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The Problem

rt K -dimensional daily returns, fFtg natural �ltration.
Recent attention towards estimating conditional covariance models

E(rt jFt�1) = 0, Cov(rt jFt�1) = Ht ,

based on
r1, r2, ..., rT .

Engle (2002); Tse & Tsui (2002); Ledoit, Santa-Clara & Wolf (2003);
Cappiello, Engle & Sheppard (2006); Engle & Kelly (2007).
Ht is a function of Ft�1 through parameters ψ.

Desire to estimate key dynamic parameters when K is very large.
Unbalanced panels.

K = 500?



Relevant Models

Covariance tracking and scalar dynamics

Ht = (1� α� β)Σ+ αrt�1r 0t�1 + βHt�1, α, β � 0, α+ β < 1,

Special case of Bollerslev, E. & Wooldridge (88) or E. & Kroner(95)

EWMA:
Ht = αrt�1r 0t�1 + (1� α)Ht�1, α 2 [0, 1)

A simple case of this is RiskMetrics.

Standard Estimation

Usual assumption

E(rt jFt�1) = 0, Cov(rt jFt�1) = Ht ,

Usually estimated via Gaussian quasi-likelihood

log LQ (ψ; r) =
T

∑
t=1
�1
2
log jHt j �

1
2
rt 0H�1t rt

Challanging:

the parameter space is typically large � statistical and computational
problems;
the inversion of Ht takes O(K 3) computations

Often �rst can be �dealt with�by concentration.



Think of

Ht = (1� α� β)Σ+ αrt�1r 0t�1 + βHt�1,

regard λ = vech(Σ) as P-dim nuisance, θ = (α, β)0 as parameters of
interest.

log LQ (λ, θ; r).

Can use a moment estimator to estimate λ,

bλ = vech 1
T

T

∑
t=1
rt r 0t

!
.

Yields a m-pro�le likelihood (2-stage estimator)

log LQ (bλ, θ; r).
Vast dimensional nuisance parameter (e.g. K = 100, over 5, 000)

Using the all S&P 100 stocks, January 2, 1997 - December 31 2006, we
quick look at the scaling bias. The �rst asset is always the market and the
other assets are arranged alphabetically by ticker.
The model �t was a scalar BEKK using covariance tracking,

Ht = (1� α� β)Σ+ αr 0t�1rt�1 + βHt�1 (1)

S&P Returns
Scalar BEKK EWMA DCC

K α̃ β̃ α̃ α̃ β̃

5 .0189 .9794 .0134 .0141 .9757
10 .0125 .9865 .0103 .0063 .9895
25 .0081 .9909 .0067 .0036 .9887
50 .0056 .9926 .0045 .0022 .9867
96 .0041 .9932 .0033 .0017 .9711

Table: Parameter estimates from a covariance targeting scalar BEKK, EWMA
(estimating H0) and DCC using maximum m-pro�le likelihood (MMLE). Based
upon a real database built from daily returns from 95 companies plus the index
from the S&P100, from 1997 until 2006.



Data array

Move the return vector rt into a data array Yt = fY1t , ...,YNtg where Yjt
is itself a vector containing small subsets of the data (there is no need for
the Yjt to have common dimensions).
In our context a leading example would be where we look at all the unique
"pairs" of data

Y1t = (r1t , r2t )
0 ,

Y2t = (r1t , r3t )
0 ,

...

YK (K�1)
2

= (rK�1t , rKt ) ,

writing N = K (K � 1)/2. We will continue with this example, in the
exposition below, but it is trivial to think about using other subsets of the
data in a similiar way.

Let
Yjt = Sj rt , Sj selection matrix.

Our model trivially implies

E(Yjt jFt�1) = 0, Cov(Yjt jFt�1) = Hjt = SjHtS 0j . (2)

which determined the conditional mean and covariance of each submodel
Yjt jFt�1.

log Lj (ψ) =
T

∑
t=1
ljt (ψ), ljt (ψ) = log f (Yjt ;ψ)

where
ljt (ψ) = �

1
2
log jHjt j �

1
2
Y 0jtH

�1
jt Yjt .



ljt (ψ) = �
1
2
log jHjt j �

1
2
Y 0jtH

�1
jt Yjt .

