On the correlated frailty model for bivariate current status data with applications in infectious disease epidemiology

Niel Hens¹. Andreas Wienke² Marc Aerts¹ and Geert Molenberghs¹

¹ Center for Statistics, Hasselt University, Belgium ² Martin-Luther-Universität Halle-Wittenberg, Halle, Germany

Warwick, April 15, 2008

Hens et al. 2008	On the Correlated Frailty Model for Current Status Data	1
Introduction Methodology Application Discussion References		

Outline

- 1 Introduction
 - Airborne Infections
 - Data

2 Methodology

- Frailties
- Correlated Frailty
- Identifiability
- Current Status Data

3 Application

- Correlated Frailty: Belgium
- Shared Frailty: BE, UK, FI, IT, PL
- Discussion

2

Airborne Infections

- Examples: measles, mumps, varicella, parvovirus B19, ...
- Compartmental models: SIR, MSIR, MSEIR, ...
- Basic reproduction number R_0
 - $R_0 > 1 \rightarrow \mathsf{epidemic}$

 $R_0 < 1 \rightarrow \text{eradication}$

- Infectious disease control vaccination
 - Critical Vaccination Coverage: $1 1/R_0$

Hens et al. 2008	On the Correlated Frailty Model for Current Status Data	3
Introduction Methodology Application Discussion References	Airborne Infections Data	

Airborne Infections

- Crucial parameter: transmission rate: 1st, 2nd moment
- Surrogate: force of infection and the associated heterogeneity
- Problem: 'current status' data rather than 'time to event' data
- Solution?
 - Estimating the force of infection from current status data: Muench (1934); Grenfell and Anderson (1985); Keiding (1991), ...
 - Estimating heterogeneity: Farrington et al. (2001); Sutton et al. (2006): shared frailty

4

Estimating the FOI from Serological Data

- Varicella Zoster Virus and Parvovirus B19
- As a proxy for other airborne infections
- No vaccination yet (Europe)
- Other diseases (CMV, EBV, ...)
- Data: Belgium, England & Wales, Finland, Italy and Poland
- Age-range: 0-20 years

Hens et al. 2008 Introduction Methodology Application Discussion References

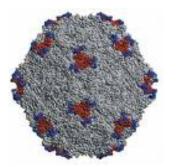
Airborne Infection Data

On the Correlated Frailty Model for Current Status Data

5

6

Varicella Zoster Virus (VZV)



• Varicella

- Primary VZV infection results in chickenpox
- Transmission: direct or aerosol contact
- When infected, infectious for about 7 days
- Incubation period of two weeks
- Reactivation later in life (10 20%): herpes zoster or shingles
- Disease burden: zoster: 25% is in constant pain

Airborne Infections Data

Parvovirus B19 (B19)

Baby with the typical "slapped-cheek" rash, which is characteristic of fifth disease.

• B19

- B19 infection causes the so-called 'fifth disease', a mild rash illness ('slapped-cheek' rash)
- Transmission: respiratory droplets
- Infectious during the incubation period (\pm 14 days)
- Disease burden: for pregnant women there is a potential for the newborn to have severe anemia, possibly leading to miscarriage.

