

Adjusting mis-specified likelihood functions

Richard Chandler

richard@stats.ucl.ac.uk

Department of Statistical Science, University College London

Overview of talk

- 1. **Problem statement** (setup and notation; log-likelihoods; potential applications)
- 2. **Standard asymptotics for mis-specified likelihoods** (definition of estimator; large-sample properties of estimator and log likelihood ratio)
- 3. Adjusting the working log-likelihood (motivation; options for adjustment; geometry of adjustment in 1-D; multiparameter example; comparing nested models; other applications)
- 4. Open questions

- **1. Problem statement**
- 2. Standard asymptotics for mis-specified likelihoods
- 3. Adjusting the working log-likelihood
- 4. Open questions

- Data arise as k 'clusters' $\{\mathbf{y}_j : j = 1, \dots, k\}$ (k could be 1)

- Data arise as k 'clusters' $\{\mathbf{y}_i : j = 1, \dots, k\}$ (k could be 1)
- $\mathbf{y}_j = (y_{1j} \dots y_{n_j j})'$ is vector of n_j observations in cluster j

Setup and notation

- Data arise as k 'clusters' $\{\mathbf{y}_j : j = 1, \dots, k\}$ (k could be 1)
- $\mathbf{y}_j = (y_{1j} \dots y_{n_j j})'$ is vector of n_j observations in cluster j
- Let C_j be conditioning set for \mathbf{y}_j (may include covariates and "history" allow $\mathbf{y}_i \in C_j$ for i < j, but not for $i \ge j$, hence clusters may be interdependent)

- Data arise as k 'clusters' $\{\mathbf{y}_j : j = 1, \dots, k\}$ (k could be 1)
- $\mathbf{y}_j = (y_{1j} \dots y_{n_j j})'$ is vector of n_j observations in cluster j
- Let C_j be conditioning set for \mathbf{y}_j (may include covariates and "history" allow $\mathbf{y}_i \in C_j$ for i < j, but not for $i \ge j$, hence clusters may be interdependent)
- Observations from family of distributions with joint density

for parameter vectors θ , α

Setup and notation

- Data arise as k 'clusters' $\{\mathbf{y}_j : j = 1, \dots, k\}$ (k could be 1)
- $\mathbf{y}_j = (y_{1j} \dots y_{n_j j})'$ is vector of n_j observations in cluster j
- Let C_j be conditioning set for \mathbf{y}_j (may include covariates and "history" allow $\mathbf{y}_i \in C_j$ for i < j, but not for $i \ge j$, hence clusters may be interdependent)
- Observations from family of distributions with joint density

$$\prod_{j=1}^{k} f_j\left(\mathbf{y}_j \mid \mathcal{C}_j; \, \boldsymbol{\theta}, \boldsymbol{\alpha}\right) \; .$$

for parameter vectors $\theta,\,\alpha$

 Interested in / tractable model available for low-dimensional margins of joint distributions.

- Data arise as k 'clusters' $\{\mathbf{y}_j : j = 1, \dots, k\}$ (k could be 1)
- $\mathbf{y}_j = (y_{1j} \dots y_{n_j j})'$ is vector of n_j observations in cluster j
- Let C_j be conditioning set for \mathbf{y}_j (may include covariates and "history" allow $\mathbf{y}_i \in C_j$ for i < j, but not for $i \ge j$, hence clusters may be interdependent)
- Observations from family of distributions with joint density

$$\prod_{j=1}^{k} f_j\left(\mathbf{y}_j \mid \mathcal{C}_j; \, \boldsymbol{\theta}, \boldsymbol{\alpha}\right) \, .$$

for parameter vectors $\theta,\,\alpha$

- Interested in / tractable model available for low-dimensional margins of joint distributions.
- Conditionally upon C_j , low-dimensional margins are fully determined by $\theta \to \alpha$ is nuisance parameter for high-dimensional joint structure.

Log-likelihoods

• Full log-likelihood function is $\ell_{\text{FULL}}(\theta, \alpha) = \sum_{j=1}^{k} \log f_j(\mathbf{y}_j | C_j; \theta, \alpha)$, but joint distributions usually difficult to model.

Log-likelihoods

- Full log-likelihood function is $\ell_{\text{FULL}}(\theta, \alpha) = \sum_{j=1}^{k} \log f_j(\mathbf{y}_j | C_j; \theta, \alpha)$, but joint distributions usually difficult to model.
- Alternative: use 'working' log-likelihood based on low-dimensional margins:

$$\ell_{\text{WORK}}(\boldsymbol{\theta}) = \sum_{j=1}^{k} \log \tilde{f}_j(y_j | \mathcal{C}_j; \boldsymbol{\theta})$$

where $\log \tilde{f}_j(y_j | C_j; \theta)$ is contribution from cluster *j* (**NB** α missing here)

Log-likelihoods

- Full log-likelihood function is $\ell_{\text{FULL}}(\theta, \alpha) = \sum_{j=1}^{k} \log f_j(\mathbf{y}_j | C_j; \theta, \alpha)$, but joint distributions usually difficult to model.
- Alternative: use 'working' log-likelihood based on low-dimensional margins:

$$\ell_{\text{WORK}}(\theta) = \sum_{j=1}^{k} \log \tilde{f}_j(y_j | C_j; \theta)$$

where $\log \tilde{f}_j(y_j | C_j; \theta)$ is contribution from cluster *j* (**NB** α missing here)

- Examples:
 - Independence log-likelihood: $\ell_{\text{IND}}(\theta) = \sum_{j=1}^{k} \sum_{i=1}^{n_j} \log f_{ij}(y_{ij}|\mathcal{C}_j;\theta)$ so that $\log \tilde{f}_j(y_j|\mathcal{C}_j;\theta) = \sum_{i=1}^{n_j} \log f_{ij}(y_{ij}|\mathcal{C}_j;\theta)$.

