Two-stage estimation and composite likelihood in the Poisson correlated Gamma-frailty model

Marta Fiocco, Hein Putter, Hans van Houwelingen

Leiden University Medical Center, The Netherlands

Warwick workshop on composite likelihood methods April 15-17 April 2008

Two-stage estimation and composite likelihood in the Poisson correlated Gamma frailty model M. Fiocco			
Longitudinal count data o	Poisson correlated Gamma frailty	Composite likelihood and two-stage estimations	Application

Outline Longitudinal count data

Poisson correlated Gamma frailty

Henderson and Shimakura (2003)

Properties of Poisson correlated Gamma frailty

Estimation

New proposal

Composite likelihood and two-stage estimations

Estimation for the Poisson-gamma mixed model First and second stage estimation Sandwich methodology

Application

Application Simulation study

Summary

Summary

Recurrent event data

- In medical studies subjects can experience recurrent or repeated events
- This implies correlation of event times within an individual

Statistical models

- Two approaches:
 - Marginal approach: dependence between recurrent events is seen as nuisance
 - Frailty approach: model explicitly the correlation
- Model the event occurrences through counts
- Or number of events over period of time

Two-stage estimation and composite likelihood in the Poisson correlated Gamma frailty model M. Fiocco Longitudinal count data Poisson correlated Gamma frailty Composite likelihood and two-stage estimations Application

Henderson and Shimakura (2003)

Poisson correlated Gamma frailty model

- Vector of event counts $Y = (Y_1, \ldots, Y_T)$
- General formulation: $Z = (Z_1, \ldots, Z_T)$ multivariate gamma frailty
 - \triangleright Z_t mean one, variance ξ
 - Correlation between Z_s and Z_s equals $\rho^{|s-t|}$
- \triangleright Y₁,..., Y_T are assumed conditionally independent given the frailties. with

$$Y_t \mid Z_t \sim \operatorname{Po}(\mu_t Z_t)$$
,

with

$$\mu_t = \exp(\mathbf{x}_t^\top \boldsymbol{\beta})$$
 .

000000

Properties of Poisson correlated Gamma frailty

- Marginal $Y_t \sim NB(\mu_t, \theta)$
- $EY_t = \mu_t$; var $Y_t = \mu_t + \mu_t^2 \xi$
- Full joint distribution can be derived in theory from Laplace transform

$$\mathbf{P}(\mathbf{Y}_1 = \mathbf{y}_1, \ldots, \mathbf{Y}_T = \mathbf{y}_T) = \left(\prod_{t=1}^T \frac{\mu_t^{\mathbf{y}_t}}{\mathbf{y}_t!}\right) \cdot \mathbf{E}\{\mathbf{Z}_1^{\mathbf{y}_1} \ldots \mathbf{Z}_T^{\mathbf{y}_T} \exp(-\boldsymbol{\mu}^\top \mathbf{Z})\} ,$$

but is intractable in practice

Two-stage estimation and composite likelihood in the Poisson correlated Gamma frailty model M. Fiocco				
Longitudinal count data	Poisson correlated Gamma frailty	Composite likelihood and two-stage estimations	Application	
Estimation				

Estimation

Henderson & Shimakura (2003) proposed to maximize the composite log-likelihood

$$\sum_{i=1}^{N} \sum_{1 < s < t < T} \log P(Y_{s} = y_{s}, Y_{t} = y_{t})$$

jointly over all parameters β, θ, ρ

- Two problems occurred when we tried to implement this
 - Serious rounding errors for high counts
 - Maximization over large number of parameters
 - (No flexible software available)

New proposal

Resulting distribution of *Y*

- Marginal still NB(μ_t, θ)
- Full joint distribution still intractable
- Pairwise distribution:

$$\begin{split} P(Y_{s} = y_{s}, Y_{t} = y_{t}) &= \frac{\mu_{s}^{y_{s}} \mu_{t}^{y_{t}}}{y_{s}! y_{t}!} \times E(Z_{s}^{y_{s}} Z_{t}^{y_{t}} e^{\mu_{s} Z_{s}} e^{\mu_{t} Z_{t}}) \\ &= \sum_{k=0}^{y_{s}} \sum_{l=0}^{y_{t}} E\left(e^{-\mu_{s} X_{s} - \mu_{t} X_{t} - (\mu_{s} + \mu_{t}) X_{0}} \cdot \frac{X_{s}^{k} X_{0}^{y_{s} - k}}{k! (y_{s} - k)!} \frac{X_{t}^{l} X_{0}^{y_{t} - l}}{l! (y_{t} - l)!} \mu_{1}^{y_{s}} \mu_{t}^{y_{t}}\right) \\ &= \sum_{k=0}^{y_{s}} \sum_{l=0}^{y_{t}} P_{NB}(k; \mu_{s}(1 - \rho_{st}), \xi) \cdot P_{NB}(l; \mu_{t}(1 - \rho_{st}), \xi) \cdot P_{NB}(y_{s} + y_{t} - k - l; (\mu_{s} + \mu_{t}) \rho_{st}, \xi) \cdot P_{NB}(y_{s} - k; y_{s} + y_{t} - k - l, \frac{\mu_{s}}{\mu_{s} + \mu_{t}}) \end{split}$$

