Composite Likelihood: Some Biomedical Applications

Kung-Yee Liang and Chongzhi Di Department of Biostatistics Johns Hopkins University

Workshop on Composite Likelihood Methods April 15-17, 2008, Warwick, England

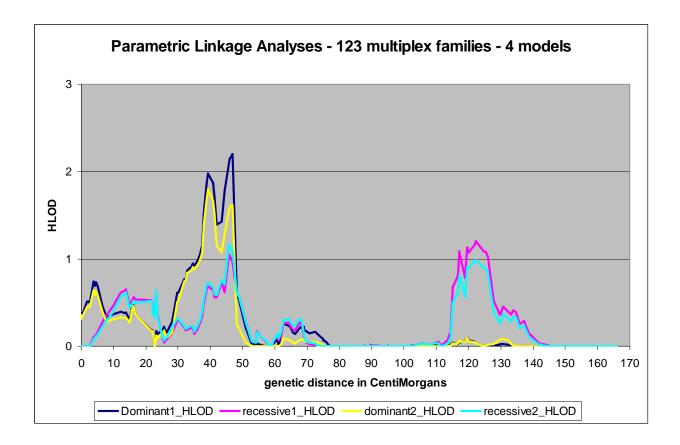
Outline

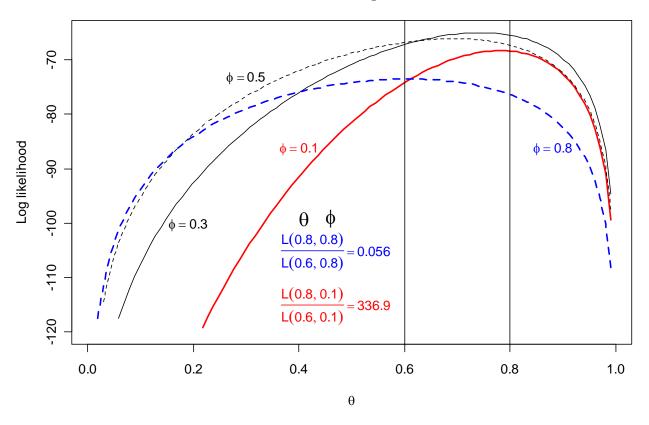
- Challenges associated with likelihood inference
- Alternative (likelihood) approaches
- Biomedical applications of composite likelihood
 - Familial aggregation
 - Missing data in regression
 - Case-control study with ordinal responses
- Discussion

Likelihood Inference

Likelihood inference has been successful in a variety of scientific fields

LOD score method for genetic linkage BRCA1 for breast cancer Hall et al. (1990) Science


- Poisson regression for environmental health
 - Fine air particle (PM_{10}) for increased mortality in total cause and in cardiovascular and respiratory causes Samet et al. (2000) NEJM
- ML image reconstruction estimate for nuclear medicine
 - Diagnoses for myocardial infarction and cancers


Challenges for Likelihood Inference

- In the absence of sufficient substantive knowledge, likelihood function maybe difficult to fully specify
 - Genetic linkage for complex traits
 - Genome-wide association with thousands of SNPs
 - Gene expression data for tumor cells
- There is computational issue as well for highdimensional observations
 - High throughput data

Challenges for Likelihood Inference (con't)

- Impacts of nuisance parameters
 - Inconsistency of MLE with many nuisance parameters (Neyman-Scott problem)
 - Different scientific conclusions with different nuisance parameter values
 - Ill-behaved likelihood function
 - Asymptotic approximation not ready

Beta-Binomial Log-Likelihood

Beta-Binomial Example

- Sensitivity of LR to nuisance values $L(\theta = .8, \phi = 0.8)/L(\theta = .6, \phi = 0.8) = 0.056$ $L(\theta = .8, \phi = 0.1)/L(\theta = .6, \phi = 0.1) = 336.9$
- Asymptotic approximation

