \theta\right)=\sum_{i=1}^{n_{j}} \log f_{i j}\left(y_{i j} \mid \mathcal{C}_{j} ; \theta\right)$.

Log-likelihoods

- Full log-likelihood function is $\ell_{\text {FULL }}(\theta, \alpha)=\sum_{j=1}^{k} \log f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)$, but joint distributions usually difficult to model.
- Alternative: use 'working' log-likelihood based on low-dimensional margins:

$$
\ell_{\mathrm{WORK}}(\theta)=\sum_{j=1}^{k} \log \tilde{f}_{j}\left(y_{j} \mid C_{j} ; \theta\right)
$$

where $\log \tilde{f}_{j}\left(y_{j} \mid \mathcal{C}_{j} ; \theta\right)$ is contribution from cluster j (NB α missing here)

- Examples:
- Independence log-likelihood: $\ell_{\text {IND }}(\theta)=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \log f_{i j}\left(y_{i j} \mid C_{j} ; \theta\right)$ so that $\log \tilde{f}_{j}\left(y_{j} \mid \mathcal{C}_{j} ; \theta\right)=\sum_{i=1}^{n_{j}} \log f_{i j}\left(y_{i j} \mid \mathcal{C}_{j} ; \theta\right)$.
- (Weighted) log pairwise likelihood:
$\ell_{\text {PAIR }}(\theta)=\sum_{j=1}^{k} w_{j} \sum_{i_{1}=1}^{n_{j}-1} \sum_{i_{2}=i_{1}+1}^{n_{j}} \log f_{i_{1}, i_{2}, j}\left(y_{i_{1} j}, y_{i_{2} j} \mid C_{j} ; \theta\right)$ so that $\log \tilde{f}_{j}\left(y_{j} \mid \mathcal{C}_{j} ; \theta\right)=w_{j} \sum_{i_{1}=1}^{n_{j}-1} \sum_{i_{2}=i_{1}+1}^{n_{j}} \log f_{i_{1}, i_{2}, j}\left(y_{i_{1} j}, y_{i_{2} j} \mid \mathcal{C}_{j} ; \theta\right)$.

Some potential applications

- Longitudinal studies:
- 'Clusters’ are patients
- Can be assumed independent

Some potential applications

- Longitudinal studies:
- 'Clusters’ are patients
- Can be assumed independent
- Space-time data (multiple time series):
- 'Clusters' are observations made at same time instant
- Temporal autocorrelation may be present - can be handled by including previous observations into conditioning sets $\left\{C_{j}\right\}$

1. Problem statement

2. Standard asymptotics for mis-specified likelihoods

3. Adjusting the working log-likelihood

4. Open questions

Definition of estimator

- 'Working score' function is

$$
\mathbf{U}(\theta)=\frac{\partial \ell_{\mathrm{WORK}}}{\partial \theta}=\sum_{j=1}^{k} \mathbf{U}_{j}(\theta) \text { say. }
$$

Definition of estimator

- 'Working score' function is

$$
\mathbf{U}(\theta)=\frac{\partial \ell_{\mathrm{WORK}}}{\partial \theta}=\sum_{j=1}^{k} \mathbf{U}_{j}(\theta) \text { say. }
$$

- If data are generated from distribution with $\theta=\theta_{0}$ then, under general conditions, working score contributions $\left\{\mathbf{U}_{j}\left(\theta_{0}\right)\right\}$ are uncorrelated with zero mean (may need to include 'history' into \mathcal{C}_{j} to ensure this when clusters are interdependent — see Chapter 5 of Statistical Methods for Spatial-temporal Systems, eds. Finkenstadt, Held \& Isham, CRC Press, 2007).

Definition of estimator

- 'Working score' function is

$$
\mathbf{U}(\theta)=\frac{\partial \ell_{\mathrm{WORK}}}{\partial \theta}=\sum_{j=1}^{k} \mathbf{U}_{j}(\theta) \text { say. }
$$

- If data are generated from distribution with $\theta=\theta_{0}$ then, under general conditions, working score contributions $\left\{\mathbf{U}_{j}\left(\theta_{0}\right)\right\}$ are uncorrelated with zero mean (may need to include 'history' into \mathcal{C}_{j} to ensure this when clusters are interdependent — see Chapter 5 of Statistical Methods for Spatial-temporal Systems, eds. Finkenstadt, Held \& Isham, CRC Press, 2007).
- Estimator $\hat{\theta}_{\text {WORK }}$ satisfies $\mathbf{U}\left(\hat{\theta}_{\mathrm{WORK}}\right)=\sum_{j=1}^{k} \mathbf{U}_{j}\left(\hat{\theta}_{\mathrm{WORK}}\right)=\mathbf{0}$.

Large-sample properties of $\hat{\theta}_{\text {WORK }}$

- Usual asymptotics hold e.g. for large $k, \hat{\theta}_{\text {WORK }} \sim N\left(\theta_{0}, \mathbf{H V}^{-1} \mathbf{H}\right)$ where

$$
\mathbf{H}=\mathrm{E}\left(\left.\frac{\partial^{2} \ell_{\mathrm{WORK}}}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{0}}\right), \mathbf{V}=\operatorname{Var}\left[\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)\right]=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{E}\left[\mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right) \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)^{\prime}\right]
$$

- Usual asymptotics hold e.g. for large $k, \hat{\theta}_{\text {WORK }} \sim N\left(\theta_{0}, \mathbf{H V}^{-1} \mathbf{H}\right)$ where

$$
\mathbf{H}=\mathrm{E}\left(\left.\frac{\partial^{2} \ell_{\mathrm{WORK}}}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{0}}\right), \mathbf{V}=\operatorname{Var}\left[\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)\right]=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{E}\left[\mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right) \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)^{\prime}\right]
$$

- Estimate H using either expected or observed Hessian at $\hat{\theta}_{\text {WORK }}$, say $\hat{\mathbf{H}}$.

