Likelihood, Pseudo-Likelihood, Composite Likelihood for Markov Chain Models

Nils Lid Hjort
[joint with Cristiano Varin]

* Many models with complex dependencies where full ML is too impractical, e.g. spatial and spatial-temporal models, (hidden) Markov random fields, truncation models, etc.
* May try PL: product over local conditionals (CCL)
* May try CL: product over local joint likelihoods (CML)
* Difficult [in general] to assess consequences [how much is lost? what does PL or CL do when the model is not correct?]
* Markov chains: can do precise analysis
* Model selection with CL: the CLIC, the FCLIC ...
* CL better than PL: can also lead to new modelling strategies

Марков, А.А. (1906). Распространение закона больших чисел на величины, зависящие друг от друга. Известия Физикоматематического обчества при Казанском университете 15 (2-я серия), 124-156.

Markov, A.A. (1913). Пример статистического исследования над текстом "Евгения Онегина", иллюстрирующий связь испытаний в цепь. Известия Академии Наук, Санкт-Петербург 7 (6-я серия), 153-162.

Hjort, N.L. and Varin, C. (2008). ML, QL, PL for Markov chain models. Scandinavian Journal of Statistics 35, 64-82.

0 ML, PL, CL in spatial models
1 Markov chains: ML [classic]
2 CL
3 PL
4 Illustrations; Markov chains for DNA sequences
5 Model robustness: When the models are not correct
6 Model selection: CLIC, FCLIC
7 CL as model building tool; concluding comments

0. Spatial models: examples

(A) Markov Random Fields, defined on lattices:

$$
f(x, \beta)=\frac{1}{Z(\beta)} \exp \left\{\beta_{1} H_{1}(x)+\cdots+\beta_{p} H_{p}(x)\right\}
$$

e.g. the Ising (1925) model, with $x_{i} \in\{-1,1\}$ and

$$
H(x)=\sum_{i} \#\left\{x_{j} \in x_{\partial i}: x_{j}=x_{i}\right\} .
$$

ML difficult [but now doable]. Much easier, Besag (1974, 1975, 1977):

$$
\operatorname{PL}(\beta)=\prod_{i} p_{\beta}\left(x_{i} \mid \text { rest }\right) .
$$

(B) Hidden Markov Random Fields:

$$
y_{i}=g\left(x_{i}\right)+\varepsilon\left(x_{i}\right)=g\left(x_{i}, \beta\right)+\varepsilon\left(x_{i}, \sigma, \phi\right) \text {, }
$$

perhaps a zero-mean stationary Gaußian noise process [image reconstructions, etc.]. PL ok for $\varepsilon(x)$ white noise process, but difficult in general.
(C) Gaußian Random Fields:

$$
y \sim \mathrm{~N}_{n}\left(X \beta, \sigma^{2} R(\phi)\right)
$$

ML doable, but difficult for n big, and properties not well enough understood. Much easier: CL (called QL in Hjort and Mohn, 1987, Hjort and Omre, 1994, etc.).
(D) Point process models:

$$
f_{\theta}(\mathbf{x})=\frac{1}{Z(\theta)} \exp \left\{\theta_{1} A_{1}(\mathbf{x})+\cdots+\theta_{p} A_{p}(\mathbf{x})\right\}
$$

where $\mathbf{x}=\left\{x_{i}\right\}$ is a set of points. ML difficult - as are PL and CL. Might encourage new [quasi]models that start with modelling over smaller areas.
(E) Lattice model from truncated normal processes:
$y_{i}=I\left\{Z\left(x_{i}\right) \geq c\right\}$, where Z has stationary covariance structure.
Here both ML and PL have difficulties. Easier:

$$
\mathrm{CL}(\theta)=\prod_{\text {pairs }} f_{\theta}\left(y_{i}, y_{j}\right), \quad \text { or } \quad \mathrm{CL}(\theta)=\prod_{\text {triples }} f_{\theta}\left(y_{i}, y_{j}, y_{k}\right),
$$

or bigger local neighbourhoods: Hjort and Omre (1994), Nott and Rydén (1999), Heagerty and Lele (1998), others.