On the Correlated Frailty Model for Current Status Data

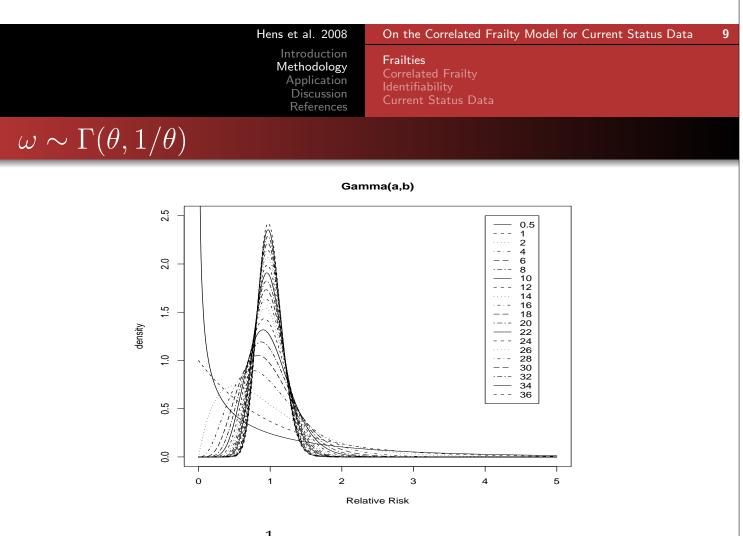

7

Hens et al. 2008

Introduction Methodology Application Discussion References

Airborne Infections Data

Belgium, England & Wales, Finland, Italy, Poland


Frailties Correlated Frailty Identifiability Current Status Data

Frailties

Coutinho et al. (1999)

Persistent differences among individuals in their susceptibility, propensity, or relative risk with regard to the acquisition of infections.

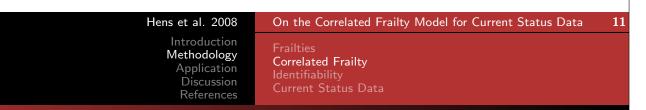
- Individuals have different frailties
- The most frail individuals will experience the effect of the event earlier
- Vaupel et al. (1979); Aalen (1988): $\lambda(a, \omega) = \omega \lambda(a, 1)$ with ω a nonnegative *mixing variable*
- Often $E(\omega) = 1$ is chosen, e.g. $\omega \sim \Gamma(\theta, 1/\theta)$

Hens et al. 2008

Frailties Correlated Frailty Identifiability Current Status Data

Time to Infection

- Assume we have two infections with infection times $T_i, i = 1, 2$
- Denote the CDF


$$F_i(t_i) = P(T_i \le t_i)$$

• Denote the survival function; proportion susceptible

$$S_i(t_i) = \exp\left(-\int_0^{t_i} \lambda_i(u) du\right) = \exp(-H_i(t_i))$$

• The infection hazard; force of infection

$$\lambda(t_i) = -\frac{d}{dt_i} \log(S_i(t_i)) = \frac{f_i(t_i)}{S_i(t_i)}$$

Univariate Frailty

- Assume frailty distributions $Z_i, i = 1, 2$
- Conditional survival function for infection i with frailty $Z_i, i = 1, 2$

$$S_i(t_i|Z_i) = e^{-\int_0^{t_i} \lambda_i(Z_i, u) du}$$

• Proportional hazards assumption $\lambda_i(Z_i, u) = Z_i \lambda_{i0}(u)$

$$S_i(t_i|Z_i) = e^{-\int_0^{t_i} Z_i \lambda_{i0}(u) du}$$

• The unconditional survival function

$$S_i(t_i) = p_i\left(\int_0^{t_i} \lambda_{i0}(u) du\right)$$

with p_i the Laplace transform of Z_i , i = 1, 2,

12

Frailties Correlated Frailty Identifiability Current Status Data

Correlated Frailty

• Assuming conditional independence $T_1 \perp T_2 | Z_1, Z_2$

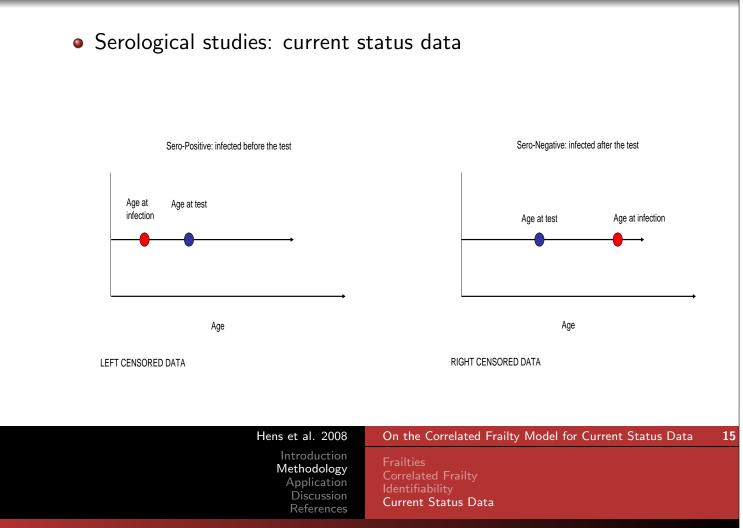
$$S(t_1, t_2 | Z_1, Z_2) = S_1(t_1 | Z_1) \times S_2(t_2 | Z_2)$$