Large-sample properties of $\hat{\theta}_{\text {WORK }}$

- Usual asymptotics hold e.g. for large $k, \hat{\theta}_{\text {WORK }} \sim N\left(\theta_{0}, \mathbf{H V}^{-1} \mathbf{H}\right)$ where

$$
\mathbf{H}=\mathrm{E}\left(\left.\frac{\partial^{2} \ell_{\mathrm{WORK}}}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{0}}\right), \mathbf{V}=\operatorname{Var}\left[\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)\right]=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{E}\left[\mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right) \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)^{\prime}\right]
$$

- Estimate H using either expected or observed Hessian at $\hat{\theta}_{\text {WORK }}$, say $\hat{\mathbf{H}}$.
- Estimate \mathbf{V} using empirical counterpart: $\hat{\mathbf{V}}=\sum_{j=1}^{k} \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right) \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right)^{\prime}$
- Usual asymptotics hold e.g. for large $k, \hat{\theta}_{\text {WORK }} \sim N\left(\theta_{0}, \mathbf{H V}^{-1} \mathbf{H}\right)$ where

$$
\mathbf{H}=\mathrm{E}\left(\left.\frac{\partial^{2} \ell_{\mathrm{WORK}}}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{0}}\right), \mathbf{V}=\operatorname{Var}\left[\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)\right]=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{E}\left[\mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right) \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)^{\prime}\right]
$$

- Estimate \mathbf{H} using either expected or observed Hessian at $\hat{\theta}_{\text {WORK }}$, say $\hat{\mathbf{H}}$.
- Estimate \mathbf{V} using empirical counterpart: $\hat{\mathbf{V}}=\sum_{j=1}^{k} \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right) \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right)^{\prime}$
- Covariance matrix of $\hat{\theta}_{\text {WORK }}$ estimated consistently by robust estimator $\mathcal{R}=\hat{\mathbf{H}}^{-1} \hat{\mathbf{V}} \hat{\mathbf{H}}^{-1}$ - gives Wald tests \& confidence regions for components of θ

Large-sample properties of $\hat{\theta}_{\text {WORK }}$

- Usual asymptotics hold e.g. for large $k, \hat{\theta}_{\text {WORK }} \sim N\left(\theta_{0}, \mathbf{H V}^{-1} \mathbf{H}\right)$ where

$$
\mathbf{H}=\mathrm{E}\left(\left.\frac{\partial^{2} \ell_{\mathrm{WORK}}}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{0}}\right), \mathbf{V}=\operatorname{Var}\left[\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)\right]=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{E}\left[\mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right) \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)^{\prime}\right]
$$

- Estimate \mathbf{H} using either expected or observed Hessian at $\hat{\theta}_{\text {WORK }}$, say $\hat{\mathbf{H}}$.
- Estimate \mathbf{V} using empirical counterpart: $\hat{\mathbf{V}}=\sum_{j=1}^{k} \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right) \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right)^{\prime}$
- Covariance matrix of $\hat{\theta}_{\text {WORK }}$ estimated consistently by robust estimator $\mathcal{R}=\hat{\mathbf{H}}^{-1} \hat{\mathbf{V}} \hat{\mathbf{H}}^{-1}$ - gives Wald tests \& confidence regions for components of θ
- Contrast with naïve estimator $\mathcal{N}=-\hat{\mathbf{H}}^{-1}$ (ignores mis-specification of working log- likelihood)
- Usual asymptotics hold e.g. for large $k, \hat{\theta}_{\text {WORK }} \sim N\left(\theta_{0}, \mathbf{H V}^{-1} \mathbf{H}\right)$ where

$$
\mathbf{H}=\mathrm{E}\left(\left.\frac{\partial^{2} \ell_{\mathrm{WORK}}}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{0}}\right), \mathbf{V}=\operatorname{Var}\left[\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)\right]=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{E}\left[\mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right) \mathbf{U}_{\mathrm{j}}\left(\theta_{0}\right)^{\prime}\right]
$$

- Estimate H using either expected or observed Hessian at $\hat{\theta}_{\text {WORK }}$, say $\hat{\mathbf{H}}$.
- Estimate \mathbf{V} using empirical counterpart: $\hat{\mathbf{V}}=\sum_{j=1}^{k} \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right) \mathbf{U}_{j}\left(\hat{\theta}_{\text {WORK }}\right)^{\prime}$
- Covariance matrix of $\hat{\theta}_{\text {WORK }}$ estimated consistently by robust estimator $\mathcal{R}=\hat{\mathbf{H}}^{-1} \hat{\mathbf{V}} \hat{\mathbf{H}}^{-1}$ - gives Wald tests \& confidence regions for components of θ
- Contrast with naïve estimator $\mathcal{N}=-\hat{\mathbf{H}}^{-1}$ (ignores mis-specification of working log- likelihood)
- NB other techniques required for small k - application-dependent

Large-sample properties of working log likelihood

- Partition θ as $\left(\phi^{\prime} \psi^{\prime}\right)^{\prime}$ and let $\tilde{\theta}_{\text {WORK }}=\arg \sup _{\psi=\psi_{0}} \ell_{\text {WORK }}(\theta)$.