The talk I'm not giving [today]:
926 children in Salvador, Brazil, followed from Oct 2000 to Jan 2002, twice-a-week 0-1 data on infant diarrhoea. Borgan, Henderson, Barreto (2007): event history analysis via variations on Aalen's additive hazard regression model. My approach:

$$
y_{i}(t)=I\left\{Z_{i}(t) \geq c_{i}\right\} \quad \text { for child } i,
$$

with

$$
Z_{i}(t)=x_{i}(t)^{\mathrm{t}} \beta+\sigma_{i} \mathrm{OU}_{i}(t) .
$$

I am using CL machinery for estimation and inference.

1. Markov Chains

Observe chain X_{0}, X_{1}, \ldots,

$$
\pi_{a, b}=\operatorname{Pr}_{\theta}\left\{X_{i}=b \mid x_{i-1}=a\right\}=p_{a, b}(\theta)
$$

for $a, b=1, \ldots, S$. The Lik:

$$
\mathrm{l}_{n}(\theta)=\prod_{i=1}^{n} \operatorname{Pr}_{\theta}\left\{X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right\}=\prod_{a, b} p_{a, b}(\theta)^{N_{a, b}}
$$

The PL:

$$
\begin{aligned}
\operatorname{pl}_{n}(\theta) & =\prod_{i=1}^{n-1} \operatorname{Pr}_{\theta}\left\{X_{i}=x_{i} \mid \text { rest }\right\} \\
& =\prod_{a, b, c}\left\{\frac{p_{a}(\theta) p_{a, b}(\theta) p_{b, c}(\theta)}{p_{a}(\theta) p_{a, c}^{(2)}(\theta)}\right\}^{N_{a, b, c}} .
\end{aligned}
$$

The CL:

$$
\begin{aligned}
\operatorname{cl}_{n}(\theta) & =\prod_{i=1}^{n} \operatorname{Pr}_{\theta}\left\{X_{i-1}=x_{i-1}, X_{i}=x_{i}\right\} \\
& =\prod_{a, b}\left\{p_{a}(\theta) p_{a, b}(\theta)\right\}^{N_{a, b}} .
\end{aligned}
$$

Higher order versions [bigger windows] can be used for PL and CL.

ML theory: goes back to Anderson and Goodman (1957), Billingsley (1961a, 1961b). To reach result, need to sort out joint limit of

$$
\sqrt{n}\left\{N_{a, b} / n-p_{a}(\theta) p_{a, b}(\theta)\right\} \rightarrow{ }_{d} Z_{a, b} .
$$

For $a, b, c, d=1, \ldots, S$:

$$
\operatorname{cov}\left(Z_{a, b}, Z_{c, d}\right)=p_{a} p_{a, b}\left(\delta_{a, c} \delta_{b, d}-p_{c} p_{c, d}\right)+p_{a, b} p_{c, d}\left(p_{a} \gamma_{a, c}+p_{c} \gamma_{d, a}\right),
$$

with

$$
\gamma_{a, b}=\sum_{k=0}^{\infty}\left(p_{a, b}^{(k)}-p_{b}\right)
$$

ML theorem:

$$
\sqrt{n}(\widehat{\theta}-\theta) \rightarrow_{d} \mathrm{~N}\left(0, J^{-1}\right)
$$

where

$$
J=\sum_{a} p_{a} J_{a}=\sum_{a, b} p_{a} p_{a, b} u_{a, b} u_{a, b}^{\mathrm{t}},
$$

with

$$
u_{a, b}(\theta)=\frac{\partial \log p_{a, b}(\theta)}{\partial \theta}
$$

2. CL estimation

We have

$$
\log \mathrm{cl}_{n}(\theta)=\sum_{a} N_{a, \cdot} \log p_{a}(\theta)+\sum_{a, b} N_{a, b} \log p_{a, b}(\theta)
$$

with $N_{a, .}=\sum_{b} N_{a, b}$. This is for 2-window CL. For 3-window CL:
$\log \operatorname{cl}_{n, 3}(\theta)=\sum_{a} N_{a, \cdot, \cdot} \log p_{a}(\theta)+\sum_{a, b} N_{a, b, \cdot} \log p_{a, b}(\theta)+\sum_{b, c} N_{\cdot, b, c} \log p_{b, c}(\theta)$,
with 2 nd and 3rd term almost the same:

$$
\log \mathrm{cl}_{k}(\theta)=\sum_{a} N_{a} \log p_{a}(\theta)+(k-1) \sum_{a, b} N_{a, b} \log p_{a, b}(\theta)
$$

With $k \geq 5$ (say), very little difference between ML and CL.
Large-sample theory: Need limit in probability of 2nd derivative of $n^{-1} \log \mathrm{cl}_{k}(\theta)$ and limit in distribution of 1st derivative of $n^{-1 / 2} \log \mathrm{cl}_{k}(\theta)$.