Model	Bias	s.d.	s.e.	Lower	Upper
$\phi_T = \phi_C$.363	.488	.473	10.8	0.1
$\phi_T {\neq} \phi_C$.091	.517	.414	14.2	3.2

Alternative Likelihood Approaches

- Conditional/partial likelihood
 - Useful for eliminating nuisance parameters
 - Limited to particular families of distributions
- Marginal likelihood
 - Particularly useful for variance components
 - Lack of systematic treatment
- Quasi likelihood
 - Only first two moments needed
 - Pathway may not be unique

Alternative Likelihood Approaches (con't)

- Pseudo likelihood II
 - Useful when parameters of interest (θ) and nuisance parameters
 (φ) are highly intertwined
 - No simple guidance for finding
 - Gong & Samaniego (1981) Annals of Statistics
- Pseudo likelihood I
 - Focus on scientific questions of interest directly
 - "Cohesiveness" is a challenge
 - A special case (or precursor) of composite likelihood
 Besag (1974) JRSSB
- Empirical likelihood, dual likelihood, etc.

Composite Likelihood

Composition of conditional/marginal likelihoods, which are part of full likelihood components

- Avoiding computational burden
- Making fewer assumptions
 - More robust
- Reducing impacts of nuisance parameters
- Tackling scientific questions of interest more directly
 - Spirit of semi-parametric approaches

Some "Technical" Challenges

- With multiple strata, how to combine contribution from each stratum optimally?
 - Optimum estimating functions
- Asymptotic behavior of MLE's and LR statistics based on composite likelihoods
 - Characterization of being "information unbiased"
 - Projection method

Some Biomedical Applications

Family case-control study for familial aggregation

- Each case is matched with a control
- Relatives of cases and controls are recruited
- Risk of case relatives (familial risk) is compared with that of control relatives for evidence of familial aggregation

Cohen (1980) Genetic Epidemiology

Liang, Beaty & Cohen (1986) Genetic Epidemiology

Nestadt et al. (2000) Archives of General Psychiatry

Familial Aggregation

$$\begin{split} Y_{ij}, j &= 1,.., n_i, \text{affected status of } i^{th} \text{ case relatives} \\ Y_{ik}, k &= n_i + 1,.., n_i + m_i, \text{ affected status of } i^{th} \text{ control relatives} \\ i &= 1, \ldots, I \\ \text{Logit } Pr(Y_{ij} = 1 | x_{ij}, \delta_{ij}) &= \alpha_i + x_{ij}{}^t\beta + \theta \delta_{ij}, j = 1, \ldots, n_i + m_i \\ x: \text{ individual covariates} \end{split}$$

 $\delta = 1(0)$ if case (control) relative

- θ : primary parameter of interest
- Challenges: how to eliminate nuisance parameters {α_i, i = 1, ...,K} while accounting for lack of independence among relatives?

Familial Aggregation (con't)

Idea:

1. Adopt the conditional argument for matched designs to case and control relatives in a pairwise fashion

$$Pr(y_{ij}, y_{ik}|y_{ij} + y_{ik} = t, x_{ij}, \delta_{ij} = 1, x_{ik}, \delta_{ik} = 0) = t = 0, 1, 2, j = 1, ..., n_i, k = n_i + 1, ..., n_i + m_i$$

2. Assemble these conditional likelihoods within and across strata together to form the composite likelihood

Liang (1987) Biometrics

Familial Aggregation (con't)

In the absence of covariates (data be summarized in I 2x2 tables), it gives rise to the Mantel-Haenszel estimator with weights $1/(n_i + m_i)$

Composite likelihood methods provide

- A way to extend M-H method to account for additional covariates in logistic regression setting
- Connection between M-H procedure and conditional MLEs by comparing n_i cases with m_i controls simultaneously

Missing Data in Regression

In situations where an individual's chance of missing depends on the outcome value, y, but not on covariates, x, one has $f(y|x, \delta = 1) = pr(\delta = 1|y)f(y|x; \beta)/Pr(\delta = 1|x)$ $= a(y) b(x) f(y|x; \beta)$ $\delta = 1$ if observed and 0 if missing

Challenge: can one make inference on β without specifying the missing mechanism?