Large-sample properties of working log likelihood

- Partition θ as $\left(\phi^{\prime} \psi^{\prime}\right)^{\prime}$ and let $\tilde{\theta}_{\text {WORK }}=\arg \sup _{\psi=\psi_{0}} \ell_{\text {WORK }}(\theta)$.
- For large k :
- Distribution of $\Lambda_{\text {WORK }}=2\left[\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right)-\ell_{\text {WORK }}\left(\tilde{\theta}_{\text {WORK }}\right)\right]$ is approximately that of weighted sum of χ_{1}^{2} random variables
- Weights are solution to partition-dependent eigenproblem

Large-sample properties of working log likelihood

- Partition θ as $\left(\phi^{\prime} \psi^{\prime}\right)^{\prime}$ and let $\tilde{\theta}_{\text {WORK }}=\arg \sup _{\psi=\psi_{0}} \ell_{\text {WORK }}(\theta)$.
- For large k :
- Distribution of $\Lambda_{\text {WORK }}=2\left[\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right)-\ell_{\text {WORK }}\left(\tilde{\theta}_{\text {WORK }}\right)\right]$ is approximately that of weighted sum of χ_{1}^{2} random variables
- Weights are solution to partition-dependent eigenproblem
- Can be used for profile-based inference on components of θ.

1. Problem statement
2. Standard asymptotics for mis-specified likelihoods
3. Adjusting the working log-likelihood
4. Open questions

Motivation

- Profile log-likelihoods useful for tests \& confidence regions.

Motivation

- Profile log-likelihoods useful for tests \& confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{\text {WORK }}(\theta)$, BUT:
- Adjustments difficult to calculate (weighted sum of independent chi-squareds)
- Adjusted critical values are direction-dependent

Motivation

- Profile log-likelihoods useful for tests \& confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{\text {WORK }}(\theta)$, BUT:
- Adjustments difficult to calculate (weighted sum of independent chi-squareds)
- Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{\text {WORK }}(\theta)$ to maintain usual asymptotics (Chandler \& Bate, Biometrika, 2007):

Motivation

- Profile log-likelihoods useful for tests \& confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{\text {WORK }}(\theta)$, BUT:
- Adjustments difficult to calculate (weighted sum of independent chi-squareds)
- Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{\text {WORK }}(\theta)$ to maintain usual asymptotics (Chandler \& Bate, Biometrika, 2007):
- Naïve covariance matrix is $\mathcal{N}=-\hat{\mathbf{H}}^{-1} \Rightarrow \ell_{\text {WORK }}(\theta)$ has Hessian $\hat{\mathbf{H}}=-\mathcal{N}^{-1}$.

Motivation

- Profile log-likelihoods useful for tests \& confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{\text {WORK }}(\theta)$, BUT:
- Adjustments difficult to calculate (weighted sum of independent chi-squareds)
- Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{\text {WORK }}(\theta)$ to maintain usual asymptotics (Chandler \& Bate, Biometrika, 2007):
- Naïve covariance matrix is $\mathcal{N}=-\hat{\mathbf{H}}^{-1} \Rightarrow \ell_{\text {WORK }}(\theta)$ has Hessian $\hat{\mathbf{H}}=-\mathcal{N}^{-1}$.
- Robust covariance matrix is $\mathcal{R} \Rightarrow$ define adjusted inference function with Hessian $\hat{\mathbf{H}}_{\mathrm{ADJ}}=-\mathcal{R}^{-1}$.

Motivation

- Profile log-likelihoods useful for tests \& confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{\text {WORK }}(\theta)$, BUT:
- Adjustments difficult to calculate (weighted sum of independent chi-squareds)
- Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{\text {WORK }}(\theta)$ to maintain usual asymptotics (Chandler \& Bate, Biometrika, 2007):
- Naïve covariance matrix is $\mathcal{N}=-\hat{\mathbf{H}}^{-1} \Rightarrow \ell_{\text {WORK }}(\theta)$ has Hessian $\hat{\mathbf{H}}=-\mathcal{N}^{-1}$.
- Robust covariance matrix is $\mathcal{R} \Rightarrow$ define adjusted inference function with Hessian $\hat{\mathbf{H}}_{\mathrm{ADJ}}=-\mathcal{R}^{-1}$.
- Borrow profile from $\ell_{\text {WORK }}(\theta)$ - hopefully informative.

Options for adjustment

Horizontal scaling: define $\ell_{\text {ADJ }}(\theta)=\ell_{\text {WORK }}\left(\theta^{*}\right)$, where

$$
\theta^{*}=\hat{\theta}_{\mathrm{WORK}}+\mathbf{M}^{-1} \mathbf{M}_{\mathrm{ADJ}}(\theta-\hat{\theta})
$$

with $\mathbf{M}^{\prime} \mathbf{M}=\hat{\mathbf{H}}, \mathbf{M}_{\mathrm{ADJ}}^{\prime} \mathbf{M}_{\mathrm{ADJ}}=\hat{\mathbf{H}}_{\mathrm{ADJ}}$. Possible choices for $\mathbf{M}, \mathbf{M}_{\mathrm{ADJ}}$:

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M}=\mathbf{L D}^{1 / 2} \mathbf{L}$, where $\mathbf{L D L}$ is spectral decomposition of $\hat{\mathbf{H}}$.