with (Z_1, Z_2) following a bivariate frailty distribution

• Yashin et al. (1995): correlated gamma frailty: scale 1, variances σ_i^2 , correlation ρ

$$S(t_1, t_2) = [S_1(t_1)]^{1 - \frac{\sigma_1}{\sigma_2}\rho} \times [S_2(t_2)]^{1 - \frac{\sigma_2}{\sigma_1}\rho} \times [S_1^{-\sigma_1^2}(t_1) + S_2^{-\sigma_2^2}(t_2) - 1]^{-\frac{\rho}{\sigma_1\sigma_2}}$$

•
$$S_i(t_i) = (1 + \sigma_i^2 \tilde{H}_i(t_i))^{\frac{-1}{\sigma_i^2}}$$



- 1 $\sigma_i = 0$: no frailty
- 2 $\sigma_i = \sigma > 0; \rho = 0$: univariate frailty
 - \rightarrow Elbers and Ridder (1982); Heckman (1984); Hougaard (1986)
- **3** $\sigma_i = \sigma > 0; \rho = 1$: shared frailty
 - \rightarrow Honoré (1993)
- 4 $\sigma_1, \sigma_2 > 0; 0 \le \rho \le 1$: correlated frailty
 - \rightarrow Yashin et al. (1995)
- Estimation: ML, EM and MCMC

Frailties Correlated Frailty Identifiability Current Status Data

Current Status Data

Current Status Data

• Denote Y_i the binary current status variable for infection i

$$\pi_i(a) = P(Y_i = 1|a) = P(T_i \le a)$$

- Seroprevalence $\tilde{\pi}_i(a) = P(\tilde{Y}_i \leq a)$
- Assume no diagnostic test uncertainty $\pi_i(a) = \tilde{\pi}_i(a)$
- The force of infection

$$\lambda_i(a) = \frac{f_i(a)}{S_i(a)} = \frac{\pi'_i(a)}{1 - \pi_i(a)}$$

Frailties Correlated Frailty Identifiability Current Status Data

Current Status Data

• The correlated frailty expression now becomes

$$S(a,a) = [S_1(a)]^{1-\frac{\sigma_1}{\sigma_2}\rho} \times [S_2(a)]^{1-\frac{\sigma_2}{\sigma_1}\rho} \times [S_1^{-\sigma_1^2}(a) + S_2^{-\sigma_2^2}(a) - 1]^{-\frac{\rho}{\sigma_1\sigma_2}}$$

- The correlated frailty simplifies to:
 - Extended shared frailty $\rho=1$

$$S(a,a) = [S_1(a)]^{1-\frac{\sigma_1}{\sigma_2}} \times [S_2(a)]^{1-\frac{\sigma_2}{\sigma_1}} \times [S_1^{-\sigma_1^2}(a) + S_2^{-\sigma_2^2}(a) - 1]^{-\frac{1}{\sigma_1\sigma_2}}$$

• Shared frailty $\rho = 1, \sigma_1 = \sigma_2 = \sigma$

$$S(a,a) = [S_1^{-\sigma^2}(a) + S_2^{-\sigma^2}(a) - 1]^{-\frac{1}{\sigma^2}}$$

 \rightarrow Farrington et al. (2001); Sutton et al. (2006)

Hens et al. 2008	On the Correlated Frailty Model for Current Status Data	17
Introduction Methodology Application Discussion References	Frailties Correlated Frailty Identifiability Current Status Data	

Current Status Data

Note that

$$S_i(a) = \left(1 + \sigma_i^2 \int_0^a \lambda_{i0}(u) du\right)^{-1/\sigma_i^2}$$

where $\lambda_{i0}(u)$ is the baseline force of infection.