Need

$$
u_{a, b}=\frac{\partial \log p_{a, b}(\theta)}{\partial \theta} \quad \text { and } \quad v_{a}=\frac{\partial \log p_{a}(\theta)}{\partial \theta}
$$

and matrices

$$
H=\sum_{a} p_{a} v_{a} v_{a}^{\mathrm{t}}, \quad G=\sum_{a, b} p_{a} \bar{\gamma}_{a, b} v_{a} v_{b}^{\mathrm{t}}, \quad L=\sum_{a, b} p_{a} p_{a, b} u_{a, b} \kappa_{b}^{\mathrm{t}}
$$

where

$$
\kappa_{b}=\sum_{k \geq 0} \sum_{c}\left(p_{b, c}^{(k)}-p_{c}\right) v_{c} \quad \text { and } \quad \bar{\gamma}_{a, b}=\sum_{k \geq 1}\left(p_{a, b}^{(k)}-1\right)
$$

CL theorem:

$$
\sqrt{n}(\widehat{\theta}-\theta) \rightarrow_{d} \mathrm{~N}\left(0, J_{k}^{-1} K_{k} J_{k}^{-1}\right),
$$

with

$$
\begin{aligned}
J_{k} & =(k-1) J+H \\
K_{k} & =(k-1)^{2} J+H+G+G^{\mathrm{t}}+(k-1)\left(L+L^{\mathrm{t}}\right)
\end{aligned}
$$

Proof: 'As expected', keeping track of all terms, still within realm of the limits $Z_{a, b}$ of $\sqrt{n}\left(N_{a, b} / n-p_{a} p_{a, b}\right)$.

3. PL estimation

2-step and k-step probabilities enter calculations:

$$
\log \mathrm{pl}_{n}(\theta)=2 \sum_{a, b} N_{a, b} \log p_{a, b}(\theta)-\sum_{a, c} N_{a, \cdot, c} \log p_{a, c}^{(2)}(\theta)
$$

In addition to $u_{a, b}=\partial \log p_{a, b} / \partial \theta$, need

$$
w_{a, c}=\frac{\partial \log p_{a, c}^{(2)}}{\partial \theta}=\sum_{b} \frac{p_{a, b} p_{b, c}}{p_{a, c}^{(2)}}\left(u_{a, b}+u_{b, c}\right)
$$

Also, matrices

$$
M=\sum_{a, c} p_{a} p_{a, c}^{(2)} w_{a, c} w_{a, c}^{\mathrm{t}}, \quad Q=\sum_{a, c, d, f} p_{a} p_{a, d} p_{d, c} p_{c, f} w_{a, c} w_{d, f}^{\mathrm{t}}
$$

PL theorem:

$$
\sqrt{n}(\widehat{\theta}-\theta) \rightarrow_{d} \mathrm{~N}\left(0, J_{0}^{-1} K_{0} J_{0}^{-1}\right)
$$

where

$$
J_{0}=2 J-M \quad \text { and } \quad K_{0}=4 J-3 M+Q+Q^{\mathrm{t}}
$$

Proof: Again 'as expected', but more intricate algebra etc.

Lemma:

$$
\sqrt{n}\left(N_{a, b, c} / n-p_{a} p_{a, b} p_{b, c}\right) \rightarrow_{d} Z_{a, b, c}
$$

where stamina \mathfrak{E} patience give

$$
\begin{aligned}
\operatorname{cov}\left(Z_{a, b, c}, Z_{d, e, f}\right)= & p_{a} p_{a, b} p_{b, c}\left(\delta_{a, d} \delta_{b, e} \delta_{c, f}-p_{d} p_{d, e} p_{e, f}\right) \\
& +p_{a} p_{a, b} p_{b, c}\left(\delta_{b, d} \delta_{c, e}-p_{d} p_{d, e}\right) p_{e, f} \\
& +p_{d} p_{d, e} p_{e, f}\left(\delta_{e, a} \delta_{f, b}-p_{a} p_{a, b}\right) p_{b, c} \\
& +p_{a} p_{a, b} p_{b, c} \gamma_{c, d} p_{d, e} p_{e, f} \\
& +p_{d} p_{d, e} p_{e, f} \gamma_{f, a} p_{a, b} p_{b, c}
\end{aligned}
$$

for $a, b, c, d, e, f=1, \ldots, S$. Result reached via identifying and working with different contributions from the implied double sum.