Log-likelihoods

- Full log-likelihood function is $\ell_{\text{FULL}}(\theta, \alpha) = \sum_{j=1}^{k} \log f_j(\mathbf{y}_j | C_j; \theta, \alpha)$, but joint distributions usually difficult to model.
- Alternative: use 'working' log-likelihood based on low-dimensional margins:

$$\ell_{\text{WORK}}(\boldsymbol{\theta}) = \sum_{j=1}^{k} \log \tilde{f}_j(y_j | \mathcal{C}_j; \boldsymbol{\theta})$$

where $\log \tilde{f}_i(y_i | C_i; \theta)$ is contribution from cluster j (**NB** α missing here)

- Examples:
 - Independence log-likelihood: $\ell_{\text{IND}}(\theta) = \sum_{j=1}^{k} \sum_{i=1}^{n_j} \log f_{ij}(y_{ij}|\mathcal{C}_j;\theta)$ so that $\log \tilde{f}_j(y_j|\mathcal{C}_j;\theta) = \sum_{i=1}^{n_j} \log f_{ij}(y_{ij}|\mathcal{C}_j;\theta)$.
 - (Weighted) log pairwise likelihood: $\ell_{\text{PAIR}}(\theta) = \sum_{j=1}^{k} w_j \sum_{i_1=1}^{n_j-1} \sum_{i_2=i_1+1}^{n_j} \log f_{i_1,i_2,j}(y_{i_1j}, y_{i_2j} | \mathcal{C}_j; \theta)$ so that $\log \tilde{f}_j(y_j | \mathcal{C}_j; \theta) = w_j \sum_{i_1=1}^{n_j-1} \sum_{i_2=i_1+1}^{n_j} \log f_{i_1,i_2,j}(y_{i_1j}, y_{i_2j} | \mathcal{C}_j; \theta).$

Some potential applications

- Longitudinal studies:
 - 'Clusters' are patients
 - Can be assumed independent

Some potential applications

- Longitudinal studies:
 - 'Clusters' are patients
 - Can be assumed independent
- Space-time data (multiple time series):
 - 'Clusters' are observations made at same time instant
 - Temporal autocorrelation may be present can be handled by including previous observations into conditioning sets {C_i}

- 1. Problem statement
- 2. Standard asymptotics for mis-specified likelihoods
- 3. Adjusting the working log-likelihood
- 4. Open questions

'Working score' function is

$$\mathbf{U}(\mathbf{\theta}) = rac{\partial \ell_{\mathrm{WORK}}}{\partial \mathbf{\theta}} = \sum_{j=1}^{k} \mathbf{U}_{j}(\mathbf{\theta})$$
 say.

Definition of estimator

'Working score' function is

$$\mathbf{U}(\mathbf{\theta}) = rac{\partial \ell_{\mathrm{WORK}}}{\partial \mathbf{\theta}} = \sum_{j=1}^{k} \mathbf{U}_{j}(\mathbf{\theta}) \text{ say.}$$

If data are generated from distribution with θ = θ₀ then, under general conditions, working score contributions {U_j(θ₀)} are uncorrelated with zero mean (may need to include 'history' into C_j to ensure this when clusters are interdependent — see Chapter 5 of *Statistical Methods for Spatial-temporal Systems*, eds. Finkenstadt, Held & Isham, CRC Press, 2007).

'Working score' function is

$$\mathbf{U}(\mathbf{\theta}) = rac{\partial \ell_{\mathrm{WORK}}}{\partial \mathbf{\theta}} = \sum_{j=1}^{k} \mathbf{U}_{j}(\mathbf{\theta}) \text{ say.}$$

- If data are generated from distribution with θ = θ₀ then, under general conditions, working score contributions {U_j(θ₀)} are uncorrelated with zero mean (may need to include 'history' into C_j to ensure this when clusters are interdependent see Chapter 5 of *Statistical Methods for Spatial-temporal Systems*, eds. Finkenstadt, Held & Isham, CRC Press, 2007).
- Estimator $\hat{\theta}_{\text{WORK}}$ satisfies $\mathbf{U}(\hat{\theta}_{\text{WORK}}) = \sum_{j=1}^{k} \mathbf{U}_{j}(\hat{\theta}_{\text{WORK}}) = \mathbf{0}$.

Large-sample properties of $\hat{\theta}_{WORK}$

- Usual asymptotics hold e.g. for large k, $\hat{\theta}_{WORK} \sim N(\theta_0, \mathbf{HV}^{-1}\mathbf{H})$ where

$$\mathbf{H} = \mathbf{E} \left(\left. \frac{\partial^2 \ell_{\text{WORK}}}{\partial \theta \partial \theta'} \right|_{\theta = \theta_0} \right) , \ \mathbf{V} = \text{Var} \left[\sum_{j=1}^k \mathbf{U}_j(\theta_0) \right] = \sum_{j=1}^k \mathbf{E} \left[\mathbf{U}_j(\theta_0) \mathbf{U}_j(\theta_0)' \right]$$

Large-sample properties of $\hat{\theta}_{WORK}$

- Usual asymptotics hold e.g. for large k, $\hat{\theta}_{WORK} \sim N\left(\theta_0, \mathbf{HV}^{-1}\mathbf{H}\right)$ where

$$\mathbf{H} = \mathbf{E} \left(\left. \frac{\partial^2 \ell_{\text{WORK}}}{\partial \theta \partial \theta'} \right|_{\theta = \theta_0} \right) , \ \mathbf{V} = \text{Var} \left[\sum_{j=1}^k \mathbf{U}_j \left(\theta_0 \right) \right] = \sum_{j=1}^k \mathbf{E} \left[\mathbf{U}_j \left(\theta_0 \right) \mathbf{U}_j \left(\theta_0 \right)' \right]$$

- Estimate H using either expected or observed Hessian at $\hat{\theta}_{WORK}$, say \hat{H} .