Options for adjustment

Horizontal scaling: define $\ell_{\text {ADJ }}(\theta)=\ell_{\text {WORK }}\left(\theta^{*}\right)$, where

$$
\theta^{*}=\hat{\theta}_{\mathrm{WORK}}+\mathbf{M}^{-1} \mathbf{M}_{\mathrm{ADJ}}(\theta-\hat{\theta})
$$

with $\mathbf{M}^{\prime} \mathbf{M}=\hat{\mathbf{H}}, \mathbf{M}_{\mathrm{ADJ}}^{\prime} \mathbf{M}_{\mathrm{ADJ}}=\hat{\mathbf{H}}_{\mathrm{ADJ}}$. Possible choices for $\mathbf{M}, \mathbf{M}_{\mathrm{ADJ}}$:

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M}=\mathbf{L D}^{1 / 2} \mathbf{L}$, where $\mathbf{L D L}$ is spectral decomposition of $\hat{\mathbf{H}}$.
Vertical scaling: define $\ell_{\text {ADJ }}(\theta)$ as

$$
\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right)+\left\{\left(\theta-\hat{\theta}_{\text {WORK }}\right)^{\prime} \hat{\mathbf{H}}_{\text {ADJ }}\left(\theta-\hat{\theta}_{\text {WORK }}\right)\right\} \frac{\ell_{\text {WORK }}(\theta)-\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right.}{\left(\theta-\hat{\theta}_{\text {WORK }}\right)^{\prime} \hat{\mathbf{H}}\left(\theta-\hat{\theta}_{\text {WORK }}\right.}
$$

Options for adjustment

Horizontal scaling: define $\ell_{\text {ADJ }}(\theta)=\ell_{\text {WORK }}\left(\theta^{*}\right)$, where

$$
\theta^{*}=\hat{\theta}_{\mathrm{WORK}}+\mathbf{M}^{-1} \mathbf{M}_{\mathrm{ADJ}}(\theta-\hat{\theta})
$$

with $\mathbf{M}^{\prime} \mathbf{M}=\hat{\mathbf{H}}, \mathbf{M}_{\mathrm{ADJ}}^{\prime} \mathbf{M}_{\mathrm{ADJ}}=\hat{\mathbf{H}}_{\mathrm{ADJ}}$. Possible choices for $\mathbf{M}, \mathbf{M}_{\mathrm{ADJ}}$:

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M}=\mathbf{L D}^{1 / 2} \mathbf{L}$, where $\mathbf{L D L}$ is spectral decomposition of $\hat{\mathbf{H}}$.
Vertical scaling: define $\ell_{\text {ADJ }}(\theta)$ as

$$
\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right)+\left\{\left(\theta-\hat{\theta}_{\mathrm{WORK}}\right)^{\prime} \hat{\mathbf{H}}_{\text {ADJ }}\left(\theta-\hat{\theta}_{\text {WORK }}\right)\right\} \frac{\ell_{\text {WORK }}(\theta)-\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right.}{\left(\theta-\hat{\theta}_{\mathrm{WORK}}\right)^{\prime} \hat{\mathbf{H}}\left(\theta-\hat{\theta}_{\text {WORK }}\right.}
$$

- Options asymptotically equivalent (and identical in quadratic case)

Options for adjustment

Horizontal scaling: define $\ell_{\text {ADJ }}(\theta)=\ell_{\text {WORK }}\left(\theta^{*}\right)$, where

$$
\theta^{*}=\hat{\theta}_{\mathrm{WORK}}+\mathbf{M}^{-1} \mathbf{M}_{\mathrm{ADJ}}(\theta-\hat{\theta})
$$

with $\mathbf{M}^{\prime} \mathbf{M}=\hat{\mathbf{H}}, \mathbf{M}_{\mathrm{ADJ}}^{\prime} \mathbf{M}_{\mathrm{ADJ}}=\hat{\mathbf{H}}_{\mathrm{ADJ}}$. Possible choices for $\mathbf{M}, \mathbf{M}_{\mathrm{ADJ}}$:

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M}=\mathbf{L} \mathbf{D}^{1 / 2} \mathbf{L}$, where $\mathbf{L D L}$ is spectral decomposition of $\hat{\mathbf{H}}$.
Vertical scaling: define $\ell_{\text {ADJ }}(\theta)$ as

$$
\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right)+\left\{\left(\theta-\hat{\theta}_{\mathrm{WORK}}\right)^{\prime} \hat{\mathbf{H}}_{\text {ADJ }}\left(\theta-\hat{\theta}_{\text {WORK }}\right)\right\} \frac{\ell_{\text {WORK }}(\theta)-\ell_{\text {WORK }}\left(\hat{\theta}_{\text {WORK }}\right.}{\left(\theta-\hat{\theta}_{\mathrm{WORK}}\right)^{\prime} \hat{\mathbf{H}}\left(\theta-\hat{\theta}_{\text {WORK }}\right.}
$$

- Options asymptotically equivalent (and identical in quadratic case)
- Vertical scaling has practical (and theoretical) advantages

Geometry of adjustment in 1-D

Geometry of adjustment in 1-D

- Horizontal scaling is by ratio of robust to naïve standard errors.

Geometry of adjustment in 1-D

- Horizontal scaling is by ratio of robust to naïve standard errors.
- Vertical scaling is by ratio of robust to naïve variances (same as adjusting critical value)

Multiparameter case: a 2-dimensional example

- k bivariate normal pairs $\left\{\left(Y_{1 j}, Y_{2 j}\right): j=1, \ldots, k\right\}$ with unknown mean μ and covariance matrix Σ.