Essence of rest of proof:

$$
\sqrt{n}(\widehat{\theta}-\theta) \doteq{ }_{d}\left\{-\frac{1}{n} \frac{\partial^{2} \log \mathrm{pl}_{n}(\theta)}{\partial \theta \partial \theta^{\mathrm{t}}}\right\}^{-1} \frac{1}{\sqrt{n}} \frac{\partial \log \mathrm{pl}_{n}(\theta)}{\partial \theta}
$$

4. Illustrations

For any parametric Markov model (and anywhere in the parameter space) we may compute matrices

$$
\begin{aligned}
J & \text { for ML, } \\
J, H, G, L, J_{k}, K_{k} & \text { for CL } \\
J, M, Q, J_{0}, K_{0} & \text { for PL, }
\end{aligned}
$$

and compare

$$
J^{-1} \quad \text { with } \quad J_{k}^{-1} K_{k} J_{k}^{-1} \quad \text { with } \quad J_{0}^{-1} K_{0} J_{0}^{-1} .
$$

Explicit formulae for a short list of nice models; numerical results (in the form of ARE curves etc., directly from transition matrix) for any given model.

Hjort and Varin (2007, Tech Report): many illlustrations (more than in SJS paper).

Example 1: Let

$$
P=\left(\begin{array}{cc}
1-\theta & \theta \\
\theta & 1-\theta
\end{array}\right)
$$

Here ML $=\mathrm{CL}$, estimator $\left(N_{0, \cdot}+N_{\cdot, 1}\right) / n$, while PL uses

$$
\widehat{\theta}=\frac{\sqrt{\rho_{n}}}{\sqrt{\rho_{n}}+\sqrt{1-\rho_{n}}}
$$

with $\rho_{n}=\left(N_{0,1,0}+N_{1,0,1}\right) /\left(N_{0, \cdot, 0}+N_{1, \cdot, 1}\right)$:

$$
\sqrt{n}\left(\widehat{\theta}_{\mathrm{ML}}-\theta\right) \rightarrow_{d} \mathrm{~N}(0, \theta(1-\theta)) \quad \text { and } \quad \sqrt{n}\left(\widehat{\theta}_{\mathrm{PL}}-\theta\right) \rightarrow_{d} \mathrm{~N}(0,1 / 4) .
$$

Example 2: Markov (1913) took all 20,000 letters from Pushkin's Yevgeniĭ Onegin, and fitted this model:
гласный согласный

гласный	p_{1}	$1-p_{1}$
согласный	p_{2}	$1-p_{2}$

with $p_{1}=.128$ and $p_{2}=.663$, giving the correct stationary probabilities .432 for vowels and .458 for consonants.

ML and CL are large-sample equivalent; PL does rather worse.
HV 2008: comparisons for 2nd order Markov, for Pushkin data.

Example 3: An equicorrelation chain:

$$
P_{i, j}= \begin{cases}(1-\rho) p_{j}+\rho & \text { if } i=j \\ (1-\rho) p_{j} & \text { if } i \neq j\end{cases}
$$

Then $P^{k}=\left(1-\rho^{k}\right) p+\rho^{k} p$, so correlation is ρ^{k} for time interval k.
For $p=\left(p_{1}, \ldots, p_{S}\right)^{\mathrm{t}}$ known, ML $=\mathrm{CL}$, and PL loses. For both p and ρ unknown: CL loses a little to ML, PL loses rather more.

Example 4: One-dimensional Ising model:

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{i}=x_{i-1}\right. & \left.\mid x_{i-1}, x_{i+1}\right\} \\
& \propto \exp \left[\beta\left(I\left\{x_{i-1}=x_{i}\right\}+I\left\{x_{i+1}=x_{i}\right\}\right)\right]
\end{aligned}
$$

This corresponds to

$$
P=\frac{1}{1+\exp (\beta)}\left(\begin{array}{cc}
\exp (\beta) & 1 \\
1 & \exp (\beta)
\end{array}\right)
$$

Here ML = CL again, and

$$
\widehat{\beta}_{\mathrm{ML}}=\log \frac{N_{0,0}+N_{1,1}}{N_{0,1}+N_{1,0}} \quad \text { and } \quad \widehat{\beta}_{\mathrm{PL}}=\frac{1}{2} \frac{N_{0,0,0}+N_{1,1,1}}{N_{0,1,0}+N_{1,0,1}} .
$$

PL suffers serious efficiency loss for strong dependence.

