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The Weighted Likelihood

Available data: Xij
⊥⊥∼ Fi,

i = 1, . . . , m (Population)

j = 1, . . . , ni (Individual)

• Samples come from m populations

• Inference is about Population 1

• The family of distributions f(x|θ) is used to model Population 1

Lλ(θ) =
m∏

i=1

ni∏
j=1

f(Xij |θ)λi/ni

The Maximum Weighted Likelihood Estimate (MWLE) is a value of θ

maximizing Lλ(θ).
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The weighted log-likelihood may be more intuitive:

�λ(θ) =
m∑

i=1

λi

ni

ni∑
j=1

log f(Xij |θ)

The weights discount data based on their relevance (or lack thereof).

How to choose them?

• Scientific information.

• Ad-hoc method: Hu & Zidek (2002).

• Cross-validation: Wang & Zidek (2005).

None of these solutions is fully satisfactory.

Note: The paradigm adopted is the same as Wang (2001) and

Wang & Zidek (2005).
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Maximum Entropy and Maximum Likelihood

Maximum Entropy Principle

In the family f(x|θ), choose the distribution closest to

f1 (the true distribution) by maximizing the Entropy:

B(f1, f) = −
∫

f1(x)
f(x|θ) log

{
f1(x)
f(x|θ)

}
f(x|θ) dx

=
∫

log{f(x|θ)}f1(x) dx−
∫

log{f1(x)}f1(x) dx

We can ignore the second term because it does not depend on θ.

But f1 is unknown! What to do?
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Suggestion #1: Use the empirical CDF

F̂1(x) =
1
n1

n1∑
j=1

11(X1j ≤ x)

as a “good guess” for the true distribution.

F̂1(x) allocates a weight of 1/n1 to each data point.

Entropy ∼
∫

log f(x|θ) dF̂1(x) =
1
n1

n1∑
j=1

log f(X1j |θ),

the log-likelihood!!!

5 / 18



Suggestion #2: Use a mixture of m empirical CDF’s

F̂λ(x) =
m∑

i=1

λiF̂i(x) with λi ≥ 0 and
m∑

i=1

λi = 1.

Each data point has weight λi/ni.

Then,

Entropy ∼
∫

log f(x|θ) dF̂λ(x) =
m∑

i=1

λi

ni

ni∑
j=1

log f(Xij |θ),

the weighted log-likelihood!!!

Intuitively, weighted likelihood ∼ using F̂λ to estimate F1.
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The MAMSE Weights

Based on the previous heuristic development, we want:

• F̂λ close to F1

• F̂λ less variable than F̂1

We combine these requirements into an objective function:

Pλ =
∫ [{

F̂1(x)− F̂λ(x)
}2

+ v̂ar
{

F̂λ(x)
}]

dF̂1(x)

where v̂ar{F̂λ(x)} =
m∑

i=1

λ2
i

ni
F̂i(x){1− F̂i(x)}.

We choose the weights that minimize Pλ and call them

MAMSE (Minimum Averaged Mean Squared Error) weights.
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Pλ =
∫ [{

F̂1(x)− F̂λ(x)
}2

+
m∑

i=1

λ2
i

ni
F̂i(x){1− F̂i(x)}

]
dF̂1(x)

Note that:

• Pλ is quadratic in λ ⇒ easy to optimize.

• Pλ does not depend on the model f(x|θ).
• The MWLE is invariant to a reparametrization f(x|θ).

By their definition, the MAMSE weights can be used as:

• Likelihood weights.

• Mixing probabilities for the empirical functions F̂i(x).

8 / 18

Asymptotics

Consider a sequence of samples such that n1 →∞.

We assume the distributions (Fi) are continuous.

Then,

• “Glivenko-Cantelli”:

sup
x

∣∣∣F̂λ(x)− F1(x)
∣∣∣ → 0 a.s.

• Strong Law of Large Numbers: for a suitable function g,

m∑
i=1

λi

ni

ni∑
j=1

g(Xij) → E{g(X1)} a.s.

• Suppose that F1(x) ≡ F (x|θ0), then

the MWLE is a strongly consistent estimator of θ0.
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A Word About the Proof of Consistency

Adapted from Wald (1949).

• For any θ outside an open set containing θ0,

the likelihood is bounded.

• Use some properties of the Relative Entropy.

• Critical point: must have a Strong Law of Large Numbers∫
log f(x|θ) dF̂λ(x) →

∫
log f(x|θ) dF1(x)

LHS = log-likelihood,

RHS = expectation under the true model.