Large-sample properties of $\hat{\theta}_{WORK}$

- Usual asymptotics hold e.g. for large k, $\hat{\theta}_{WORK} \sim N\left(\theta_0, \mathbf{HV}^{-1}\mathbf{H}\right)$ where

$$\mathbf{H} = \mathbf{E} \left(\left. \frac{\partial^2 \ell_{\text{WORK}}}{\partial \theta \partial \theta'} \right|_{\theta = \theta_0} \right) , \ \mathbf{V} = \text{Var} \left[\sum_{j=1}^k \mathbf{U}_j \left(\theta_0 \right) \right] = \sum_{j=1}^k \mathbf{E} \left[\mathbf{U}_j \left(\theta_0 \right) \mathbf{U}_j \left(\theta_0 \right)' \right]$$

- Estimate H using either expected or observed Hessian at $\hat{\theta}_{WORK}$, say \hat{H} .
- Estimate V using empirical counterpart: $\hat{\mathbf{V}} = \sum_{j=1}^{k} \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right) \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right)'$

Large-sample properties of $\hat{\theta}_{WORK}$

• Usual asymptotics hold e.g. for large k, $\hat{\theta}_{WORK} \sim N(\theta_0, \mathbf{HV}^{-1}\mathbf{H})$ where

$$\mathbf{H} = \mathbf{E} \left(\left. \frac{\partial^2 \ell_{\text{WORK}}}{\partial \theta \partial \theta'} \right|_{\theta = \theta_0} \right) , \ \mathbf{V} = \text{Var} \left[\sum_{j=1}^k \mathbf{U}_j \left(\theta_0 \right) \right] = \sum_{j=1}^k \mathbf{E} \left[\mathbf{U}_j \left(\theta_0 \right) \mathbf{U}_j \left(\theta_0 \right)' \right]$$

- Estimate **H** using either expected or observed Hessian at $\hat{\theta}_{WORK}$, say $\hat{\mathbf{H}}$.
- Estimate V using empirical counterpart: $\hat{\mathbf{V}} = \sum_{j=1}^{k} \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right) \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right)'$
- Covariance matrix of $\hat{\theta}_{WORK}$ estimated consistently by robust estimator $\mathcal{R} = \hat{\mathbf{H}}^{-1} \hat{\mathbf{V}} \hat{\mathbf{H}}^{-1}$ — gives Wald tests & confidence regions for components of θ

Large-sample properties of $\hat{\theta}_{WORK}$

- Usual asymptotics hold e.g. for large k, $\hat{\theta}_{WORK} \sim N(\theta_0, HV^{-1}H)$ where

$$\mathbf{H} = E\left(\left.\frac{\partial^{2}\ell_{WORK}}{\partial\theta\partial\theta'}\right|_{\theta=\theta_{0}}\right) , \mathbf{V} = Var\left[\sum_{j=1}^{k} \mathbf{U}_{j}\left(\theta_{0}\right)\right] = \sum_{j=1}^{k} E\left[\mathbf{U}_{j}\left(\theta_{0}\right)\mathbf{U}_{j}\left(\theta_{0}\right)'\right]$$

- Estimate **H** using either expected or observed Hessian at $\hat{\theta}_{WORK}$, say $\hat{\mathbf{H}}$.
- Estimate V using empirical counterpart: $\hat{\mathbf{V}} = \sum_{j=1}^{k} \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right) \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right)'$
- Covariance matrix of $\hat{\theta}_{WORK}$ estimated consistently by robust estimator $\mathcal{R} = \hat{\mathbf{H}}^{-1} \hat{\mathbf{V}} \hat{\mathbf{H}}^{-1}$ — gives Wald tests & confidence regions for components of θ
- Contrast with naïve estimator $\mathcal{N} = -\hat{\mathbf{H}}^{-1}$ (ignores mis-specification of working log- likelihood)

Large-sample properties of $\hat{\theta}_{WORK}$

• Usual asymptotics hold e.g. for large k, $\hat{\theta}_{WORK} \sim N(\theta_0, \mathbf{HV}^{-1}\mathbf{H})$ where

$$\mathbf{H} = E\left(\left.\frac{\partial^{2}\ell_{\text{WORK}}}{\partial\theta\partial\theta'}\right|_{\theta=\theta_{0}}\right) , \ \mathbf{V} = \text{Var}\left[\sum_{j=1}^{k}\mathbf{U}_{j}\left(\theta_{0}\right)\right] = \sum_{j=1}^{k}E\left[\mathbf{U}_{j}\left(\theta_{0}\right)\mathbf{U}_{j}\left(\theta_{0}\right)'\right]$$

- Estimate **H** using either expected or observed Hessian at $\hat{\theta}_{WORK}$, say $\hat{\mathbf{H}}$.
- Estimate V using empirical counterpart: $\hat{\mathbf{V}} = \sum_{j=1}^{k} \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right) \mathbf{U}_{j} \left(\hat{\theta}_{\text{WORK}} \right)'$
- Covariance matrix of $\hat{\theta}_{WORK}$ estimated consistently by robust estimator $\mathcal{R} = \hat{\mathbf{H}}^{-1} \hat{\mathbf{V}} \hat{\mathbf{H}}^{-1}$ — gives Wald tests & confidence regions for components of θ
- Contrast with naïve estimator $\mathcal{N} = -\hat{\mathbf{H}}^{-1}$ (ignores mis-specification of working log- likelihood)
- **NB** other techniques required for small *k* application-dependent

Large-sample properties of working log likelihood

• Partition θ as $(\phi' \ \psi')'$ and let $\tilde{\theta}_{WORK} = \arg \sup_{\psi = \psi_0} \ell_{WORK}(\theta)$.