Example 5: The random walk with two reflecting barriers: six states example. The solid line correspond to the ARE for PL, while the dashed one to QL.

Markov for DNA sequences

	A	G	C	T	total
A	93	13	3	3	112
G	10	105	3	4	122
C	6	4	113	18	141
T	7	4	21	93	125
total	116	126	140	118	500

Summarising evolution of $n=500$ sites of two homologous DNA sequences. Among various [related] models:

	A	G	C	T
A	$1-2 \alpha-\gamma$	γ	α	α
G	δ	$1-2 \alpha-\delta$	α	α
C	β	β	$1-2 \beta-\gamma$	γ
T	β	β	δ	$1-2 \beta-\delta$

One finds equilibrium distribution

$$
\begin{array}{ll}
p_{A}=\frac{\beta}{\alpha+\beta} \frac{\alpha+\delta}{2 \alpha+\gamma+\delta}, & p_{G}=\frac{\beta}{\alpha+\beta} \frac{\alpha+\gamma}{2 \alpha+\gamma+\delta}, \\
p_{C}=\frac{\alpha}{\alpha+\beta} \frac{\beta+\delta}{2 \beta+\gamma+\delta}, & p_{T}=\frac{\alpha}{\alpha+\beta} \frac{\beta+\gamma}{2 \beta+\gamma+\delta} .
\end{array}
$$

Homleid (1995): applied such models to meteorology, 'normal weather' split into N1 and N2, 'ugly weather' split into U1 and U2.

Computing all required matrices

$$
\begin{aligned}
& * J \text { for the ML; } \\
& * H, G, L \text { for the CL; } \\
& * M, Q \text { for the PL; }
\end{aligned}
$$

at the 'typical' value (.027,.041,.122,.126), shows once more that CL is nearly efficient, while PL loses a lot.

This is in agreement with simulation runs (large-sample approximations are effective for small n).

Other parameters: Our results also imply

$$
\begin{aligned}
& \sqrt{n}\left(\widehat{\psi}_{\mathrm{ML}}-\psi\right) \rightarrow_{d} \mathrm{~N}\left(0, \tau_{\mathrm{ML}}^{2}\right), \\
& \sqrt{n}\left(\widehat{\psi}_{\mathrm{CL}}-\psi\right) \rightarrow_{d} \mathrm{~N}\left(0, \tau_{\mathrm{CL}}^{2}\right), \\
& \sqrt{n}\left(\widehat{\psi}_{\mathrm{PL}}-\psi\right) \rightarrow_{d} \mathrm{~N}\left(0, \tau_{\mathrm{PL}}^{2}\right),
\end{aligned}
$$

for any $\psi=\psi(\alpha, \beta, \gamma, \delta)$.
Asynchronous distance between sequences, from Barry and Hartigan (1987): $\Delta=-(1 / 4) \log |P(\theta)|$. Can work out:

$$
\sqrt{n}\{\log |P(\widehat{\theta})|-\log |P(\theta)|\} \rightarrow_{d} \operatorname{Tr}\left\{P(\theta)^{-1} V\right\}
$$

in terms of a certain zero-mean normal $V=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)^{\mathrm{t}}$ with estimable covariance matrix, for each of ML, CL, PL.

6. When the models are imperfect

Suppose only that there are transition probabilities

$$
\pi_{a, b}=\operatorname{Pr}\left\{X_{i}=b \mid X_{i-1}=a\right\} \quad \text { for } a, b=1, \ldots, S
$$

How do estimation methods attempt to get close?
ML:

$$
n^{-1} \log l_{n}(\theta)=\sum_{a, b} \frac{N_{a, b}}{n} \log p_{a}(\theta) \rightarrow_{p} \sum_{a, b} \pi_{a} \pi_{a, b} \log p_{a, b}(\theta)
$$

Maximising this is equivalent to minimising

$$
d_{\mathrm{ML}}(\text { truth }, \text { model })=\sum_{a} \pi_{a}\left\{\sum_{b} \pi_{a, b} \log \frac{\pi_{a, b}}{p_{a, b}(\theta)}\right\}
$$

This is weighted Kullback-Leibler, over each row's model.