Multiparameter case: a 2-dimensional example

- k bivariate normal pairs $\left\{\left(Y_{1 j}, Y_{2 j}\right): j=1, \ldots, k\right\}$ with unknown mean μ and covariance matrix Σ.
- Independence log-likelihood for $\theta=\left(\begin{array}{llll}\mu_{1} & \mu_{2} & \sigma_{1}^{2} & \sigma_{2}^{2}\end{array}\right)^{\prime}$ is
$\ell_{\mathrm{IND}}(\theta)=-\frac{1}{2} \sum_{j=1}^{k} \sum_{i=1}^{2}\left[\log \sigma_{i}^{2}+\sigma_{i}^{-2}\left(Y_{i j}-\mu_{i}\right)^{2}\right]+$ constant.

Multiparameter case: a 2-dimensional example

- k bivariate normal pairs $\left\{\left(Y_{1 j}, Y_{2 j}\right): j=1, \ldots, k\right\}$ with unknown mean μ and covariance matrix Σ.
- Independence log-likelihood for $\theta=\left(\begin{array}{llll}\mu_{1} & \mu_{2} & \sigma_{1}^{2} & \sigma_{2}^{2}\end{array}\right)^{\prime}$ is

$$
\ell_{\mathrm{IND}}(\theta)=-\frac{1}{2} \sum_{j=1}^{k} \sum_{i=1}^{2}\left[\log \sigma_{i}^{2}+\sigma_{i}^{-2}\left(Y_{i j}-\mu_{i}\right)^{2}\right]+\text { constant. }
$$

- μ - and σ - components of θ are orthogonal in $\ell_{\text {IND }}(\theta)$

Multiparameter case: a 2-dimensional example

- k bivariate normal pairs $\left\{\left(Y_{1 j}, Y_{2 j}\right): j=1, \ldots, k\right\}$ with unknown mean μ and covariance matrix Σ.
- Independence log-likelihood for $\theta=\left(\begin{array}{llll}\mu_{1} & \mu_{2} & \sigma_{1}^{2} & \sigma_{2}^{2}\end{array}\right)^{\prime}$ is

$$
\ell_{\mathrm{IND}}(\theta)=-\frac{1}{2} \sum_{j=1}^{k} \sum_{i=1}^{2}\left[\log \sigma_{i}^{2}+\sigma_{i}^{-2}\left(Y_{i j}-\mu_{i}\right)^{2}\right]+\text { constant. }
$$

- μ - and σ - components of θ are orthogonal in $\ell_{\text {IND }}(\theta)$
- Naïve and robust covariance matrices of $\hat{\mu}=\overline{\mathbf{Y}}$ are $\mathcal{N}=k^{-1} \operatorname{diag}\left(\hat{\sigma}_{1}^{2} \hat{\sigma}_{2}^{2}\right)$; $\mathcal{R}=k^{-1} \hat{\Sigma}$.

Multiparameter case: a 2-dimensional example

- k bivariate normal pairs $\left\{\left(Y_{1 j}, Y_{2 j}\right): j=1, \ldots, k\right\}$ with unknown mean μ and covariance matrix Σ.
- Independence log-likelihood for $\theta=\left(\begin{array}{llll}\mu_{1} & \mu_{2} & \sigma_{1}^{2} & \sigma_{2}^{2}\end{array}\right)^{\prime}$ is $\ell_{\text {IND }}(\theta)=-\frac{1}{2} \sum_{j=1}^{k} \sum_{i=1}^{2}\left[\log \sigma_{i}^{2}+\sigma_{i}^{-2}\left(Y_{i j}-\mu_{i}\right)^{2}\right]+$ constant.
- μ - and σ - components of θ are orthogonal in $\ell_{\text {IND }}(\theta)$
- Naïve and robust covariance matrices of $\hat{\mu}=\overline{\mathbf{Y}}$ are $\mathcal{N}=k^{-1} \operatorname{diag}\left(\hat{\sigma}_{1}^{2} \hat{\sigma}_{2}^{2}\right)$; $\mathcal{R}=k^{-1} \hat{\Sigma}$.
- Adjusted profile log-likelihood for μ (horizontal or vertical scaling) is $\ell_{\text {ADJ }}(\mu)=-\frac{k}{2}(\overline{\mathbf{Y}}-\mu)^{\prime} \hat{\Sigma}^{-1}(\overline{\mathbf{Y}}-\mu)+$ constant - i.e. correct bivariate log-likelihood.

Multiparameter case: a 2-dimensional example

- k bivariate normal pairs $\left\{\left(Y_{1 j}, Y_{2 j}\right): j=1, \ldots, k\right\}$ with unknown mean μ and covariance matrix Σ.
- Independence log-likelihood for $\theta=\left(\begin{array}{llll}\mu_{1} & \mu_{2} & \sigma_{1}^{2} & \sigma_{2}^{2}\end{array}\right)^{\prime}$ is $\ell_{\text {IND }}(\theta)=-\frac{1}{2} \sum_{j=1}^{k} \sum_{i=1}^{2}\left[\log \sigma_{i}^{2}+\sigma_{i}^{-2}\left(Y_{i j}-\mu_{i}\right)^{2}\right]+$ constant.
- μ - and σ - components of θ are orthogonal in $\ell_{\text {IND }}(\theta)$
- Naïve and robust covariance matrices of $\hat{\mu}=\overline{\mathbf{Y}}$ are $\mathcal{N}=k^{-1} \operatorname{diag}\left(\hat{\sigma}_{1}^{2} \hat{\sigma}_{2}^{2}\right)$; $R=k^{-1} \hat{\Sigma}$.
- Adjusted profile log-likelihood for μ (horizontal or vertical scaling) is $\ell_{\text {ADJ }}(\mu)=-\frac{k}{2}(\overline{\mathbf{Y}}-\mu)^{\prime} \hat{\Sigma}^{-1}(\overline{\mathbf{Y}}-\mu)+$ constant - i.e. correct bivariate log-likelihood.
- NB contours of $\ell_{I N D}$ are always circular - hence classical approach of adjusting critical value is sub-optimal.