• Alternatively

$$S_i(a) = \exp\left(-\int_0^a \lambda_i(u)du\right)$$

where $\lambda_i(u)$ is the force of infection.

Analysis

- Piecewise constant FOI: $[0,3), [3,6), [6,12)[12,20) : \lambda_{ij}$
- Gamma frailties
- 4 models:
 - NF: univariate model without frailty
 - SF: bivariate model shared frailty, correlation one
 - ESF: bivariate model extended shared frailty, correlation one
 - CF: bivariate model correlated frailty
- SAS NLMIXED, MLa

Hens et al. 2008	On the Correlated Frailty Model for Current Status Data	19
Introduction Methodology Application Discussion References	Correlated Frailty: Belgium Shared Frailty: BE, UK, FI, IT, PL	

Results: Belgium

par	NF	SF	ESF	CF
	estimate (se)	estimate (se)	estimate (se)	estimate se
$ ilde{\lambda}_{11}$	0.060 (0.012)	0.060 (0.012)	0.060 (0.012)	0.060 (0.012)
$ ilde{\lambda}_{12}$	0.124 (0.026)	0.125 (0.026)	0.125 (0.026)	0.125 (0.026)
$ ilde{\lambda}_{13}$	0.087 (0.019)	0.085 (0.019)	0.085 (0.019)	0.085 (0.019)
$ ilde{\lambda}_{14}$	0.072 (0.020)	0.072 (0.020)	0.072 (0.020)	0.072 (0.020)
$ ilde{\lambda}_{21}$	0.264 (0.029)	0.265 (0.029)	0.262 (0.029)	0.262 (0.029)
$ ilde{\lambda}_{22}$	0.450 (0.073)	0.455 (0.073)	0.453 (0.073)	0.453 (0.073)
$ ilde{\lambda}_{23}$	0.179 (0.044)	0.173 (0.044)	0.179 (0.043)	0.179 (0.043)
$ ilde{\lambda}_{24}$	0 (-)	0 (-)	0 (-)	0 (-)
σ_1		0.401 (0.082)	2.178 (24.467)	1.734 (5.040)
σ_2		0.401 (0.082)	6.165 (69.339)	4.877 (14.089)
ho				1 (-)
-2loglik	2823.9	2816.2	2810.0	2810.0

Note: 'rhobit'-link function was used to estimate ρ

Correlated Frailty: Belgium Shared Frailty: BE, UK, FI, IT, Pl

Result

- Unidentifiability of the correlated gamma frailty for current status data
 - 'rhobit'-link
 - univariate monitoring times
- Is the extended shared frailty identifiable?

σ_1	$\hat{\sigma}_2$
2	0.27(0.07)
4	0.45(0.11)
6	0.65(0.16)
8	0.85(0.21)
10	1.06(0.26)

 Hougaard (2000): "having two random effects for the same source of variation implies that it will be difficult or impossible to separate the random effects"

Shared Frailty: BE, UK, FI, IT, PL

- We take the FOI as piecewise constant over different age-categories
- Enrolment ages (Source OECD, statistics on education):

			Country		
Enrolment level	BE	EW	FI	IT	PL
Pre-school	[0,3[[0,3[[0,3[[0,3[[0,3[
Pre-primary	[3,6[[3,5[[3,7[[3,6[[3,7[
Primary	[6,12[[5,11[[7,13[[6,11[[7,13[
Secondary and tertiary	12+	11 +	13 +	11 +	13 +