- Partition θ as $(\phi' \psi')'$ and let $\tilde{\theta}_{WORK} = \arg \sup_{\psi = \psi_0} \ell_{WORK}(\theta)$.
- For large k:
 - Distribution of $\Lambda_{WORK} = 2 \left[\ell_{WORK} \left(\hat{\theta}_{WORK} \right) \ell_{WORK} \left(\tilde{\theta}_{WORK} \right) \right]$ is approximately that of weighted sum of χ_1^2 random variables
 - Weights are solution to partition-dependent eigenproblem

Large-sample properties of working log likelihood

- Partition θ as $(\phi' \psi')'$ and let $\tilde{\theta}_{WORK} = \arg \sup_{\psi = \psi_0} \ell_{WORK}(\theta)$.
- For large k:
 - Distribution of $\Lambda_{WORK} = 2 \left[\ell_{WORK} \left(\hat{\theta}_{WORK} \right) \ell_{WORK} \left(\tilde{\theta}_{WORK} \right) \right]$ is approximately that of weighted sum of χ_1^2 random variables
 - Weights are solution to partition-dependent eigenproblem
- Can be used for profile-based inference on components of θ .

- 1. Problem statement
- 2. Standard asymptotics for mis-specified likelihoods
- 3. Adjusting the working log-likelihood
- 4. Open questions

• Profile log-likelihoods useful for tests & confidence regions.

- Profile log-likelihoods useful for tests & confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{WORK}\left(\theta\right)$, BUT:
 - Adjustments difficult to calculate (weighted sum of independent chi-squareds)
 - Adjusted critical values are direction-dependent

- Profile log-likelihoods useful for tests & confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{WORK}(\theta),$ BUT:
 - Adjustments difficult to calculate (weighted sum of independent chi-squareds)
 - Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{WORK}(\theta)$ to maintain usual asymptotics (Chandler & Bate, *Biometrika*, 2007):

- Profile log-likelihoods useful for tests & confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{WORK}(\theta)$, BUT:
 - Adjustments difficult to calculate (weighted sum of independent chi-squareds)
 - Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{WORK}(\theta)$ to maintain usual asymptotics (Chandler & Bate, *Biometrika*, 2007):

• Naïve covariance matrix is $\mathcal{N} = -\hat{\mathbf{H}}^{-1} \Rightarrow \ell_{\text{WORK}}(\theta)$ has Hessian $\hat{\mathbf{H}} = -\mathcal{N}^{-1}$.

Motivation

- Profile log-likelihoods useful for tests & confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{WORK}(\theta)$, BUT:
 - Adjustments difficult to calculate (weighted sum of independent chi-squareds)
 - Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{WORK}(\theta)$ to maintain usual asymptotics (Chandler & Bate, *Biometrika*, 2007):
 - Naïve covariance matrix is $\mathcal{N} = -\hat{\mathbf{H}}^{-1} \Rightarrow \ell_{\text{WORK}}(\theta)$ has Hessian $\hat{\mathbf{H}} = -\mathcal{N}^{-1}$.
 - Robust covariance matrix is $\mathcal{R} \Rightarrow$ define adjusted inference function with Hessian $\hat{\mathbf{H}}_{ADJ} = -\mathcal{R}^{-1}$.

- Profile log-likelihoods useful for tests & confidence regions.
- 'Classical' approach adjusts 'naïve' critical values for tests based on $\ell_{WORK}(\theta)$, BUT:
 - Adjustments difficult to calculate (weighted sum of independent chi-squareds)
 - Adjusted critical values are direction-dependent
- Alternative: adjust $\ell_{WORK}(\theta)$ to maintain usual asymptotics (Chandler & Bate, *Biometrika*, 2007):
 - Naïve covariance matrix is $\mathcal{N} = -\hat{\mathbf{H}}^{-1} \Rightarrow \ell_{\text{WORK}}(\theta)$ has Hessian $\hat{\mathbf{H}} = -\mathcal{N}^{-1}$.
 - Robust covariance matrix is $\Re \Rightarrow$ define adjusted inference function with Hessian $\hat{H}_{ADJ} = -\Re^{-1}$.
 - **Borrow profile from** $\ell_{WORK}(\theta)$ hopefully informative.

Options for adjustment

Horizontal scaling: define $\ell_{ADJ}(\theta) = \ell_{WORK}(\theta^*)$, where

 $\boldsymbol{\theta}^{*}=\hat{\boldsymbol{\theta}}_{WORK}+\mathbf{M}^{-1}\mathbf{M}_{ADJ}\left(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}\right)$

with $\mathbf{M'M} = \hat{\mathbf{H}}, \mathbf{M'_{ADJ}M_{ADJ}} = \hat{\mathbf{H}}_{ADJ}$. Possible choices for $\mathbf{M}, \mathbf{M}_{ADJ}$:

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M} = \mathbf{L}\mathbf{D}^{1/2}\mathbf{L}$, where $\mathbf{L}\mathbf{D}\mathbf{L}$ is spectral decomposition of $\hat{\mathbf{H}}$.

Horizontal scaling: define $\ell_{ADJ}(\theta) = \ell_{WORK}(\theta^*)$, where

 $\theta^{*} = \hat{\theta}_{WORK} + \mathbf{M}^{-1} \mathbf{M}_{ADJ} \left(\theta - \hat{\theta} \right)$

with $\mathbf{M'M} = \hat{\mathbf{H}}, \mathbf{M'_{ADJ}M_{ADJ}} = \hat{\mathbf{H}}_{ADJ}$. Possible choices for $\mathbf{M}, \mathbf{M}_{ADJ}$:

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M} = \mathbf{L}\mathbf{D}^{1/2}\mathbf{L}$, where $\mathbf{L}\mathbf{D}\mathbf{L}$ is spectral decomposition of $\hat{\mathbf{H}}$.