Comparing nested models

- Adjustment preserves χ^{2} asymptotics by construction \Rightarrow to test $H_{0}: \Delta \theta=\delta_{0}$, use statistic $\Lambda_{\mathrm{ADJ}}=2\left\{\ell_{\mathrm{ADJ}}\left(\hat{\theta}_{\mathrm{WORK}}\right)-\ell_{\mathrm{ADJ}}\left(\widetilde{\theta}_{\mathrm{ADJ}}\right)\right\}$, where $\tilde{\theta}_{\mathrm{ADJ}}$ maximises $\ell_{\text {ADJ }}$ under H_{0}.

Comparing nested models

- Adjustment preserves χ^{2} asymptotics by construction \Rightarrow to test $H_{0}: \Delta \theta=\delta_{0}$, use statistic $\Lambda_{\mathrm{ADJ}}=2\left\{\ell_{\mathrm{ADJ}}\left(\hat{\theta}_{\mathrm{WORK}}\right)-\ell_{\mathrm{ADJ}}\left(\widetilde{\theta}_{\mathrm{ADJ}}\right)\right\}$, where $\tilde{\theta}_{\mathrm{ADJ}}$ maximises $\ell_{\text {ADJ }}$ under H_{0}.
- Problem: $\tilde{\theta}_{\mathrm{ADJ}}$ could be difficult / expensive to compute.

Comparing nested models

- Adjustment preserves χ^{2} asymptotics by construction \Rightarrow to test $H_{0}: \Delta \theta=\delta_{0}$, use statistic $\Lambda_{\text {ADJ }}=2\left\{\ell_{\text {ADJ }}\left(\hat{\theta}_{\text {WORK }}\right)-\ell_{\text {ADJ }}\left(\widetilde{\theta}_{\text {ADJ }}\right)\right\}$, where $\widetilde{\theta}_{\text {ADJ }}$ maximises $\ell_{\text {ADJ }}$ under H_{0}.
- Problem: $\widetilde{\theta}_{\text {ADJ }}$ could be difficult / expensive to compute.
- Alternative: use asymptotically equivalent statistic based on one-step approximation to $\ell_{\text {ADJ }}\left(\widetilde{\theta}_{\text {ADJ }}\right)$:

$$
\begin{aligned}
\Lambda_{\mathrm{ADJ}}^{*} & =2 c\left\{\ell_{\mathrm{ADJ}}\left(\hat{\theta}_{\mathrm{WORK}}\right)-\ell_{\mathrm{ADJ}}\left(\tilde{\theta}_{\mathrm{WORK}}\right)\right\} \\
\text { where } \quad c & =\frac{\left(\Delta \hat{\theta}_{W O R K}-\delta_{0}\right)^{\prime}\left[\Delta \mathbf{H}_{A D J}^{-1} \Delta^{\prime}\right]^{-1}\left(\Delta \hat{\theta}_{W O R K}-\delta_{0}\right)}{\left(\hat{\theta}_{W O R K}-\tilde{\theta}_{W O R K}\right)^{\prime} \hat{\mathbf{H}}_{A D J}\left(\hat{\theta}_{W O R K}-\tilde{\theta}_{W O R K}\right)}
\end{aligned}
$$

Comparing nested models

- Adjustment preserves χ^{2} asymptotics by construction \Rightarrow to test $H_{0}: \Delta \theta=\delta_{0}$, use statistic $\Lambda_{\text {ADJ }}=2\left\{\ell_{\text {ADJ }}\left(\hat{\theta}_{\text {WORK }}\right)-\ell_{\text {ADJ }}\left(\widetilde{\theta}_{\text {ADJ }}\right)\right\}$, where $\widetilde{\theta}_{\text {ADJ }}$ maximises $\ell_{\text {ADJ }}$ under H_{0}.
- Problem: $\widetilde{\theta}_{\text {ADJ }}$ could be difficult / expensive to compute.
- Alternative: use asymptotically equivalent statistic based on one-step approximation to $\ell_{\text {ADJ }}\left(\widetilde{\theta}_{\text {ADJ }}\right)$:

$$
\begin{aligned}
\Lambda_{\mathrm{ADJ}}^{*} & =2 c\left\{\ell_{\mathrm{ADJ}}\left(\hat{\theta}_{\mathrm{WORK}}\right)-\ell_{\mathrm{ADJ}}\left(\tilde{\theta}_{\mathrm{WORK}}\right)\right\} \\
\text { where } \quad c & =\frac{\left(\Delta \hat{\theta}_{W O R K}-\delta_{0}\right)^{\prime}\left[\Delta \mathbf{H}_{A D J}^{-1} \Delta^{\prime}\right]^{-1}\left(\Delta \hat{\theta}_{W O R K}-\delta_{0}\right)}{\left(\hat{\theta}_{W O R K}-\tilde{\theta}_{W O R K}\right)^{\prime} \hat{\mathbf{H}}_{A D J}\left(\hat{\theta}_{W O R K}-\tilde{\theta}_{W O R K}\right)}
\end{aligned}
$$

- $\Lambda_{\text {ADJ }}^{*}$ needs only estimates from working likelihood.