Similarly for PL and CL: again, weighted versions of (different) KullbackLeibler distances.

PL:

$d_{\mathrm{PL}}($ truth, model $)=\sum_{a, c} \pi_{a} \pi_{a, c}^{(2)}\left\{\sum_{b} \frac{\pi_{a, b} \pi_{b, c}}{\pi_{a, c}^{(2)}} \log \frac{\pi_{a, b} \pi_{b, c} / \pi_{a, c}^{(2)}}{p_{a, b}(\theta) p_{b, c}(\theta) / p_{a, c}^{(2)}(\theta)}\right\}$.

CL:

$d_{\mathrm{CL}}($ truth, model $)=\sum_{a} \pi_{a} \log \frac{\pi_{a}}{p_{a}(\theta)}+(k-1) \sum_{a} \pi_{a}\left\{\sum_{b} \pi_{a, b} \log \frac{\pi_{a, b}}{p_{a, b}(\theta)}\right\}$.

Illustration: Using a four-parameter model when a six-parameter model is true. Assume that a Markov chain on the four states A, G, C, T in reality is governed by

$$
\left(\begin{array}{cccc}
1-2 \alpha-\gamma_{1} & \gamma_{1} & \alpha & \alpha \\
\delta_{1} & 1-2 \alpha-\delta_{1} & \alpha & \alpha \\
\beta & \beta & 1-2 \beta-\gamma_{2} & \gamma_{2} \\
\beta & \beta & \delta_{2} & 1-2 \beta-\delta_{2}
\end{array}\right)
$$

but that the four-parameter model Kimura model, assuming $\gamma_{1}=\gamma_{2}$ and $\delta_{1}=\delta_{2}$, is being used for estimation and inference.

One learns:
ML and CL react very similarly, and in a robust way;
PL reacts very differently, and is too sensitive.

7. CLIC and FCLIC: model selection [and averaging]

For a given parametric model:

$$
\begin{aligned}
A_{n}(\theta) & =n^{-1} \log \mathrm{cl}_{n}(\theta) \\
& \rightarrow \operatorname{pr} A(\theta)=\sum_{a} \pi_{a} \log p_{a}(\theta)+(k-1) \sum_{a, b} \pi_{a} \pi_{a, b} \log p_{a, b}(\theta)
\end{aligned}
$$

for each θ, and

$$
d_{\mathrm{CL}}(\text { truth }, \text { model })=\text { const. }-A(\theta) .
$$

How good is the model? Answer: size of $A(\widehat{\theta})$.
Model selection idea: estimate $A(\widehat{\theta})$ (almost unbiasedly), for each candidate model.

Convergence of basic empirical process:

$$
\begin{aligned}
H_{n}(s) & =\log \operatorname{cl}_{n}\left(\theta_{0}+s / \sqrt{n}\right)-\log \operatorname{cl}_{n}\left(\theta_{0}\right) \\
& \doteq \sqrt{n} U_{n}^{\mathrm{t}} s-\frac{1}{2} s^{\mathrm{t}} J_{n} s+o_{\mathrm{pr}}(1) \rightarrow_{d} H(s)=s^{\mathrm{t}} U-\frac{1}{2} s^{\mathrm{t}} J_{k} s .
\end{aligned}
$$

Corollary 1:

$\operatorname{argmax}\left(H_{n}\right)=\sqrt{n}\left(\widehat{\theta}-\theta_{0}\right) \rightarrow_{d} \operatorname{argmax}(H)=J_{k}^{-1} U \sim \mathrm{~N}_{p}\left(0, J_{k}^{-1} K_{k} J_{k}\right)$.

Corollary 2:

$\max H_{n}=\log \mathrm{cl}_{n}(\widehat{\theta})-\log \mathrm{cl}_{n}\left(\theta_{0}\right)=n\left\{A_{n}(\widehat{\theta})-A_{n}\left(\theta_{0}\right)\right\} \rightarrow{ }_{d} \max H=\frac{1}{2} Z$,
for $Z=U^{\mathrm{t}} J_{k}^{-1} U$. A bit more analysis:

$$
A_{n}(\widehat{\theta})-A(\widehat{\theta})=n^{-1} Z_{n}+\text { variable with mean zero }
$$

where $Z_{n} \rightarrow_{d} Z$. Model selector:

$$
\mathrm{CLIC}=\log \mathrm{cl}_{n, \max }-\widehat{p}^{*}, \quad \text { with } p^{*}=\mathrm{E} Z=\operatorname{Tr}\left(J_{k}^{-1} K_{k}\right) .
$$

Can also construct Focussed CLIC [following Cleaskens and Hjort].