Vertical scaling: define $\ell_{ADJ}(\theta)$ as

 $\ell_{\text{WORK}}\left(\hat{\theta}_{\text{WORK}}\right) + \left\{ \left(\theta - \hat{\theta}_{\text{WORK}}\right)'\hat{\mathbf{H}}_{\text{ADJ}}\left(\theta - \hat{\theta}_{\text{WORK}}\right) \right\} \frac{\ell_{\text{WORK}}\left(\theta\right) - \ell_{\text{WORK}}\left(\hat{\theta}_{\text{WORK}}\right)}{\left(\theta - \hat{\theta}_{\text{WORK}}\right)'\hat{\mathbf{H}}\left(\theta - \hat{\theta}_{\text{WORK}}\right)}$

Options for adjustment

Horizontal scaling: define $\ell_{ADJ}(\theta) = \ell_{WORK}(\theta^*)$, where

 $\theta^* = \hat{\theta}_{WORK} + \mathbf{M}^{-1} \mathbf{M}_{ADJ} \left(\theta - \hat{\theta} \right)$

with $\mathbf{M'M} = \hat{\mathbf{H}}, \mathbf{M'_{ADJ}M_{ADJ}} = \hat{\mathbf{H}}_{ADJ}$. Possible choices for $\mathbf{M}, \mathbf{M}_{ADJ}$:

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M} = \mathbf{L}\mathbf{D}^{1/2}\mathbf{L}$, where $\mathbf{L}\mathbf{D}\mathbf{L}$ is spectral decomposition of $\hat{\mathbf{H}}$.

Vertical scaling: define $\ell_{ADJ}(\theta)$ as

$$\ell_{\text{WORK}}\left(\hat{\theta}_{\text{WORK}}\right) + \left\{ \left(\theta - \hat{\theta}_{\text{WORK}}\right)'\hat{\mathbf{H}}_{\text{ADJ}}\left(\theta - \hat{\theta}_{\text{WORK}}\right) \right\} \frac{\ell_{\text{WORK}}\left(\theta\right) - \ell_{\text{WORK}}\left(\theta_{\text{WORK}}\right)}{\left(\theta - \hat{\theta}_{\text{WORK}}\right)'\hat{\mathbf{H}}\left(\theta - \hat{\theta}_{\text{WORK}}\right)}$$

Options asymptotically equivalent (and identical in quadratic case)

Horizontal scaling: define $\ell_{ADJ}(\theta) = \ell_{WORK}(\theta^*)$, where

 $\theta^{*} = \hat{\theta}_{WORK} + \mathbf{M}^{-1} \mathbf{M}_{ADJ} \left(\theta - \hat{\theta} \right)$

with $\mathbf{M'M} = \hat{\mathbf{H}}$, $\mathbf{M'_{ADJ}M_{ADJ}} = \hat{\mathbf{H}}_{ADJ}$. Possible choices for \mathbf{M} , \mathbf{M}_{ADJ} :

- Choleski square roots.
- 'Minimal rotation' square roots e.g. $\mathbf{M} = \mathbf{L}\mathbf{D}^{1/2}\mathbf{L}$, where $\mathbf{L}\mathbf{D}\mathbf{L}$ is spectral decomposition of $\hat{\mathbf{H}}$.

Vertical scaling: define $\ell_{ADJ}(\theta)$ as

$$\ell_{\text{WORK}}\left(\hat{\theta}_{\text{WORK}}\right) + \left\{ \left(\theta - \hat{\theta}_{\text{WORK}}\right)'\hat{\mathbf{H}}_{\text{ADJ}}\left(\theta - \hat{\theta}_{\text{WORK}}\right) \right\} \frac{\ell_{\text{WORK}}\left(\theta\right) - \ell_{\text{WORK}}\left(\theta_{\text{WORK}}\right)}{\left(\theta - \hat{\theta}_{\text{WORK}}\right)'\hat{\mathbf{H}}\left(\theta - \hat{\theta}_{\text{WORK}}\right)}$$

- Options asymptotically equivalent (and identical in quadratic case)
- Vertical scaling has practical (and theoretical) advantages

Geometry of adjustment in 1-D

Geometry of adjustment in 1-D

- Horizontal scaling is by ratio of robust to naïve standard errors.

Geometry of adjustment in 1-D

- Horizontal scaling is by ratio of robust to naïve standard errors.
- Vertical scaling is by ratio of robust to naïve variances (same as adjusting critical value)

• *k* bivariate normal pairs $\{(Y_{1j}, Y_{2j}) : j = 1, ..., k\}$ with unknown mean μ and covariance matrix Σ .