Comparing nested models

- Adjustment preserves χ^{2} asymptotics by construction \Rightarrow to test $H_{0}: \Delta \theta=\delta_{0}$, use statistic $\Lambda_{\text {ADJ }}=2\left\{\ell_{\text {ADJ }}\left(\hat{\theta}_{\text {WORK }}\right)-\ell_{\text {ADJ }}\left(\widetilde{\theta}_{\text {ADJ }}\right)\right\}$, where $\widetilde{\theta}_{\text {ADJ }}$ maximises $\ell_{\text {ADJ }}$ under H_{0}.
- Problem: $\widetilde{\theta}_{\text {ADJ }}$ could be difficult / expensive to compute.
- Alternative: use asymptotically equivalent statistic based on one-step approximation to $\ell_{\text {ADJ }}\left(\widetilde{\theta}_{\text {ADJ }}\right)$:

$$
\begin{aligned}
\Lambda_{\mathrm{ADJ}}^{*} & =2 c\left\{\ell_{\mathrm{ADJ}}\left(\hat{\theta}_{\mathrm{WORK}}\right)-\ell_{\mathrm{ADJ}}\left(\tilde{\theta}_{\mathrm{WORK}}\right)\right\} \\
\text { where } \quad c & =\frac{\left(\Delta \hat{\theta}_{W O R K}-\delta_{0}\right)^{\prime}\left[\Delta \mathbf{H}_{A D J}^{-1} \Delta^{\prime}\right]^{-1}\left(\Delta \hat{\theta}_{W O R K}-\delta_{0}\right)}{\left(\hat{\theta}_{W O R K}-\tilde{\theta}_{W O R K}\right)^{\prime} \hat{\mathbf{H}}_{A D J}\left(\hat{\theta}_{W O R K}-\tilde{\theta}_{W O R K}\right)}
\end{aligned}
$$

- $\Lambda_{\text {ADJ }}^{*}$ needs only estimates from working likelihood.
- Details: Chandler \& Bate, Biometrika, 2007.

Other applications

- Not restricted to clustered data - applicable in principle whenever 'working' likelihood is used e.g. inference in 'wrong but useful' models (NB mis-specification of model or likelihood)

Other applications

- Not restricted to clustered data - applicable in principle whenever 'working' likelihood is used e.g. inference in 'wrong but useful' models (NB mis-specification of model or likelihood)
- Approach not restricted to likelihood-based inference - applicable whenever:
- Estimation is done by optimising some objective function
- Resulting estimating equations are (asymptotically) unbiased
- Robust (and reliable) covariance matrix estimator is available

Other applications

- Not restricted to clustered data - applicable in principle whenever 'working' likelihood is used e.g. inference in 'wrong but useful' models (NB mis-specification of model or likelihood)
- Approach not restricted to likelihood-based inference - applicable whenever:
- Estimation is done by optimising some objective function
- Resulting estimating equations are (asymptotically) unbiased
- Robust (and reliable) covariance matrix estimator is available
- Example: generalised method of moments $-\hat{\theta}=\arg \min _{\theta} S(\theta ; \mathbf{y})$, where:
- $S(\theta ; \mathbf{y})=\sum_{r=1}^{p} w_{r}\left[T_{r}(\mathbf{y})-\tau_{r}(\theta)\right]^{2}$
- $\left\{T_{r}(\mathbf{y}): r=1, \ldots, p\right\}$ are statistics (e.g. sample moments)
- $\tau_{r}(\theta)=\mathrm{E}_{\theta}\left[T_{r}(\mathbf{y})\right](r=1, \ldots, p)$.
- $\left\{w_{r}: r=1, \ldots, p\right\}$ are weights (independent of θ).

1. Problem statement

2. Standard asymptotics for mis-specified likelihoods
3. Adjusting the working log-likelihood

4. Open questions

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically?

Requirements (cf bivariate normal example):

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically?

Requirements (cf bivariate normal example):

- $\ell_{\text {WORK }}$ (approximately) quadratic in region of interest

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically?

Requirements (cf bivariate normal example):

- $\ell_{\text {WORK }}$ (approximately) quadratic in region of interest
- $\left|\hat{\theta}_{\mathrm{WORK}}-\hat{\theta}_{\mathrm{FULL}}\right|$ is 'small enough' i.e. $\hat{\theta}_{\mathrm{WORK}}$ is efficient

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically?

Requirements (cf bivariate normal example):

- $\ell_{\text {WORK }}$ (approximately) quadratic in region of interest
- $\left|\hat{\theta}_{\text {WORK }}-\hat{\theta}_{\text {FULL }}\right|$ is 'small enough' i.e. $\hat{\theta}_{\text {WORK }}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models - result given by Watson (Biometrika, 1972).

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically?

Requirements (cf bivariate normal example):

- $\ell_{\text {WORK }}$ (approximately) quadratic in region of interest
- $\left|\hat{\theta}_{\text {WORK }}-\hat{\theta}_{\text {FULL }}\right|$ is 'small enough' i.e. $\hat{\theta}_{\text {WORK }}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models - result given by Watson (Biometrika, 1972).

