Fitting and testing vast dimensional time-varying covariance models

Neil Shephard
Oxford-Man Institute
and
Department of Economics
University of Oxford
Joint with
Robert F. Engle
Stern School of Business, NYU
and
Kevin Sheppard
Economics and OMI, Oxford

April 17, 2008

The Problem

- $r_{t} K$-dimensional daily returns, $\left\{\mathcal{F}_{t}\right\}$ natural filtration.
- Recent attention towards estimating conditional covariance models

$$
\mathrm{E}\left(r_{t} \mid \mathcal{F}_{t-1}\right)=0, \quad \operatorname{Cov}\left(r_{t} \mid \mathcal{F}_{t-1}\right)=H_{t}
$$

based on

$$
r_{1}, r_{2}, \ldots, r_{T} .
$$

- Engle (2002); Tse \& Tsui (2002); Ledoit, Santa-Clara \& Wolf (2003); Cappiello, Engle \& Sheppard (2006); Engle \& Kelly (2007).
- H_{t} is a function of \mathcal{F}_{t-1} through parameters ψ.
- Desire to estimate key dynamic parameters when K is very large. Unbalanced panels.
- $K=500$?

Relevant Models

- Covariance tracking and scalar dynamics

$$
H_{t}=(1-\alpha-\beta) \Sigma+\alpha r_{t-1} r_{t-1}^{\prime}+\beta H_{t-1}, \quad \alpha, \beta \geq 0, \quad \alpha+\beta<1,
$$

- Special case of Bollerslev, E. \& Wooldridge (88) or E. \& Kroner(95)
- EWMA:

$$
H_{t}=\alpha r_{t-1} r_{t-1}^{\prime}+(1-\alpha) H_{t-1}, \quad \alpha \in[0,1)
$$

- A simple case of this is RiskMetrics.

Standard Estimation

- Usual assumption

$$
\mathrm{E}\left(r_{t} \mid \mathcal{F}_{t-1}\right)=0, \quad \operatorname{Cov}\left(r_{t} \mid \mathcal{F}_{t-1}\right)=H_{t},
$$

- Usually estimated via Gaussian quasi-likelihood

$$
\log L_{Q}(\psi ; r)=\sum_{t=1}^{T}-\frac{1}{2} \log \left|H_{t}\right|-\frac{1}{2} r_{t}^{\prime} H_{t}^{-1} r_{t}
$$

- Challanging:
- the parameter space is typically large - statistical and computational problems;
- the inversion of H_{t} takes $O\left(K^{3}\right)$ computations
- Often first can be "dealt with" by concentration.

Think of

$$
H_{t}=(1-\alpha-\beta) \Sigma+\alpha r_{t-1} r_{t-1}^{\prime}+\beta H_{t-1}
$$

regard $\lambda=\operatorname{vech}(\Sigma)$ as $P-\operatorname{dim}$ nuisance, $\theta=(\alpha, \beta)^{\prime}$ as parameters of interest.

$$
\log L_{Q}(\lambda, \theta ; r)
$$

Can use a moment estimator to estimate λ,

$$
\widehat{\lambda}=\operatorname{vech}\left(\frac{1}{T} \sum_{t=1}^{T} r_{t} r_{t}^{\prime}\right)
$$

Yields a m-profile likelihood (2-stage estimator)

$$
\log L_{Q}(\widehat{\lambda}, \theta ; r)
$$

Vast dimensional nuisance parameter (e.g. $K=100$, over 5,000)

Using the all S\&P 100 stocks, January 2, 1997 - December 31 2006, we quick look at the scaling bias. The first asset is always the market and the other assets are arranged alphabetically by ticker.
The model fit was a scalar BEKK using covariance tracking,

$$
\begin{equation*}
H_{t}=(1-\alpha-\beta) \Sigma+\alpha r_{t-1}^{\prime} r_{t-1}+\beta H_{t-1} \tag{1}
\end{equation*}
$$

	Scalar BEKK R Returns					
K	$\tilde{\alpha}$	$\tilde{\beta}$	EWMA	DCC		
				$\tilde{\alpha}$	$\tilde{\beta}$	
5	.0189	.9794	.0134	.0141	.9757	
10	.0125	.9865	.0103	.0063	.9895	
25	.0081	.9909	.0067	.0036	.9887	
50	.0056	.9926	.0045	.0022	.9867	
96	.0041	.9932	.0033	.0017	.9711	

Table: Parameter estimates from a covariance targeting scalar BEKK, EWMA (estimating H_{0}) and DCC using maximum m-profile likelihood (MMLE). Based upon a real database built from daily returns from 95 companies plus the index from the S\&P100, from 1997 until 2006.