10 / 18

Simulations

1. Normal Distribution

Samples of size n from each of

Population 1 : N (0, 1)

Population 2 : N (Δ, 1)

Number of replicates: 10000.

Note: Results hold for N (μ, σ2) and N (μ + Δσ, σ2) as well.
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Average Value of 100λ1

n = 10 20 50 100 1000 10000

Δ = 0 71 71 72 72 72 72

0.01 72 72 72 72 72 74

0.10 72 73 73 74 86 98

0.25 74 76 79 83 97 100

0.50 79 82 88 93 99 100

1.00 87 92 96 98 100 100

2.00 94 97 99 99 100 100

Table 1. Average MAMSE weights for Simulation 1,

Pop. 1: N (0, 1), Pop. 2: N (Δ, 1).
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100 MSE(MLE)/MSE(MWLE)

n = 10 20 50 100 1000 10000

Δ = 0 145 144 143 144 144 143

0.01 146 144 143 144 141 127

0.10 143 140 135 128 89 94

0.25 134 125 110 96 91 99

0.50 117 104 88 88 97 100

1.00 94 88 90 94 99 100

2.00 87 92 96 98 100 100

Table 2. Relative efficiency for Simulation 1,

Pop. 1: N (0, 1), Pop. 2: N (Δ, 1).
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2. Complementary Populations

Samples of size n are drawn from

Population 1 : N (0, 1)

Population 2 : |N (0, 1)|
Population 3 : −|N (0, 1)|.

Each scenario is repeated 10000 times.
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n Efficiency 100λ̄1 100λ̄2 100λ̄3

10 121 46 23 30

20 118 45 25 29

50 117 45 27 29

100 116 44 27 28

1000 115 44 28 28

10000 116 44 28 28

Table 3. Average weights and efficiency for Simulation 2.

Pop. 1: N (0, 1), Pop. 2: |N (0, 1)|, Pop. 3: −|N (0, 1)|.

Efficiency=100 MSE(MLE)/MSE(MWLE)
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Using the Similar Heuristics in Other Contexts

Suppose x as q dimensions. Working assumption: all elements of x are

independent except xi and xj . Then,
∫

log f(x|θ) dF̂ (x) equals∫
log f(xi, xj |θ) dF̂ (x) +

∑
k �∈{i,j}

∫
log f(xk|θ) dF̂ (x)

Consider this assumption for all possible pairs of variables.

We compromise by maximizing their sum ⇒
a composite likelihood in the sense of Cox & Reid (2004).

For a single observation:∑
i<j

log f(xi, xj |θ) +
(

q − 1
2

) q∑
i=1

log f(xi|θ).

Could this be useful ?
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Conclusion

A heuristic justification of the weighted likelihood leads to the

definition of the MAMSE weights.

The nonparametric MAMSE weights yield consistent estimates that

allow to borrow strength from other populations without making

parametric assumptions on them.

The MAMSE weights are useful in other contexts too

(survival analysis, nonparametric coefficients of correlation, copulas).

The heuristic used for the weighted likelihood may be useful in

developing further other composite likelihoods...
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Thank You!

18 / 18

References

D. R. Cox & N. Reid (2004). A note on pseudolikelihood constructed

from marginal densities, Biometrika, 91, 729–737.

F. Hu and J. Zidek (2002). The weighted likelihood, The Canadian

Journal of Statistics, 30, 347–371.

A. Wald (1949). Note on the consistency of the maximum likelihood

estimate, The Annals of Mathematical Statistics, 20, 595–601.

X. Wang (2001). Maximum weighted likelihood estimation,

unpublished doctoral dissertation, Department of statistics,

University of British Colombia, 151 pp.

X. Wang and J. V. Zidek (2005). Selecting likelihood weights by

cross-validation, The Annals of Statistics, 33, 463–501.



Additional Simulation

3. Earthquakes

Magnitude of earthquakes in Western Canada in a five-year period.

Data from the public website of Natural Resources Canada.

Number of measured earthquakes: 4743, 4866 and 1621 respectively.

The red line corresponds to the fitted Gamma distribution.

Additional material: 1 / 10

Suppose that the magnitude of the 50 last earthquakes from each area

are available. Should we use the MLE or the MWLE?

We generated 10000 samples of 50 earthquakes from each area based

on the fitted model. We calculated the MLE and the MWLE for the

Lower Mainland – Vancouver Island area for each sample.