This quasi-likelihood will have information about ψ but more information
can be obtained by averaging the same operation on many submodels

ct (ψ) =
1
N

N

∑
j=1
log Ljt (ψ).

Of course if the fY1t , ...,YNtg were independent this would be the exact
likelihood � but this will not be the case for us! Such functions, based on
"submodels" or "marginal models", are call composite-likelihoods,
following the nomenclature introduced by Lindsay (1988).

Computational points

Previously method was O(K 3).

Evaluation of ct (ψ) costs O(N) calculations.

All distinct pairs � O(K 2) calculations.

Contiguous pairs � O(K ) calculations.

Choose only O(1) pairs (randomly), which is computationally fast!

We will see in a moment that the e¢ ciency loss of using these subsets
compared to computing all possible pairs is extremely small when N is
moderately large.
Asymptotically as N increases to in�nity "all pairs" and "contiguous" have
the same e¢ ciency.
If K is large it is pointless using all pairs.



We now make our main assumption that

ct (ψ) =
1
N

N

∑
j=1
log Ljt (θ,λj ).

Common �nite dimensional θ and vector of parameters λj which is
speci�c to the j-th subset.

Our interest is in estimating θ and so the λj are nuisances.

This type of assumption appeared �rst in the work of Neyman and
Scott (1948) � but they had independence. Dependence over j will
help us!

Named a strati�ed model with a stratum of nuisance parameters and
can be analysed by using two-index asymptotics, e.g.
Barndor¤-Nielsen (1996).

For the j-th submodel we have the common parameter θ and nuisance
parameter λj . The joint model may imply there are links across the λj .

Example

The scalar BEKK model Ht = (1� α� β)Σ+ αr 0t�1rt�1 + βHt�1 so

Y1t = (r1t , r2t )
0 , Y2t = (r2t , r3t )

0 ,

then
λ1 = (Σ11,Σ21,Σ22)

0 , λ2 = (Σ22,Σ32,Σ33)
0 .

Hence, the joint model implies there are common elements across the λj .

We may potentially gain by exploiting these links in our estimation. An
alternative, is to be self-denying and never use these links even if they
exist in the data generating process. The latter means the admissible
values are

(λ1,λ2, ...,λN ) 2 Λ1 �Λ2 � ...�ΛN , (3)

i.e. they are variation-free.
Throughout we use variation-freeness.



Our estimation strategy can be generically stated as solving

bθ = argmax
θ

1
N

T

∑
t=1

N

∑
j=1
log Ljt (bθ, bλj ),

where bλj solves for each j
T

∑
t=1
gjt (bθ, bλj ) = 0.

Here gjt is a dim(λj )-dimensional moment constraint so that for each j

E fgjt (θ,λj )g = 0, t = 1, 2, ...,T .

This structure has some important special cases.

e.g. Maximum composite likelihood estimator

The maximum composite likelihood estimator (MCLE) follows from writing

gjt (θ,λj ) =
∂ log Ljt (θ,λj )

∂λj
,

so bλj (θ) = argmax
λj

T

∑
t=1
log Ljt (θ, bλj ),

which means
1
N

T

∑
t=1

N

∑
j=1
log Ljt (θ, bλj )

is the pro�le composite likelihood which bθ maximises.



e.g. Maximum m-pro�le composite-likelihood estimator

Suppose
gjt (θ,λj ) = Gjt � λj , where E(Gjt ) = λj ,

then bλj = 1
T

T

∑
t=1
Gjt .

We call the resulting bθ a m-pro�le composite-likelihood estimator
(MMCLE).