Data array

Move the return vector r_{t} into a data array $Y_{t}=\left\{Y_{1 t}, \ldots, Y_{N t}\right\}$ where $Y_{j t}$ is itself a vector containing small subsets of the data (there is no need for the $Y_{j t}$ to have common dimensions).
In our context a leading example would be where we look at all the unique "pairs" of data

$$
\begin{aligned}
Y_{1 t}= & \left(r_{1 t}, r_{2 t}\right)^{\prime}, \\
Y_{2 t}= & \left(r_{1 t}, r_{3 t}\right)^{\prime}, \\
& \vdots \\
Y_{\frac{K(K-1)}{2}}= & \left(r_{K-1 t}, r_{K t}\right),
\end{aligned}
$$

writing $N=K(K-1) / 2$. We will continue with this example, in the exposition below, but it is trivial to think about using other subsets of the data in a similiar way.

Let

$$
Y_{j t}=S_{j} r_{t}, \quad S_{j} \text { selection matrix. }
$$

Our model trivially implies

$$
\begin{equation*}
\mathrm{E}\left(Y_{j t} \mid \mathcal{F}_{t-1}\right)=0, \quad \operatorname{Cov}\left(Y_{j t} \mid \mathcal{F}_{t-1}\right)=H_{j t}=S_{j} H_{t} S_{j}^{\prime} . \tag{2}
\end{equation*}
$$

which determined the conditional mean and covariance of each submodel $Y_{j t} \mid \mathcal{F}_{t-1}$.

$$
\log L_{j}(\psi)=\sum_{t=1}^{T} \jmath_{j t}(\psi), \quad \iota_{j t}(\psi)=\log f\left(Y_{j t} ; \psi\right)
$$

where

$$
\iota_{j t}(\psi)=-\frac{1}{2} \log \left|H_{j t}\right|-\frac{1}{2} Y_{j t}^{\prime} H_{j t}^{-1} Y_{j t} .
$$

$$
l_{j t}(\psi)=-\frac{1}{2} \log \left|H_{j t}\right|-\frac{1}{2} Y_{j t}^{\prime} H_{j t}^{-1} Y_{j t} .
$$

This quasi-likelihood will have information about ψ but more information can be obtained by averaging the same operation on many submodels

$$
c_{t}(\psi)=\frac{1}{N} \sum_{j=1}^{N} \log L_{j t}(\psi) .
$$

Of course if the $\left\{Y_{1 t}, \ldots, Y_{N t}\right\}$ were independent this would be the exact likelihood - but this will not be the case for us! Such functions, based on "submodels" or "marginal models", are call composite-likelihoods, following the nomenclature introduced by Lindsay (1988).

Computational points

Previously method was $O\left(K^{3}\right)$.

- Evaluation of $c_{t}(\psi)$ costs $O(N)$ calculations.
- All distinct pairs - $O\left(K^{2}\right)$ calculations.
- Contiguous pairs $-O(K)$ calculations.
- Choose only $O(1)$ pairs (randomly), which is computationally fast!

We will see in a moment that the efficiency loss of using these subsets compared to computing all possible pairs is extremely small when N is moderately large.
Asymptotically as N increases to infinity "all pairs" and "contiguous" have the same efficiency.
If K is large it is pointless using all pairs.

We now make our main assumption that

$$
c_{t}(\psi)=\frac{1}{N} \sum_{j=1}^{N} \log L_{j t}\left(\theta, \lambda_{j}\right)
$$

- Common finite dimensional θ and vector of parameters λ_{j} which is specific to the j-th subset.
- Our interest is in estimating θ and so the λ_{j} are nuisances.
- This type of assumption appeared first in the work of Neyman and Scott (1948) — but they had independence. Dependence over j will help us!
- Named a stratified model with a stratum of nuisance parameters and can be analysed by using two-index asymptotics, e.g. Barndorff-Nielsen (1996).

For the j-th submodel we have the common parameter θ and nuisance parameter λ_{j}. The joint model may imply there are links across the λ_{j}.

Example

The scalar BEKK model $H_{t}=(1-\alpha-\beta) \Sigma+\alpha r_{t-1}^{\prime} r_{t-1}+\beta H_{t-1}$ so

$$
Y_{1 t}=\left(r_{1 t}, r_{2 t}\right)^{\prime}, \quad Y_{2 t}=\left(r_{2 t}, r_{3 t}\right)^{\prime}
$$

then

$$
\lambda_{1}=\left(\Sigma_{11}, \Sigma_{21}, \Sigma_{22}\right)^{\prime}, \quad \lambda_{2}=\left(\Sigma_{22}, \Sigma_{32}, \Sigma_{33}\right)^{\prime}
$$

Hence, the joint model implies there are common elements across the λ_{j}.
We may potentially gain by exploiting these links in our estimation. An alternative, is to be self-denying and never use these links even if they exist in the data generating process. The latter means the admissible values are

$$
\begin{equation*}
\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \Lambda_{1} \times \Lambda_{2} \times \ldots \times \Lambda_{N} \tag{3}
\end{equation*}
$$

i.e. they are variation-free.