Average weights: 0.959, 0.041, 0.000 respectively.

Estimation of the parameters:

100 MSE(MLE)/MSE(MWLE)=107

Estimation of P(Magnitude > 3):

100 MSE(MLE)/MSE(MWLE)=112

Additional material: 2 / 10



Copulas

Suppose m samples of p-dimensional data are available from

continuous distributions:

Xij = (Xij1, . . . , Xijp)
⊥⊥∼ Fi,

i = 1, . . . , m (Population)

j = 1, . . . , ni (Individual)

with Fi(x) = Ci{Gi1(x1), . . . , Gip(xp)}
where Ci is the unique copula associated with Fi and

Gi1, . . . , Gip are the marginal distributions of Fi.

Assume that Ci are continuous.

Copula ≡ CDF with uniform margins

. ∼ scaling the margins to expose the dependence structure.
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Empirical Copula

For Population i ∈ {1, . . . , m} and � ∈ {1, . . . , p} fixed,

let Rij� be the ranks of the data Xij�.

The empirical copula

Ĉi(u1, . . . , up) =
1
ni

ni∑
j=1

11
(

Rij1

ni
≤ u1, . . . ,

Rijp

ni
≤ up

)
allocates a mass of 1/ni to each point(

Rij1

ni
, . . . ,

Rijp

ni

)
.

Ranks are invariant to a monotone transformation of the margins...
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Additional material: 5 / 10

MAMSE Weights

We choose the weights λi ≥ 0 with
∑m

i=1 λi = 1 minimizing

Pλ =
∫
|Ĉ1(u)− Ĉλ(u)|2 + v̂ar{Ĉλ(u)} dM(u)

where v̂ar{Ĉλ(u)} =
m∑

i=1

λ2
i

ni
Ĉi(u){1− Ĉi(u)} is an approximation.

The measure dM allocates an equal mass of 1/np
1

to each of the p-dimensional points{
1
n1

,
2
n1

, . . . , 1
}
× · · · ×

{
1
n1

,
2
n1

, . . . , 1
}

.
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Weighted Pseudo-Likelihood

The family of copulas C(u|θ), admitting densities c(u|θ),
is used to model the data. The value of θ maximizing

L(θ) =
m∏

i=1

ni∏
j=1

c (Yij1, . . . , Yijp|θ)λi/ni

is called the maximum weighted pseudo-likelihood estimate (MWPLE).

The Yijp are ranks scaled to (0, 1). Typically, Yijp =
Rijp

ni + 1

Additional material: 7 / 10

Suppose: a) sample sizes go to ∞,

b) λi are the MAMSE weights.

Weighted Empirical Copula

Ĉ(u) =
m∑

i=1

λiĈi(u)

is such that

sup
u∈[0,1]p

|Ĉ(u)− C1(u)| → 0 a.s.

Maximum Weighted Pseudo-Likelihood Estimate

If the parameter space is compact, the MWPLE based on MAMSE

weights is strongly consistent.
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Simulation

Measurement Error in Multiple Dimensions

The target population is a multivariate normal with covariance matrix

ΣA =

⎡⎢⎢⎢⎢⎢⎣
1 0.4 0.3 0.2

0.4 1 0.4 0.3

0.3 0.4 1 0.4

0.2 0.3 0.4 1

⎤⎥⎥⎥⎥⎥⎦ or ΣB =

⎡⎢⎢⎢⎢⎢⎣
1 0.8 0.6 0.4

0.8 1 0.8 0.6

0.6 0.8 1 0.8

0.4 0.6 0.8 1

⎤⎥⎥⎥⎥⎥⎦ .

Samples from four populations of 4-dimensional data are generated.

Population 1 is clean, but populations 2, 3 and 4 have

measurement errors that affect their dependence structure.
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100×
n λ̄1 λ̄2 λ̄3 λ̄4

Scenario A 20 46 18 18 18

Scenario B 20 41 20 20 19

Table 5. Average weights for 4D data with measurement error.

100 MSE(MPLE)/MSE(MWPLE)

n Γ1 Γ11 Γ12 Γ13 Γ14 Γ15 Γ16

Scenario A 20 235 232 234 259 225 234 229

Scenario B 20 98 58 118 214 59 130 62

Table 6. Efficiency for 4D data with measurement error.

Note that Γ1 = [Γ11, Γ12, Γ13, Γ14, Γ15, Γ16]T

is the vector of correlations in the covariance matrix for Population 1.
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