Missing Data in Regression (con't)

 $f(y|x, \delta = 1) = a(y) b(x) f(y|x; \beta)$

Idea:

1. Consider, with $(z_1, ..., z_n)$ the order statistics for $(y_1, ..., y_n)$, $f(y_1, ..., y_n | \delta = 1, x_1, ..., x_n, z_1, ..., z_n) =$

 $\Pi_{i} f(y_{i}|x_{i};\beta) / \Sigma \Pi_{i} f(z_{i}|x_{i};\beta)$

where Σ is summed over all possible permutation of $\{1, 2, ..., n\}$

Missing Data in Regression (con't)

Idea:

2. To reduce computational burden, consider this conditional argument in a pair-wise fashion

 $1/\{1 + R(y_j, x_j; y_k, x_k)\}$

 $R(y_{j}, x_{j}; y_{k}, x_{k}) = f(y_{i}|x_{k})f(y_{k}|x_{i})/\{f(y_{i}|x_{k})f(y_{k}|x_{i})\}$

- 3. A composite likelihood is formed by putting together $\binom{n}{2}$ such conditional likelihood events
- Applicable to missing covariates as well Liang & Qin (2000) JRSSB

Case-Control Study with Ordinal Outcomes

It is frequent that individuals diagnosed with the same disease are different in severity, stage, etc.

Questions:

- Can such information be incorporated in analysis in case-control studies?
- Will this lead to more efficient approach?

Ordinal Case-Control Study (con't)

Idea:

- 1. Consider the adjacent logistic regression model: log Pr(Y = j+1)/Pr(Y = j) = $\alpha_j + \beta^t x$, j = 1,..,C-1
- A special case of "stereotype model" by Anderson (1984, JRSSB)

log Pr(Y = j)/Pr(Y = 1) = $\alpha_j^* + \phi_j \beta^t x, j = 2,..,C$

 $0 = \phi_1 \leqslant \phi_2 \ldots \leqslant \phi_C$

with $\varphi_j = j$, j = 2,..., C and $\alpha_j^* = \alpha_1 + ... + \alpha_j$

Ordinal Case-Control Study (con't)

Idea:

2. With retrospective sampling, consider the following conditional likelihood argument (Farewell, 1979, Biometrika)

$$Pr(Y = j | x, \delta = 1) = exp(\alpha_i^+ + j\beta^t x)/D$$

 $D = 1 + \Sigma_k \exp(\alpha_k^{+} + k\beta^t x)$

 $\delta = 1$ if sampled and = 0 otherwise

$$\alpha_{i}^{+} = \alpha_{i}^{*} \Pr(\delta = 1 | Y = j) / \Pr(\delta = 1 | Y = 1)$$

• This gives rise to a composite likelihood for β and $\{\alpha_{j}^{+}\,,\,j=2,\,..,\,C\}$

Ordinal Case-Control Study (con't)

Some implications behind this composite likelihood:

• It is important that sampling, while depends on Y, be independent of x

 $Pr(\delta = 1 | Y = j, x) = Pr(\delta = 1 | Y = j)$

- Intercepts $\{\alpha_{j}^{*}, j = 1, ..., C\}$ not estimable
- Existing packages for adjacent and stereotype models can be applied for retrospective designs
 - R package "gnm" (Turner and Firth)
 - R package "VGAM" (Thomas W. Yee)