Multiparameter case: a 2-dimensional example

- *k* bivariate normal pairs $\{(Y_{1j}, Y_{2j}) : j = 1, ..., k\}$ with unknown mean μ and covariance matrix Σ .
- Independence log-likelihood for $\theta = (\mu_1 \ \mu_2 \ \sigma_1^2 \ \sigma_2^2)'$ is $\ell_{\text{IND}}(\theta) = -\frac{1}{2} \sum_{j=1}^k \sum_{i=1}^2 \left[\log \sigma_i^2 + \sigma_i^{-2} (Y_{ij} - \mu_i)^2 \right] + \text{constant.}$

- *k* bivariate normal pairs $\{(Y_{1j}, Y_{2j}) : j = 1, ..., k\}$ with unknown mean μ and covariance matrix Σ .
- Independence log-likelihood for $\theta = (\mu_1 \ \mu_2 \ \sigma_1^2 \ \sigma_2^2)'$ is $\ell_{\text{IND}}(\theta) = -\frac{1}{2} \sum_{j=1}^k \sum_{i=1}^2 \left[\log \sigma_i^2 + \sigma_i^{-2} (Y_{ij} - \mu_i)^2 \right] + \text{constant.}$
- μ and σ components of θ are orthogonal in $\ell_{IND}(\theta)$

Multiparameter case: a 2-dimensional example

- *k* bivariate normal pairs $\{(Y_{1j}, Y_{2j}) : j = 1, ..., k\}$ with unknown mean μ and covariance matrix Σ .
- Independence log-likelihood for $\theta = (\mu_1 \ \mu_2 \ \sigma_1^2 \ \sigma_2^2)'$ is $\ell_{\text{IND}}(\theta) = -\frac{1}{2} \sum_{j=1}^k \sum_{i=1}^2 \left[\log \sigma_i^2 + \sigma_i^{-2} (Y_{ij} - \mu_i)^2 \right] + \text{constant.}$
- μ and σ components of θ are orthogonal in $\ell_{IND}(\theta)$
- Naïve and robust covariance matrices of $\hat{\mu} = \overline{\mathbf{Y}}$ are $\mathcal{N} = k^{-1} \operatorname{diag} (\hat{\sigma}_1^2 \ \hat{\sigma}_2^2)$; $\mathcal{R} = k^{-1} \hat{\Sigma}$.

- *k* bivariate normal pairs $\{(Y_{1j}, Y_{2j}) : j = 1, ..., k\}$ with unknown mean μ and covariance matrix Σ .
- Independence log-likelihood for $\theta = (\mu_1 \ \mu_2 \ \sigma_1^2 \ \sigma_2^2)'$ is $\ell_{\text{IND}}(\theta) = -\frac{1}{2} \sum_{j=1}^k \sum_{i=1}^2 \left[\log \sigma_i^2 + \sigma_i^{-2} (Y_{ij} \mu_i)^2 \right] + \text{constant.}$
- μ and σ components of θ are orthogonal in $\ell_{IND}(\theta)$
- Naïve and robust covariance matrices of $\hat{\mu} = \overline{\mathbf{Y}}$ are $\mathcal{N} = k^{-1} \operatorname{diag} (\hat{\sigma}_1^2 \ \hat{\sigma}_2^2)$; $\mathcal{R} = k^{-1} \hat{\Sigma}$.
- Adjusted profile log-likelihood for μ (horizontal or vertical scaling) is $\ell_{ADJ}(\mu) = -\frac{k}{2} \left(\overline{\mathbf{Y}} \mu\right)' \hat{\boldsymbol{\Sigma}}^{-1} \left(\overline{\mathbf{Y}} \mu\right) + \text{constant} \text{i.e. correct bivariate log-likelihood.}$

Multiparameter case: a 2-dimensional example

- *k* bivariate normal pairs $\{(Y_{1j}, Y_{2j}) : j = 1, ..., k\}$ with unknown mean μ and covariance matrix Σ .
- Independence log-likelihood for $\theta = (\mu_1 \ \mu_2 \ \sigma_1^2 \ \sigma_2^2)'$ is $\ell_{\text{IND}}(\theta) = -\frac{1}{2} \sum_{j=1}^k \sum_{i=1}^2 \left[\log \sigma_i^2 + \sigma_i^{-2} (Y_{ij} - \mu_i)^2 \right] + \text{constant.}$
- μ and σ components of θ are orthogonal in $\ell_{IND}(\theta)$
- Naïve and robust covariance matrices of $\hat{\mu} = \overline{\mathbf{Y}}$ are $\mathcal{N} = k^{-1} \operatorname{diag} (\hat{\sigma}_1^2 \ \hat{\sigma}_2^2)$; $\mathcal{R} = k^{-1} \hat{\Sigma}$.
- Adjusted profile log-likelihood for μ (horizontal or vertical scaling) is $\ell_{ADJ}(\mu) = -\frac{k}{2} \left(\overline{\mathbf{Y}} \mu\right)' \hat{\boldsymbol{\Sigma}}^{-1} \left(\overline{\mathbf{Y}} \mu\right) + \text{constant} \text{i.e. correct bivariate log-likelihood.}$
- NB contours of l_{IND} are always circular hence classical approach of adjusting critical value is sub-optimal.

Comparing nested models

• Adjustment preserves χ^2 asymptotics by construction \Rightarrow to test $H_0: \Delta \theta = \delta_0$, use statistic $\Lambda_{ADJ} = 2 \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{ADJ} \right) \right\}$, where $\widetilde{\theta}_{ADJ}$ maximises ℓ_{ADJ} under H_0 .

Comparing nested models

- Adjustment preserves χ^2 asymptotics by construction \Rightarrow to test $H_0: \Delta \theta = \delta_0$, use statistic $\Lambda_{ADJ} = 2 \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{ADJ} \right) \right\}$, where $\widetilde{\theta}_{ADJ}$ maximises ℓ_{ADJ} under H_0 .
- **Problem:** $\widetilde{\theta}_{ADJ}$ could be difficult / expensive to compute.

