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Why bother?

• Gause’s data on population growth of two species of
paramacia



Gause's Paramecia: two species cultured separately

(& together in competition)

Features of Gause's data

• Gause's figure plots means at each time of three
replicate cultures!

• 0.5 cc of well-stirred culture media sampled each
unit of time

•Intrinsic stochastic process noise in the cultures

•sampling error

•Some missing data (populations at time point 1
not sampled)
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Mathematical Models for population growth:

Density dependent Logistic growth model:
Continuous time

ttt bNaNN  loglog 1

Discrete time version: Ricker model

Discrete time stochastic Ricker model
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An alternative to Ricker model is Gompertz model:
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This is simply an AR(1) model.



The likelihood function:

If the number of individuals in the population are
observed without any sampling error, the likelihood
function for this process is very easy to write:
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This is easy for the Gompertz model (AR(1) process
Likelihood). For the Ricker model, recall that:
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This is quite easy. BUT REALITY BITES …

• Gause did not count all the individuals
• He took a small portion of the medium and
counted the number of individuals. He then
multiplied the number to scale it to the test
tube.

• This is an estimate (indeed a good one) of
total number of individuals in the test tube.
As such there is some sampling error
associated with this estimate. One needs to
take that into account when doing the
estimation.



Assuming that the individuals were distributed
randomly throughout the medium, a reasonable
sampling model is:
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Thus, the observed time series is NOT
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The likelihood function should be written as:
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• This involves T (T=20 for Gause data) dimensional
integration.

• This integral has no analytical form.



Possible solutions:

1) Numerical integration: Difficult, if not
impossible

2) EM algorithm: Expectation step is not easy.
3) MCEM or MCNR: Computationally difficult
4) Particle filter: Okay for first order
5) Kitagawa’s algorithm: Okay for first order

COMPOSITE LIKELIHOOD?

Two features that make use of pairwise CL feasible:

(Gompertz model)

1) Two dimensional marginals for the state part
of the model is easy: Gaussian distribution

2) Conditionally on the states, the observations are
independent of each other.

Problems with CL: (Ricker model)

Gaussian state distribution does NOT hold for
the Ricker model. Low dimensional
marginal distributions are not easy to compute
analytically.



Unfortunately, these situations are not uncommon in
ecological and epidemiological models. The low
dimensional marginals are not easy to compute either
analytically or numerically.

The models for delayed density dependence are useful
to model insect populations that are prone to
host-parasite interactions. These higher order Markov
processes for the states.

SIR and other compartmental models for spread of
disease do not have nice low dimensional marginal
distributions.

Generalized linear mixed models tend to
assume the Gaussian random effects. In those
cases, one can apply composite likelihood
Ideas to simplify the computation.

However, there is no reason to assume that
the random effects or latent variables are
Gaussian. For example, in animal breeding or
evolutionary genetics many researchers think
that non-Gaussian random effects are quite
likely.



If the hidden states or latent variables are such that
the low dimensional marginal distributions are not
analytical, applying the composite likelihood method
for hierarchical models is difficult if not impossible.

I am an inherently lazy person. So I searched for
some method that will give me good answers in
these tricky situations.

I hate to admit this but as much as the Bayesian
Philosophy of science is a ‘Faustian bargain’, Bayesian
methods are quite clever (and, great for a lazy
and not so smart statistician).

Confession:



Note to self:
Change to the pdf file

Generalized Linear Mixed Models:

1) Logistic-Normal model
2) Poisson-Log Normal model
3) Spatial count data model



1) Logistic-Normal Mixed Model: Crowder (1978, table 3) presented data on the

proportion of seeds that germinated on each of 21 plates arranged according to a 2 x 2

factorial layout by seed variety and type of root extract. He noted that the within-group

variation exceeded that predicted by binomial sampling theory. A natural way to account

for extraneous plate-to-plate variability in this situation is by means of the following