Behaviour � no nuisance parameters, no time series

The Cox and Reid (2003): suppose rt is i.i.d. then we assume

I�θθ = lim
T!∞

Cov

 
1
N

N

∑
j=1

∂ljt (θ,λj )
∂θ

!
> 0,�E

(
1
N

N

∑
j=1

∂2ljt (θ,λj )
∂θ∂θ0

)
! Jθθ.

The former assumption is the key for us: average score does not exhibit
a law of large numbers in the cross section. Then we have

p
T

1
TNT

T

∑
t=1

NT

∑
j=1

∂ljt (θ,λj )
∂θ

d! N(0, I�θθ),

and so p
T
�bθ � θ

�
d! N(0,J �1

θθ I
�
θθJ �1

θθ ).

Notice the rate of convergence is now
p
T , so we do not get an improved

rate of convergence from the cross-sectional information.



Nuisance parameters: stack the moment constraints

1
TNT

T

∑
t=1

 
gt

∑NT
j=1

∂ljt
∂θ

!
, g = fgjtg , bλ� λ =

nbλj � λj

o
.

 bλ� λbθ � θ

!
'
�
A c
b0 Jθθ

��1 ( 1
TNT

T

∑
t=1

 
gt

∑NT
j=1

∂ljt
∂θ

!)
,

A = N�1diag(Jλ1λ1 , ...,JλNλN ), b = N
�1 �Jθλj

	
, c = N�1

�
Jλj θ

	
,

Jλjλj = �p lim
T!∞

1
T

T

∑
t=1

∂gjt
∂λ0j

, Jλj θ = �p limT!∞

1
T

T

∑
t=1

∂gjt
∂θ0

,

Jθλj = �p lim
T!∞

1
T

T

∑
t=1

∂2ljt
∂θ∂λ0j

, Jθθ = �
 
p lim
T!∞

1
TNT

T

∑
t=1

NT

∑
j=1

∂2ljt
∂θ∂θ0

!
.

Then

bθ ' θ +D�1θθ

1
T

T

∑
t=1
Zt ,T , Dθθ = lim

NT!∞

1
NT

NT

∑
j=1

�
Jθθ �JθλjJ �1

λjλj
Jλj θ

�
,

where

Zt ,T =
1
N

N

∑
j=1

�
∂ljt (θ,λj )

∂θ
�JθλjJ �1

λjλj
gjt

�
.

We assume as T ! ∞

Cov

 
1p
T

T

∑
t=1
Zt ,T

!
! Iθθ,

where Iθθ has diagonal elements which are bounded from above and
Iθθ > 0 (estimate by low dimensional HAC estimator!). Then

p
T
�bθ � θ

�
! N(0,D�1θθ IθθD�1θθ ).



Monte Carlo

Plot: s.e. of estimator against K for the maximized MCLE and MSCLE.
e.g. K = 50, MCLE is based on 1, 225 submodels while MSCLE uses 49.
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Empirical Application

S&P 100 components

January 2, 1997 - December 31 2006

2516 daily observations

Also include the S&P 100 index

Asset had to be continually available for including

MCLE is well suited to the case where assets are added or dropped

97 assets in total, incl. the index



Same model, Di¤erent Estimates
m-pro�le maximised

Scalar BEKK EWMA DCC Scalar BEKK DCC
K α̃ β̃ α̃ α̃ β̃ eα eβ eα eβ

All Pairs
5 .0287

(.0081)
.9692
(.0092)

.0205
(.0037)

.0143
(.0487)

.9829
(.0846)

.0288
(.0073)

.9692
(.0082)

.0116
(.0048)

.9873
(.0056)

10 .0281
(.0055)

.9699
(.0063)

.0211
(.0027)

.0107
(.0012)

.9881
(.0016)

.0276
(.0050)

.9705
(.0057)

.0107
(.0013)

.9875
(.0021)

25 .0308
(.0047)

.9667
(.0055)

.0234
(.0023)

.0100
(.0009)

.9871
(.0017)

.0327
(.0043)

.9646
(.0047)