Comparing nested models

- Adjustment preserves χ^2 asymptotics by construction \Rightarrow to test $H_0: \Delta \theta = \delta_0$, use statistic $\Lambda_{ADJ} = 2 \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{ADJ} \right) \right\}$, where $\widetilde{\theta}_{ADJ}$ maximises ℓ_{ADJ} under H_0 .
- **Problem:** $\tilde{\theta}_{ADJ}$ could be difficult / expensive to compute.
- Alternative: use asymptotically equivalent statistic based on one-step approximation to $\ell_{ADJ}\left(\widetilde{\theta}_{ADJ}\right)$:

$$\Lambda_{ADJ}^{*} = 2c \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{WORK} \right) \right\}$$

where $c = \frac{\left(\Delta \hat{\theta}_{WORK} - \delta_{0} \right)' \left[\Delta \mathbf{H}_{ADJ}^{-1} \Delta' \right]^{-1} \left(\Delta \hat{\theta}_{WORK} - \delta_{0} \right)}{\left(\hat{\theta}_{WORK} - \widetilde{\theta}_{WORK} \right)' \hat{\mathbf{H}}_{ADJ} \left(\hat{\theta}_{WORK} - \widetilde{\theta}_{WORK} \right)}$

Comparing nested models

- Adjustment preserves χ^2 asymptotics by construction \Rightarrow to test $H_0: \Delta \theta = \delta_0$, use statistic $\Lambda_{ADJ} = 2 \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{ADJ} \right) \right\}$, where $\widetilde{\theta}_{ADJ}$ maximises ℓ_{ADJ} under H_0 .
- Problem: $\tilde{\theta}_{ADJ}$ could be difficult / expensive to compute.
- Alternative: use asymptotically equivalent statistic based on one-step approximation to $\ell_{ADJ}\left(\widetilde{\theta}_{ADJ}\right)$:

$$\Lambda_{ADJ}^{*} = 2c \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{WORK} \right) \right\}$$

where $c = \frac{\left(\Delta \hat{\theta}_{WORK} - \delta_{0} \right)' \left[\Delta \mathbf{H}_{ADJ}^{-1} \Delta' \right]^{-1} \left(\Delta \hat{\theta}_{WORK} - \delta_{0} \right)}{\left(\hat{\theta}_{WORK} - \tilde{\theta}_{WORK} \right)' \hat{\mathbf{H}}_{ADJ} \left(\hat{\theta}_{WORK} - \tilde{\theta}_{WORK} \right)}$

• Λ^*_{ADJ} needs only estimates from working likelihood.

Comparing nested models

- Adjustment preserves χ^2 asymptotics by construction \Rightarrow to test $H_0: \Delta \theta = \delta_0$, use statistic $\Lambda_{ADJ} = 2 \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{ADJ} \right) \right\}$, where $\widetilde{\theta}_{ADJ}$ maximises ℓ_{ADJ} under H_0 .
- **Problem:** $\widetilde{\theta}_{ADJ}$ could be difficult / expensive to compute.
- Alternative: use asymptotically equivalent statistic based on one-step approximation to $\ell_{ADJ}\left(\widetilde{\theta}_{ADJ}\right)$:

$$\Lambda_{ADJ}^{*} = 2c \left\{ \ell_{ADJ} \left(\hat{\theta}_{WORK} \right) - \ell_{ADJ} \left(\widetilde{\theta}_{WORK} \right) \right\}$$

ere $c = \frac{\left(\Delta \hat{\theta}_{WORK} - \delta_{0} \right)' \left[\Delta \mathbf{H}_{ADJ}^{-1} \Delta' \right]^{-1} \left(\Delta \hat{\theta}_{WORK} - \delta_{0} \right)}{\left(\hat{\theta}_{WORK} - \widetilde{\theta}_{WORK} \right)' \hat{\mathbf{H}}_{ADJ} \left(\hat{\theta}_{WORK} - \widetilde{\theta}_{WORK} \right)}$

where

- Λ^*_{ADJ} needs only estimates from working likelihood.
- Details: Chandler & Bate, *Biometrika*, 2007.

Other applications

 Not restricted to clustered data — applicable in principle whenever 'working' likelihood is used e.g. inference in 'wrong but useful' models (NB mis-specification of model or likelihood)

Other applications

- Not restricted to clustered data applicable in principle whenever 'working' likelihood is used e.g. inference in 'wrong but useful' models (NB mis-specification of model *or* likelihood)
- Approach not restricted to likelihood-based inference applicable whenever:
 - Estimation is done by optimising some objective function
 - Resulting estimating equations are (asymptotically) unbiased
 - Robust (and reliable) covariance matrix estimator is available

Other applications

- Not restricted to clustered data applicable in principle whenever 'working' likelihood is used e.g. inference in 'wrong but useful' models (NB mis-specification of model *or* likelihood)
- Approach not restricted to likelihood-based inference applicable whenever:
 - Estimation is done by optimising some objective function
 - Resulting estimating equations are (asymptotically) unbiased
 - Robust (and reliable) covariance matrix estimator is available
- **Example:** generalised method of moments $-\hat{\theta} = \arg \min_{\theta} S(\theta; \mathbf{y})$, where:
 - $S(\boldsymbol{\theta}; \mathbf{y}) = \sum_{r=1}^{p} w_r [T_r(\mathbf{y}) \tau_r(\boldsymbol{\theta})]^2$
 - { $T_r(\mathbf{y}) : r = 1, ..., p$ } are statistics (e.g. sample moments)
 - $\tau_r(\boldsymbol{\theta}) = \mathbf{E}_{\boldsymbol{\theta}}[T_r(\mathbf{y})] \ (r = 1, \dots, p).$
 - { $w_r : r = 1, ..., p$ } are weights (independent of θ).