A Genetic Study on Schizophrenia

Schizophrenia is a psychiatric disorder that is

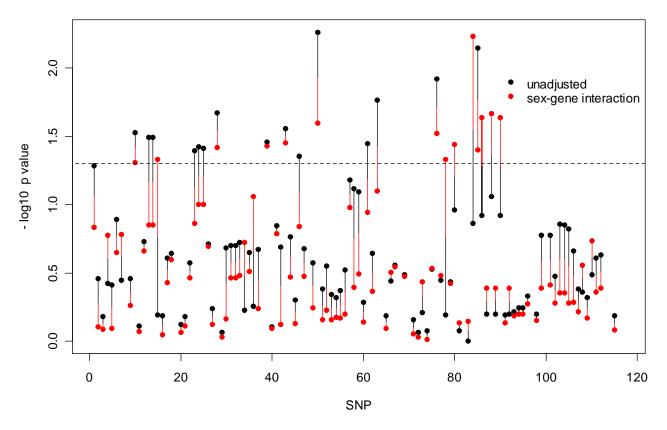
- High in prevalence
- Strong in genetic components (no genes have been found yet though)
- A special case of complex disorders encountering G-G and G-E interactions, genetic heterogeneity, imprinting, etc.

Genetic linkage on chromosome 8 has been reported

Blouin et al. (1998) Nature Genetic

A Genetic Study on Schizophrenia (con't)

Pattern of severity for schizophrenia:


- 1: Episodic shift
- 2: Mild deterioration
- 3: Moderate deterioration
- 4: Severe deterioration

A Genetic Study on Schizophrenia (con't)

	Control	Case severity			Total	
	0	1	2	3	4	Total
Male	172	4	51	102	92	421
Female	223	2	23	50	35	333
Total	395	6	74	152	127	754

• Frequency table by sex

 117 SNPs in two genes on Chromosome 8 DPYSL2 (93 SNPs), PNOC (24 SNPs) P values for 117 SNPs

SNP 86: Binary analysis

• Male

G-type	Control	Case
22	112	135
12	48	95 (1.64*)
11	12	19 (1.31)

Femal	e

G-type	Control	Case
22	144	78
12	75	26 (0.64)
11	4	6 (2.77)

•

Combined

G-type	Control	Case
22	256	213
12	123	121 (1.18)
11	16	25 (1.88)

SNP 86: Ordinal analysis

• Male

Female

G-type	0	1	2
22	112	86	49
12	48	61 (1.66*)	34 (0.98)
11	12	10 (1.09)	9 (1.58)

G-type	0	1	2
22	144	53	25
12	75	19 (0.69)	7 (0.78)
11	4	3 (2.04)	3 (2.12)

•

Combined

G-type	0	1	2
22	256	139	74
12	123	80 (1.20)	41 (0.96)
11	16	13 (1.50)	12 (1.73)

Deviance Tables

Models	Deviance	L.R.	D.F.	P-value				
	Binary response							
Gene	1039.31	4.24	2	0.12				
Sex	991.99							
G +S	990.25	1.74	2	0.42				
G*S	980.66	11.33	4	0.023				
	Ordinal response							
Gene	1504.47	5.59	2	0.06				
Sex	1462.25							
$\mathbf{G} + \mathbf{S}$	1459.45	2.80	2	0.25				
G*S	1450.44	11.81	4	0.019				

Summary of Results

For SNP 86 (rs6987220),

- It is important that interaction with gender be taken into account
 - Stronger association with risk of schizophrenia among females
 - Recessive with allele 1
- It helps to strengthen finding using ordinal response

Rationale for considering gender:

- 2 to 1 ratio for male vs female cases
- Higher familial risk for female cases
- Gender difference in neuro-development

Summary of Results (con't)

- Use of proportional odds models (McCullagh, 1980, JRSSB)
- No need to assign "scores" on ordinal response
- Interpretation of regression coefficient unaffected by "collapsing" adjacent categories
- Application to retrospective sampling less obvious

Discussion

- Composite likelihood provides a useful approach for scientific inference
 - Avoiding undue computational burden
 - Making few assumptions that maybe difficult to verify
 - Reducing non-trivial impacts of nuisance parameters
 - Devoting energy to scientific questions of interest
- With trend of high-dimensional interdependency per subject, this approach and its extension would draw greater attention in statistical community