Throughout we use variation-freeness.

Our estimation strategy can be generically stated as solving

$$
\widehat{\theta}=\underset{\theta}{\operatorname{argmax}} \frac{1}{N} \sum_{t=1}^{T} \sum_{j=1}^{N} \log L_{j t}\left(\widehat{\theta}, \widehat{\lambda}_{j}\right),
$$

where $\hat{\lambda}_{j}$ solves for each j

$$
\sum_{t=1}^{T} g_{j t}\left(\widehat{\theta}, \widehat{\lambda}_{j}\right)=0
$$

Here $g_{j t}$ is a $\operatorname{dim}\left(\lambda_{j}\right)$-dimensional moment constraint so that for each j

$$
\mathrm{E}\left\{g_{j t}\left(\theta, \lambda_{j}\right)\right\}=0, \quad t=1,2, \ldots, T .
$$

This structure has some important special cases.

e.g. Maximum composite likelihood estimator

The maximum composite likelihood estimator (MCLE) follows from writing

$$
g_{j t}\left(\theta, \lambda_{j}\right)=\frac{\partial \log L_{j t}\left(\theta, \lambda_{j}\right)}{\partial \lambda_{j}},
$$

so

$$
\widehat{\lambda}_{j}(\theta)=\underset{\lambda_{j}}{\operatorname{argmax}} \sum_{t=1}^{T} \log L_{j t}\left(\theta, \widehat{\lambda}_{j}\right),
$$

which means

$$
\frac{1}{N} \sum_{t=1}^{T} \sum_{j=1}^{N} \log L_{j t}\left(\theta, \widehat{\lambda}_{j}\right)
$$

is the profile composite likelihood which $\widehat{\theta}$ maximises.
e.g. Maximum m-profile composite-likelihood estimator

Suppose

$$
g_{j t}\left(\theta, \lambda_{j}\right)=G_{j t}-\lambda_{j}, \quad \text { where } \quad \mathrm{E}\left(G_{j t}\right)=\lambda_{j}
$$

then

$$
\widehat{\lambda}_{j}=\frac{1}{T} \sum_{t=1}^{T} G_{j t} .
$$

We call the resulting $\widehat{\theta}$ a m-profile composite-likelihood estimator (MMCLE).

Behaviour - no nuisance parameters, no time series

The Cox and Reid (2003): suppose r_{t} is i.i.d. then we assume

$$
\mathcal{I}_{\theta \theta}^{*}=\lim _{T \rightarrow \infty} \operatorname{Cov}\left(\frac{1}{N} \sum_{j=1}^{N} \frac{\partial l_{j t}\left(\theta, \lambda_{j}\right)}{\partial \theta}\right)>0,-\mathrm{E}\left\{\frac{1}{N} \sum_{j=1}^{N} \frac{\partial^{2} l_{j t}\left(\theta, \lambda_{j}\right)}{\partial \theta \partial \theta^{\prime}}\right\} \rightarrow \mathcal{J}_{\theta \theta} .
$$

The former assumption is the key for us: average score does not exhibit a law of large numbers in the cross section. Then we have

$$
\sqrt{T} \frac{1}{T N_{T}} \sum_{t=1}^{T} \sum_{j=1}^{N_{T}} \frac{\partial l_{j t}\left(\theta, \lambda_{j}\right)}{\partial \theta} \xrightarrow{d} N\left(0, \mathcal{I}_{\theta \theta}^{*}\right),
$$

and so

$$
\sqrt{T}(\widehat{\theta}-\theta) \xrightarrow{d} N\left(0, \mathcal{J}_{\theta \theta}^{-1} \mathcal{I}_{\theta \theta}^{*} \mathcal{J}_{\theta \theta}^{-1}\right) .
$$

Notice the rate of convergence is now \sqrt{T}, so we do not get an improved rate of convergence from the cross-sectional information.