- When is $\ell_{\text {ADJ }}$ a bona fide useful profile log-likelihood for θ ? Could then argue that adjustment gives full likelihood-based inference under 'convenient' model for higher-order structure.

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically?

Requirements (cf bivariate normal example):

- $\ell_{\text {WORK }}$ (approximately) quadratic in region of interest
- $\left|\hat{\theta}_{\text {WORK }}-\hat{\theta}_{\text {FULL }}\right|$ is 'small enough' i.e. $\hat{\theta}_{\text {WORK }}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models — result given by Watson (Biometrika, 1972).

- When is $\ell_{\text {ADJ }}$ a bona fide useful profile log-likelihood for θ ? Could then argue that adjustment gives full likelihood-based inference under 'convenient' model for higher-order structure.
- To be useful, need to maintain interpretation of θ

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically?

Requirements (cf bivariate normal example):

- $\ell_{\text {WORK }}$ (approximately) quadratic in region of interest
- $\left|\hat{\theta}_{\mathrm{WORK}}-\hat{\theta}_{\mathrm{FULL}}\right|$ is 'small enough' i.e. $\hat{\theta}_{\mathrm{WORK}}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models — result given by Watson (Biometrika, 1972).

- When is $\ell_{\text {ADJ }}$ a bona fide useful profile log-likelihood for θ ? Could then argue that adjustment gives full likelihood-based inference under 'convenient' model for higher-order structure.
- To be useful, need to maintain interpretation of θ
- Requirement seems to be existence of joint densities $\left\{f_{j}\left(\mathbf{y}_{j} \mid C_{j} ; \theta, \alpha\right)\right\}$ for which adjustment recovers profile log-likelihood for θ (asymptotically?)

Open questions (2)

- Adjustment is model-dependent: can this be overcome?

Open questions (2)

- Adjustment is model-dependent: can this be overcome?
- In sequence of nested models $\mathscr{M}_{1} \subset \mathcal{M}_{2} \subset \ldots \subset \mathcal{M}_{M}$, comparison of (e.g.) \mathcal{M}_{1} and \mathscr{M}_{2} could be based on adjusted profiles from $\mathscr{M}_{2}, \mathcal{M}_{3}, \ldots$ or \mathcal{M}_{M} each model will give different $\hat{\mathbf{H}}_{\mathrm{ADJ}}$, hence adjustment is model-dependent.

Open questions (2)

- Adjustment is model-dependent: can this be overcome?
- In sequence of nested models $\mathcal{M}_{1} \subset \mathscr{M}_{2} \subset \ldots \subset \mathcal{M}_{M}$, comparison of (e.g.) \mathcal{M}_{1} and \mathscr{M}_{2} could be based on adjusted profiles from $\mathcal{M}_{2}, \mathcal{M}_{3}, \ldots$ or \mathcal{M}_{M} each model will give different $\hat{\mathbf{H}}_{\mathrm{ADJ}}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model \mathscr{M}_{M} if specified in advance - but not always feasible.

Open questions (2)

- Adjustment is model-dependent: can this be overcome?
- In sequence of nested models $\mathcal{M}_{1} \subset \mathscr{M}_{2} \subset \ldots \subset \mathcal{M}_{M}$, comparison of (e.g.) \mathcal{M}_{1} and \mathscr{M}_{2} could be based on adjusted profiles from $\mathcal{M}_{2}, \mathcal{M}_{3}, \ldots$ or \mathcal{M}_{M} each model will give different $\hat{\mathbf{H}}_{\mathrm{ADJ}}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model \mathscr{M}_{M} if specified in advance - but not always feasible.
- Possible alternative: derive $\hat{\mathbf{H}}_{\mathrm{ADJ}}$ for 'saturated' model (cf deviance for GLMs) - but asymptotic arguments then fail except in special situations e.g. iid clusters.

Open questions (2)

- Adjustment is model-dependent: can this be overcome?
- In sequence of nested models $\mathcal{M}_{1} \subset \mathscr{M}_{2} \subset \ldots \subset \mathcal{M}_{M}$, comparison of (e.g.) \mathcal{M}_{1} and \mathscr{M}_{2} could be based on adjusted profiles from $\mathcal{M}_{2}, \mathcal{M}_{3}, \ldots$ or \mathcal{M}_{M} each model will give different $\hat{\mathbf{H}}_{\mathrm{ADJ}}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model \mathscr{M}_{M} if specified in advance - but not always feasible.
- Possible alternative: derive $\hat{\mathbf{H}}_{\mathrm{ADJ}}$ for 'saturated' model (cf deviance for GLMs) - but asymptotic arguments then fail except in special situations e.g. iid clusters.
- Other alternatives?

Open questions (2)

- Adjustment is model-dependent: can this be overcome?
- In sequence of nested models $\mathscr{M}_{1} \subset \mathscr{M}_{2} \subset \ldots \subset \mathcal{M}_{M}$, comparison of (e.g.) \mathscr{M}_{1} and \mathscr{M}_{2} could be based on adjusted profiles from $\mathcal{M}_{2}, \mathcal{M}_{3}, \ldots$ or \mathcal{M}_{M} each model will give different $\hat{\mathbf{H}}_{\mathrm{ADJ}}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model \mathscr{M}_{M} if specified in advance - but not always feasible.
- Possible alternative: derive $\hat{\mathbf{H}}_{\mathrm{ADJ}}$ for 'saturated' model (cf deviance for GLMs) - but asymptotic arguments then fail except in special situations e.g. iid clusters.
- Other alternatives?