GLMM:
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Table 1: Maximum likelihood estimation for Logistic-Normal model for overdispersed

binary data

Parameters MLE - NI MLE-P1 MLE-P2 MLE-P3

0 -0.546 (0.167) -0.5484(0.168) -0.548 (0.166) -0.5472 (0.167)

1 0.097 (0.278) 0.0951(0.277) 0.09547(0.273) 0.0946 (0.283)

2 1.337 (0.237) 1.338(0.240) 1.336 (0.239) 1.335 (0.238)

12 -0.811 (0.385) -0.8109 (0.382) -0.8090 (0.379) -0.8069 (0.393)

 0.236(0.110) 0.2392 (0.107) 0.2396 (0.109) 0.2408 (0.111)



2) Longitudinal data: Thall and Vail (1990, table 2) presented data from a clinical trial

of 59 epileptics who were randomized to a new drug (Trt=1) or a placebo (Trt=0) as an

adjuvant to the standard chemotherapy. Baseline data available at entry into the trial

included the number of epileptic seizures recorded in the preceding 8-week period and

age in years. The logarithm of the fourth of the number of baseline seizures (Base) and

the logarithm of age (AGE) were treated as covariates in the analysis. A multivariate

response variable consisted of the counts of seizures during the 2-weeks before each of

four clinic visits (Visit, coded -3,-1,1,and 3). Preliminary analysis indicated that the

counts were substantially lower during the fourth visit and a binary variable (V4 =1 for

fourth visit, 0 otherwise) was constructed to model such effects. Breslow and Clayton

(1993) use the following GLMM for modeling these data.
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Table 2: Maximum likelihood estimation for Poisson-Normal model for repeated counts

data

Parameters PQL MLE-P1 MLE-P2 MLE-P3

AGE 0.47 (0.35) 0.477 (0.342) 0.481 (0.352) 0.479 (0.367)

BT 0.34 (0.21) 0.346 (0.180) 0.343 (0.203) 0.346 (0.223)

BASE 0.86 (0.13) 0.876 (0.128) 0.881 (0.136) 0.880 (0.140)

Trt -0.93 (0.40) -0.941(0.364) -0.933 (0.400) -0.941 (0.433)

4V -0.10 (0.09) -0.102 (0.086) -0.102 (0.087) -0.100 (0.086)

0 -1.27 (1.2) -1.366 (1.180) -1.386 (1.210) -1.380 (1.177)

b 0.36 (0.04) 0.366 (0.043) 0.360 (0.044) 0.365(0.043)

1b 0.48 (0.06) 0.471 (0.063) 0.465 (0.063) 0.469 (0.063)
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Table 3: Maximum likelihood estimation of spatial Generalized Linear Mixed Models

Parameters MLE-P1 MLE-P2 MLE-P3

0 -0.4466 (0.00248) -0.4590 (0.0031) -0.4515(0.0027)

1 0.6043 (0.001164) 0.6170 (0.0012) 0.6121(0.0012)

 0.1750 (0.000017) 0.1745 (0.000022) 0.1749 (0.000019)

 1.302 (0.0044) 1.303 (0.0044) 1.303 (0.0045)



When do we need composite likelihood?

1) Very large datasets: Standard programs such
as WinBUGS fail or are too slow if the dataset
is large (which will become even larger with
cloning). One possibility is to split the data in
manageable chunks and analyze them separately
using data cloning. One can combine the estimates
using their Fisher information (although covariance
will be tricky). This is justifiable using the CL principle.

2) Model robustness: The marginal distributions are
specified (whether joint distribution exists or not)
then one can use CL based estimator.

Summary

• Data cloning seems like a lazy man’s way to
analyze hierarchical models.

• Theoretically, no loss of efficiency
• Off the shelf programs can be used
• MCMC can be dangerous but less so if proper

priors are used.
• Data cloning can be used to predict the random

effects.
• Perhaps the EM algorithm for CL will also

achieve the same. What are the properties of
EMCL or data cloning based predictions?