.0102
(.0010)

.9866
(.0021)

50 .0319
(.0046)

.9645
(.0056)

.0225
(.0026)

.0101
(.0008)

.9856
(.0018)

.0345
(.0037)

.9615
(.0042)

.0104
(.0009)

.9848
(.0017)

96 .0334
(.0041)

.9636
(.0049)

.0249
(.0019)

.0103
(.0009)

.9846
(.0019)

.0361
(.0031)

.9601
(.0034)

.0106
(.0009)

.9841
(.0018)

Contiguous Pairs
5 .0284

(.0083)
.9696
(.0094)

.0189
(.0037)

.0099
(.0033)

.9885
(.0045)

.0251
(.0070)

.9733
(.0079)

.0078
(.0055)

.9917
(.0059)

10 .0272
(.0054)

.9709
(.0062)

.0201
(.0027)

.0093
(.0016)

.9886
(.0018)

.0266
(.0049)

.9717
(.0055)

.0088
(.0018)

.9900
(.0020)

25 .0307
(.0049)

.9668
(.0056)

.0227
(.0024)

.0089
(.0011)

.9889
(.0012)

.0315
(.0044)

.9660
(.0050)

.0088
(.0012)

.9894
(.0013)

50 .0316
(.0047)

.9647
(.0057)

.0220
(.0029)

.0092
(.0010)

.9869
(.0019)

.0347
(.0038)

.9612
(.0043)

.0095
(.0011)

.9864
(.0019)

96 .0335
(.0043)

.9634
(.0051)

.0247
(.0020)

.0094
(.0009)

.9860
(.0014)

.0364
(.0032)

.9598
(.0035)

.0095
(.0009)

.9863
(.0012)

Table: Based on the maximum m-pro�le and maximum composite likelihood
estimator (MMCLE) using real and simulated data. Top part uses K (K � 1)/2
pairs based subsets, the bottom part uses K-1 contiguous pairs. Parameter
estimates from a covariance targeting scalar BEKK, EWMA (estimating H0) and
DCC. The real database is built from daily returns from 95 companies plus the
index from the S&P100, from 1997 until 2006. Numbers in brackets are
asymptotic standard errors.

Visualizing the Di¤erences

Do these parameter values make any qualitative di¤erence?

Yes!

Construct a plot based on Quasi-βs

Correlation of standardized return on asset j with the standardized
return on the market

Still 95 series

Median
Interquartile range
95% interval



One model, DCC, two estimators
Correlation of returns with the market.
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Testing the Di¤erences

Do these di¤erences matter for application?

Yes!

High dimension parameter space rules out in-sample testing

composite-out-of sample experiment from January 2, 2003 -
December 31, 2006

All parameters estimated using data January 2, 1997 - December 31,
2002

Dynamic Correlation parameters largely similar to full sample
QMLE estimate somewhat less persistent



Examined the hedging errors of a conditional CAPM where the S&P
100 index proxied for the market. Using one-step ahead forecasts, the
conditional time-varying market betas were computed as

bβj ,t = bh1/2
j ,t bρjm,tbh1/2
m,t

, j = 1, 2, ...,N, (4)

and the corresponding hedging errors were computed as

bνj ,t = rj ,t � bβj ,t rm,t . (5)

Testing for Superior Predictive Ability

Comparisons via Giacomini-White(06) tests

bδj ,t = �bνj ,t �bρMCLEj ,t

��2
�
�bνj ,t �bρMMLEj ,t

��2
Test statistic is

δ̄j

avar
�p

T δ̄j

�
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Conclusions I

Paper proposes a new estimator for time varying-covariance models

Can provide moderate to large improvements in computation time

Or equivalently increases in feasible cross-section sizes

Estimator is more accurate in large models

Composite structure looks similar to Neyman-Scott problem, but has
some di¤erences which are key.

Relatively easy to carry out statistical inference on these models

Same problems arise when we estimate copulas!

Conclusions II

We love composite likelihoods!


