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Outline

• Introduction to Population Genetics.

• Composite Likelihood methods for estimating recombination rates:

– Two composite likelihood methods;

– Overview of existing theory;

– Open questions.



Introduction: Population Genetics

Population Genetics is the study/modelling of the genetic make-up of populations.

Data consists of some genetic information for each member of a randomly chosen sample
from a population of interest.

Inference can be about both the Biological and Demographic forces that have affected
the evolution of the population.

For concreteness, we will focus on the case of SNP haplotype data.
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SNP refers to ascertained positions of the genome where there is known to be polymor-
phism with the population. Haplotype refers to known the genetic type of each SNP on
each of the two copies of a chromosome (for diploid organisms).



Coalescent Models

Statistical models for such data are often based on a stochastic process called the Coa-
lescent.

The Coalescent is a probabilistic model for the genealogical relationship of a random
sample of chromosomes from a population; and the dependence of the genealogies at
different SNPS.

It is derived based upon models for the evolution of the population; and can account
for biological factors (Mutation, Recombination, Selection), and demographic factors
(Non-random mating, changes in population size).

Example: Genealogies
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Recombination

The dependence between genealogies (and hence data) at different SNPs is governed
by recombination: the greater the rate of recombination between two SNPs, the more
independent the SNPs are.

Recombination is the process by which a parent’s two copies of a chromosome is shuffled
together when passed onto a child.

Recombination rates between SNPs are not proportional to their physical distance.

The Use of Composite Likelihood Methods

Likelihoods under coalescent models can only be calculated (computationally) for small
data sets. By comparison, modern data sets can have data from 100s–1000s of individ-
uals; each typed at 100,000s-1,000,000s of SNPs

This has lead to the use of Composite Likelihood Methods. Example applications in-
clude:

• Estimating Recombination Rates (Hudson 2001, Fearnhead and Donnelly 2002,
Fearnhead 2003) These methods have produced the first fine-scale recombination
map for humans (McVean et al 2004).

• Estimating Demographic Models (See Wiuf 2006 for theoretical results).

• Inferring genes under Selection (E.g. Nielsen et al. 2005).



Focus on Composite Likelihood for Estimating
Recombination

We will consider two composite likelihood methods for estimating recombination rates:

(i) subdividing a chromosomal region into small sub-regions;

(ii) considering data from pairs of SNPs.

In each case we will consider inference for a scalar recombination rate, ρ. (E.g. under
the assumption of a constant recombination rate across the region of interest.)

Asymptotic Regime and Dependence

We consider the asymptotic regime where the size of the chromosomal region we have
data from goes to infinity.

[In most cases there is a finite amount of information about parameters in the limit as
the number of individuals tends to infinity.]

Main Result. If we have data from two sub-regions, D1 and D2; these sub-regions are
disjoint, and separated by a recombination rate ρb. Then

|π(D1,D2)− π(D1)π(D2)| = O(1/ρb).



Method of Fearnhead and Donnelly (2002)

This method splits the data into identically distributed sub-regions. Let Di be the data
for the ith sub-region; and li(ρ) = log π(Di|ρ) the corresponding log-likelihood function
for the (per kb) recombination rate ρ..

Fearnhead and Donnelly (2002) suggest basing inference on

ℓCL(ρ) =

R∑
i=1

li(ρ).

In the limit as R →∞ (and under mild regularity conditions); ρ̂ = arg max ℓCL(ρ) is a
consistent estimator.

Outline of Proof

The proof of consistency is based on three results:

(i) E(log π(Di|ρ), viewed as a function of ρ has a maximum at the true parameter value.

(ii) For any ρ,

1

R
ℓCL(ρ) =

1

R

R∑
i=1

li(ρ) → E(log π(Di|ρ)

as R →∞.

(iii) Some technical results that deal with the state-space being continuous.



Comments

• The asymptotic regime is unrealistic (as recombination rates are not constant across
a chromosome).

• Interest lies in extending the result to get asymptotic normality of the estimator;
and hence a justifiable method for obtaining confidence intervals (which works well
for realistic sample sizes).

• In practice, estimating the variance of the estimator is problematic – assumptions
about the dependence of the score function for different sub-regions is required.

Pairwise Method of Hudson (2001)

Now let ℓi,j(ρ) be the log-likelihood function based on data solely on data from ith and
jth SNPs.

A pairwise likelihood is

ℓPL(ρ) =

N−1∑
i=1

N∑
j=i+1

wi,jℓi,j(ρ),

for some fixed weights wi,j. Hudson (2001) and McVean et al. (2002) propose using a
pairwise likelihood with wi,j = 1.

[This is the more popular method of the two: due to its computational properties.]



Results

Define ρ̃ = arg max ℓPL(ρ)

Consider the limit as the chromosomal region increases (and N →∞):

(i) If wi,j = 1 then it has not been proven that the ρ̃ is consistent. (Theory suggests it is
not, and this is supported by empirical evidence; see Smith and Fearnhead (2005).)

(ii) If wi,j decay sufficiently quickly with the distance between the ith and jth SNPs,
then ρ̃ is consistent.

Note (ii) has been used the implementation of pairwise methods (McVean et al. 2004
and Li et al. 2006).

Comments

• Again, the asymptotic regime is unrealistic (as recombination rates are not constant
across a chromosome).

• Interest lies in how best to choose wi,j.

• Also, how to estimate the variance of ρ̃ (or calculate confidence intervals).



Discussion

• The only existing theoretical results relate to consistency of composite likelihood
estimators.

• Even for these, the asymptotic regime is in some cases no realistic (though it is for
estimating demographic parameters).

• Interest in theoretical results which:

– guide the implementation of composite likelihood methods;

– help with the production of confidence interval or evaluating uncertainty in the
estimator.
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