Two-stage estimation and composite likelihood in the Poisson correlated Gamma frailty model M.			
Longitudinal count data \circ	Poisson correlated Gamma frailty	Composite likelihood and two-stage estimations	Application
New proposal			

Advantages

- No rounding errors, because the terms contributing to the sum are all products of probabilities, hence between 0 and 1
- It is possible to generate data from the multivariate proposed Gamma distribution for all values of θ , not only for $\theta = \frac{q}{2}$ as in Henderson & Shimakura (2003)

Estimation for the Poisson-gamma mixed model

- **>** Parameters: β , θ , ρ
- Full likelihood analysis requires the joint probability $P(Y_{i1} = y_{i1}, \dots, Y_{iT} = y_{iT})$ which is intractable (no closed form)
- Alternative: Composite likelihood approach [Lindsay 1988] and two-stage estimation procedure
- First stage: Estimate $\eta = (\beta, \theta)$, applying composite likelihood only using marginals
- Second stage: the estimated values $\hat{\beta}$ and $\hat{\theta}$ are used in the composite likelihood based on all pairwise time points for estimating the correlation parameter ρ

Second stage

- Estimate ρ using again composite likelihood based on all pairs of time points
- Composite log-likelihood contribution for subject i is

$$I_{2i}(\rho,\hat{\eta}) = \sum_{1 \le s \le t \le T} \log P(Y_{is} = y_{is}, Y_{it} = y_{it})$$

- Total composite log-likelihood is sum over subjects
- **•** Estimate $\hat{\rho}$ is found as solution to the composite score equations with the estimate ($\hat{\theta}$) from stage one plugged in:

$$\sum_{i=1}^{N} \frac{\partial I_{2i}(\rho, \hat{\eta})}{\partial \rho} = 0$$

• Advantage: only single parameter ρ to be estimated at this stage

Longitudinal count data Poisson correlated Gamma frailty Composite likelihood and two-stage estimations Application

Application

- Data set consists of 65 patients used before in Henderson & Shimakura
- Counts in 12 successive intervals of equal length
- Estimate the baseline rate and the effect of the treatment
- Assumed same effect of the treatment for the 12 time points
- Counting model: $y_t \sim Po((\beta_t + \gamma Z)Z_t)$,
- \triangleright Z₁,..., Z₁₂ multivariate serially correlated gamma-frailty vector
- \blacktriangleright Z = 0 or Z = 1 indicates treatment

Two-stage estimation and composite likelihood in the Poisson correlated Gamma frailty model			
Longitudinal count data	Poisson correlated Gamma frailty	Composite likelihood and two-stage estimations	Application ○●○

Application

Two-stage estimation procedure

- First-stage: the regression parameters β , γ and the overdispersion parameter θ are simultaneously estimated based on the marginal negative binomial distribution
- Estimation via glm with a negative binomial family
- Second-stage: estimate ρ based on the joint distribution of the pair

Compare one stage with two-stage estimation

- $\hat{\beta}$ and $\hat{\theta}$ obtained with the two-stage procedure were identical, up to five decimals, to those obtained in Henderson & Shimakura, even though both the underlying gamma frailty process and the estimation method differed.
- $\hat{\rho} = 0.847$ with the two-stage procedure
- $\hat{\rho} = 0.849$ with Henderson & Shimakura's method
- Standard errors in the procedures were also guite similar

Simulation study

Compare one-stage vs two-stage composite likelihood

- Study the robustness of our procedure against different frailty vectors
- Results from both estimation procedures were remarkably similar
- The efficiency of our two-stage estimation was 99% compared to the one-stage composite likelihood procedure of Henderson & Shimakura
- Estimates appeared to be quite robust to misspecification of the particular multivariate frailty distribution generating the count data.

Two-stage estimation and	l composite likelihood in the Poisso	n correlated Gamma frailty model	M. Fiocco
Longitudinal count data ○	Poisson correlated Gamma frailty	Composite likelihood and two-stage estimations	Application

Summary

Summary

- We propose a new multivariate gamma distribution based on renewal processes
- The construction is based on the infinite divisibility property of the Gamma distribution
- The new multivariate gamma distribution has been used as a mixing distribution in a Poisson model for longitudinal count data
- Full likelihood is intractable, applied a composite likelihood and two-stage estimation procedure for estimating the parameters in the model
- Quantification of the loss of efficiency with respect to full likelihood requires further study

Longitudinal count data ○	a Poisson correlated Gamma frailty	Composite likelihood and two-stage estimations	Application
Summary			
Reference	es e		
Anderse Compo <i>Biostati</i>	en, E. W. site likelihood and two-stage e <i>stics</i> 5 , 15 – 30, 2004.	stimation in family studies.	
Fiocco, A new s Submit	M., Putter, H, and van Houwel serially correlated gamma frailt ted Biostatistics	ingen H. y process for longitudinal count data.	
Hender A serial <i>Biomet</i> i	son, R. and Shimakura, S. ly correlated gamma frailty mo <i>rika</i> 90 , 355 – 366, 2003.	del for longitudinal count data.	
Lindsay Composi Conter	, B. G. site likelihood methods. aporary Mathematics 80 , 221 –	- 239, 1988.	
Two-stage estimation a	nd composite likelihood in the Poisso	n correlated Gamma frailty model	М. Fiocco