Concluding comments

(A) Why is CL better than PL?

$$
\log \mathrm{cl}_{n}(\theta)=\sum_{a} N_{a, \cdot} \log p_{a}(\theta)+\sum_{a, b} N_{a, b} \log p_{a, b}(\theta)
$$

with 2 nd term equal to ordinary $\log l_{n}(\theta)$. The 1 st term uses [some] forces to make sure that the equilibrium is well assessed.

So $\mathbf{C L}=$ penalised likelihood, and can also be seen as an empirical Bayes strategy with a prior of the type

$$
g(\theta) \propto \exp \left\{-\rho \sum_{a} p_{a}^{0} \log \frac{p_{a}^{0}}{p_{a}(\theta)}\right\} .
$$

This is sensible! - But

$$
\log \mathrm{pl}_{n}(\theta)=2 \sum_{a, b} N_{a, b} \log p_{a, b}(\theta)-\sum_{a, c} N_{a, \cdot, c} \log p_{a, c}^{(2)}(\theta)
$$

amounting to a 'strange penalisation' of the log-likelihood. Translated to Bayes and empirical Bayes: The PL uses a strange prior, intent on conflict with the ML objectives, and the strength of the prior is proportional to n.

(B) Variations and other models:

Can study many short chains instead of one long.
2-step memory length (etc.):
Essentially contained in the 1-step theory.
Markov chain regression models:

$$
P_{i}=\left(\begin{array}{cc}
1-\alpha_{i} & \alpha_{i} \\
\beta_{i} & 1-\beta_{i}
\end{array}\right)
$$

with

$$
\begin{aligned}
\alpha_{i} & =\frac{\exp \left(r+s z_{i}\right)}{1+\exp \left(r+s z_{i}\right)+\exp \left(t+u z_{i}\right)}, \\
\beta_{i} & =\frac{\exp \left(t+u z_{i}\right)}{1+\exp \left(r+s z_{i}\right)+\exp \left(t+u z_{i}\right)} .
\end{aligned}
$$

Hidden Markov chains: Can do CL. Bickel, Ritov, Rydén (1998): show that the ML works, in principle, but impossible to find formulae for limiting variance matrix $J(\theta)^{-1}$. This appears possible with CL, for at least the simpler HMM models.

(C) Using CL for model building:

Forget (or bypass) transition probabilities, model joint behaviour of block directly: e.g.

$$
f_{a, b, c, d, e}=A(\rho) \exp \left[-\rho\left\{h_{2}(a, c)+h_{1}(b, c)+h_{1}(d, c)+h_{2}(e, c)\right\}\right] .
$$

Could be parameters inside 1-neighbour function h_{1} and 2-neighbour function h_{2}. Can use CL to estimate parameters - without writing down the two-step Markov model with transition probabilities etc. NB: Tempting to use local models of type

$$
f\left(x_{i}, x_{i \pm 1}, x_{i \pm 2}, x_{i \pm 3}\right) \propto \exp \left[-\rho H_{\theta}\left(x_{i}, x_{i \pm 1}, x_{i \pm 2}, x_{i \pm 3}\right)\right]
$$

but only a subset of these correspond to genuine full models. Characterisation exercise: derive local characteristics from local f and check with Hammersley-Clifford-Besag theorems.

Ok or not [cf. comment from Reid]? Depends on purpose. Local inference: meaningful. But only full models give full insight and predictions.
(D) Time series models: May be handled in reasonable generality. For Zi Jin's AR(1) process: may find explicit limit distributions for ML, PL, CL.

(E) More CL in 2D:

Could invent new spatial models for which

$$
\operatorname{cl}_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(x_{i}, x_{\partial i}\right)=\prod_{i=1}^{n} p_{\theta}\left(x_{i}\right) p_{\theta}\left(x_{\partial i} \mid x_{i}\right)
$$

works well. This is turning PL inside out.
Heagerty and Lele (1998): pairwise CL method for model

$$
Y(s)=I\{Z(s) \geq c\}
$$

a Gaußian truncation model. Can get this to work also with say quintuple-wise CL, with data plus four neighbours: needs 'only' a separate function that computes 5 -dim-normal probabilities for the 32 quintotants in \mathcal{R}^{5}.