- 1. Problem statement
- 2. Standard asymptotics for mis-specified likelihoods
- 3. Adjusting the working log-likelihood
- 4. Open questions

Open questions (1)

 When does adjustment recover profile log-likelihood for θ asymptotically? Requirements (cf bivariate normal example):

- When does adjustment recover profile log-likelihood for θ asymptotically? Requirements (cf bivariate normal example):
 - ℓ_{WORK} (approximately) quadratic in region of interest

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically? Requirements (cf bivariate normal example):
 - ℓ_{WORK} (approximately) quadratic in region of interest
 - $|\hat{\theta}_{WORK} \hat{\theta}_{FULL}|$ is 'small enough' i.e. $\hat{\theta}_{WORK}$ is efficient

- When does adjustment recover profile log-likelihood for θ asymptotically? Requirements (cf bivariate normal example):
 - ℓ_{WORK} (approximately) quadratic in region of interest
 - $|\hat{\theta}_{WORK} \hat{\theta}_{FULL}|$ is 'small enough' i.e. $\hat{\theta}_{WORK}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models — result given by Watson (*Biometrika*, 1972).

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically? Requirements (cf bivariate normal example):
 - ℓ_{WORK} (approximately) quadratic in region of interest
 - $|\hat{\theta}_{WORK} \hat{\theta}_{FULL}|$ is 'small enough' i.e. $\hat{\theta}_{WORK}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models — result given by Watson (*Biometrika*, 1972).

When is ℓ_{ADJ} a bona fide useful profile log-likelihood for θ? Could then argue that adjustment gives full likelihood-based inference under 'convenient' model for higher-order structure.

- When does adjustment recover profile log-likelihood for θ asymptotically? Requirements (cf bivariate normal example):
 - ℓ_{WORK} (approximately) quadratic in region of interest
 - $|\hat{\theta}_{WORK} \hat{\theta}_{FULL}|$ is 'small enough' i.e. $\hat{\theta}_{WORK}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models — result given by Watson (*Biometrika*, 1972).

• When is ℓ_{ADJ} a bona fide useful profile log-likelihood for θ ? Could then argue that adjustment gives full likelihood-based inference under 'convenient' model for higher-order structure.

• To be useful, need to maintain interpretation of θ

Open questions (1)

- When does adjustment recover profile log-likelihood for θ asymptotically? Requirements (cf bivariate normal example):
 - ℓ_{WORK} (approximately) quadratic in region of interest
 - $|\hat{\theta}_{WORK} \hat{\theta}_{FULL}|$ is 'small enough' i.e. $\hat{\theta}_{WORK}$ is efficient

NB conditions known for 'independence' working log-likelihood in Gaussian linear models — result given by Watson (*Biometrika*, 1972).

- When is ℓ_{ADJ} a bona fide useful profile log-likelihood for θ ? Could then argue that adjustment gives full likelihood-based inference under 'convenient' model for higher-order structure.
 - To be useful, need to maintain interpretation of θ
 - Requirement seems to be existence of joint densities $\{f_j(\mathbf{y}_j | C_j; \theta, \alpha)\}$ for which adjustment recovers profile log-likelihood for θ (asymptotically?)

Open questions (2)

Adjustment is model-dependent: can this be overcome?

Open questions (2)

Adjustment is model-dependent: can this be overcome?

• In sequence of nested models $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_M$, comparison of (e.g.) \mathcal{M}_1 and \mathcal{M}_2 could be based on adjusted profiles from $\mathcal{M}_2, \mathcal{M}_3, \ldots$ or \mathcal{M}_M — each model will give different $\hat{\mathbf{H}}_{ADJ}$, hence adjustment is model-dependent.

Adjustment is model-dependent: can this be overcome?

- In sequence of nested models $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_M$, comparison of (e.g.) \mathcal{M}_1 and \mathcal{M}_2 could be based on adjusted profiles from $\mathcal{M}_2, \mathcal{M}_3, \ldots$ or \mathcal{M}_M each model will give different $\hat{\mathbf{H}}_{ADJ}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model M_M if specified in advance — but not always feasible.

Open questions (2)

Adjustment is model-dependent: can this be overcome?

- In sequence of nested models $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_M$, comparison of (e.g.) \mathcal{M}_1 and \mathcal{M}_2 could be based on adjusted profiles from $\mathcal{M}_2, \mathcal{M}_3, \ldots$ or \mathcal{M}_M each model will give different $\hat{\mathbf{H}}_{ADJ}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model M_M if specified in advance — but not always feasible.
- Possible alternative: derive Ĥ_{ADJ} for 'saturated' model (cf deviance for GLMs)
 but asymptotic arguments then fail except in special situations e.g. iid clusters.

Adjustment is model-dependent: can this be overcome?

- In sequence of nested models $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_M$, comparison of (e.g.) \mathcal{M}_1 and \mathcal{M}_2 could be based on adjusted profiles from $\mathcal{M}_2, \mathcal{M}_3, \ldots$ or \mathcal{M}_M each model will give different $\hat{\mathbf{H}}_{ADJ}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model \mathcal{M}_M if specified in advance but not always feasible.
- Possible alternative: derive Ĥ_{ADJ} for 'saturated' model (cf deviance for GLMs)
 but asymptotic arguments then fail except in special situations e.g. iid clusters.
- Other alternatives?

Open questions (2)

Adjustment is model-dependent: can this be overcome?

- In sequence of nested models $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_M$, comparison of (e.g.) \mathcal{M}_1 and \mathcal{M}_2 could be based on adjusted profiles from $\mathcal{M}_2, \mathcal{M}_3, \ldots$ or \mathcal{M}_M each model will give different $\hat{\mathbf{H}}_{ADJ}$, hence adjustment is model-dependent.
- Can base all inference on profiles derived from 'maximal' model \mathcal{M}_M if specified in advance but not always feasible.
- Possible alternative: derive Ĥ_{ADJ} for 'saturated' model (cf deviance for GLMs)
 but asymptotic arguments then fail except in special situations e.g. iid clusters.
- Other alternatives?

ANY QUESTIONS / SUGGESTIONS?