• Selecting the most parsimonious model using BIC

Correlated Frailty: Belgium Shared Frailty: BE, UK, FI, IT, PL

Shared Frailty: BE, UK, FI, IT, PL

Source	Parameter	Belgium	E & W	Finland	Italy	Poland
FOI B19	Infants	0.068	0.068	0.013	0.068	0.068
	Pre-primary	0.110	0.032	0.032	0.032	0.032
	Primary	0.092	0.092	0.092	0.092	0.092
	Secondary	0.069	0.017	0.017	0.017	0.017
FOI VZV	Infants	0.287	0.148	0.090	0.148	0.148
	Pre-primary	0.356	0.167	0.356	0.167	0.167
	Primary	0.222	0.222	0.222	0.222	0.222
	Secondary	0	0	0	0	0
Heterogeneity	Shape	8.283	1.984	8.283	8.283	1.984

Hens et al. 2008	On the Correlated Frailty Model for Current Status Data	23
Introduction Methodology Application Discussion References	Correlated Frailty: Belgium Shared Frailty: BE, UK, FI, IT, PL	

Sensitivity Analysis

- Changing the functional relationship: B-splines, parametric modelling
- Changing the frailty distribution: log-normal, log-mixture of normals
- Using different copulas: Clayton's copula, Gumbel, ...

Discussion

- Time to event current status
- Survival setting generalized linear mixed models
- Inevitable loss of information
- Unidentifiability of the correlated frailty
- Apparent (un)identifiability of the shared frailty

Further research

- Simulation study: what do we loose?
- Singular information matrix? Rotnitzky et al. (2000)

Hens et al. 2008	On the Correlated Frailty Model for Current Status Data	25
Introduction Methodology Application		
Discussion References		

References

- Aalen, O. (1988). Heterogeneity in survival analysis. *Statistics in Medicine*, 7:1121–1137.
- Coutinho, F., Massad, E., Lopez, L., Burattini, M., Struchiner, C., and Azevedo-Neto, R. (1999). Modelling heterogeneities in individual frailties in epidemic models. *Mathematial and Computer Modelling*, 30:97–115.
- Elbers, C. and Ridder, G. (1982). True and spurious duration dependence: The identifiability of the proportional hazard model. *Review of Economic Studies*, 49:403–409.
- Farrington, C., Kanaan, M., and Gay, N. (2001). Estimation of the basic reproduction number for infectious diseases from age-stratified serological survey data. *Applied Statistics*, 50:251–292.
- Grenfell, B. T. and Anderson, R. M. (1985). The estimation of age-related rates of infection from case notifications and serological data. *Journal of Hygiene*, 95(2):419–36.
- Heckman, J. ans Singer, B. (1984). The identifiability of the proportional hazard model. *Review of Economic Studies*, 51(2):231–241.
- Honoré, B. (1993). Identification results for duration models with multiple spells. *Review of Economic Studies*, 60:241–246.
- Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions. *Biometrika*, 73:387–396.
- Hougaard, P. (2000). Analysis of multivariate survival data. New York: Springer.
- Keiding, N. (1991). Age-specific incidence and prevalence: A statistical perspective (with discussion). JRSS-A, 154:371-412.
- Muench, H. (1934). Derivation of rates from summation data by the catalytic curve , vol. 29, no. 185 (mar., 1934), pp. 25-38. *Journal of the American Statistical Association*, 29:25–38.
- Rotnitzky, A., Cox, D., Bottai, M., and Robins, J. (2000). Likelihood-based inference with singular information matrix. *Bernoulli*, 6(2):243–284.
- Sutton, A., Gay, N., Edmunds, W., Hope, V., Gill, O., and Hickman, M. (2006). Modelling the force of infection for hepatitis b and hepatitis c in injecting drug users in England and Wales. *BMC Infectious Diseases*, 6:93.

Vaupel, J., Manton, K., and Stallard, E. (1979). The impact of heterogeneity in individual frailty in the dynamics of mortality. *Demography*, 16(3):439–454.

Yashin, A., Vaupel, J., and Iachine, I. (1995). Correlated individual frailty: An advantageous approach to survival analysis of bivariate data. *Mathematical Population Studies*, 5:145–159.