Nuisance parameters: stack the moment constraints

$$
\begin{gathered}
\frac{1}{T N_{T}} \sum_{t=1}^{T}\binom{g_{t}}{\sum_{j=1}^{N_{T}} \frac{\partial j_{j t}}{\partial \theta}}, \quad g=\left\{g_{j t}\right\}, \quad \hat{\lambda}-\lambda=\left\{\hat{\lambda}_{j}-\lambda_{j}\right\} . \\
\binom{\hat{\lambda}-\lambda}{\hat{\theta}-\theta} \simeq\left(\begin{array}{cc}
A & c \\
b^{\prime} & \mathcal{J}_{\theta \theta}
\end{array}\right)^{-1}\left\{\frac{1}{T N_{T}} \sum_{t=1}^{T}\binom{g_{t}}{\sum_{j=1}^{N_{T}} \frac{\partial J_{j t}}{\partial \theta}}\right\}, \\
A=N^{-1} \operatorname{diag}\left(\mathcal{J}_{\lambda_{1} \lambda_{1}}, \ldots, \mathcal{J}_{\lambda_{N} \lambda_{N}}\right), \quad b=N^{-1}\left\{\mathcal{J}_{\theta \lambda_{j}}\right\}, c=N^{-1}\left\{\mathcal{J}_{\lambda_{j} \theta}\right\}, \\
\mathcal{J}_{\lambda_{j} \lambda_{j}}=-p \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \frac{\partial g_{j t}}{\partial \lambda_{j}^{\prime}}, \quad \mathcal{J}_{\lambda_{j} \theta}=-p \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \frac{\partial g_{j t}}{\partial \theta^{\prime}}, \\
\mathcal{J}_{\theta \lambda_{j}}=-p \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \frac{\partial^{2} I_{j t}}{\partial \theta \partial \lambda_{j}^{\prime}}, \quad \mathcal{J}_{\theta \theta}=-\left(p \lim _{T \rightarrow \infty} \frac{1}{T N_{T}} \sum_{t=1}^{T} \sum_{j=1}^{N_{T}} \frac{\partial^{2} l_{j t}}{\partial \theta \partial \theta^{\prime}}\right) .
\end{gathered}
$$

Then

$$
\widehat{\theta} \simeq \theta+\mathcal{D}_{\theta \theta}^{-1} \frac{1}{T} \sum_{t=1}^{T} Z_{t, T}, \quad \mathcal{D}_{\theta \theta}=\lim _{N_{T} \rightarrow \infty} \frac{1}{N_{T}} \sum_{j=1}^{N_{T}}\left(\mathcal{J}_{\theta \theta}-\mathcal{J}_{\theta \lambda_{j}} \mathcal{J}_{\lambda_{j} \lambda_{j}}^{-1} \mathcal{J}_{\lambda_{j} \theta}\right),
$$

where

$$
Z_{t, T}=\frac{1}{N} \sum_{j=1}^{N}\left(\frac{\partial I_{j t}\left(\theta, \lambda_{j}\right)}{\partial \theta}-\mathcal{J}_{\theta \lambda j} \mathcal{J}_{\lambda_{j} \lambda_{j}}^{-1} g_{j t}\right) .
$$

We assume as $T \rightarrow \infty$

$$
\operatorname{Cov}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} Z_{t, T}\right) \rightarrow \mathcal{I}_{\theta \theta}
$$

where $\mathcal{I}_{\theta \theta}$ has diagonal elements which are bounded from above and $\mathcal{I}_{\theta \theta}>0$ (estimate by low dimensional HAC estimator!). Then

$$
\sqrt{T}(\widehat{\theta}-\theta) \rightarrow N\left(0, \mathcal{D}_{\theta \theta}^{-1} \mathcal{I}_{\theta \theta} \mathcal{D}_{\theta \theta}^{-1}\right) .
$$

Monte Carlo

Plot: s.e. of estimator against K for the maximized MCLE and MSCLE. e.g. $K=50, M C L E$ is based on 1,225 submodels while MSCLE uses 49 .

Empirical Application

- S\&P 100 components
- January 2, 1997 - December 312006
- 2516 daily observations
- Also include the S\&P 100 index
- Asset had to be continually available for including
- MCLE is well suited to the case where assets are added or dropped
- 97 assets in total, incl. the index

Same model, Different Estimates

	m-profile					maximised			
K	Scalar $\tilde{\alpha}$	BEKK $\tilde{\beta}$	EWMA $\tilde{\alpha}$	$\begin{array}{ll} \hline \text { DCC } & \\ \tilde{\alpha} & \tilde{\beta} \\ \hline \end{array}$		Scalar BEKK$\widetilde{\alpha} \quad \widetilde{\beta}$		D $\widetilde{\alpha}$	C $\quad \widetilde{\beta}$
All Pairs									
5	$\begin{aligned} & \hline .0287 \\ & (.0081) \end{aligned}$	$\begin{aligned} & \hline .9692 \\ & (.0092) \end{aligned}$	$\begin{aligned} & \hline .0205 \\ & (.0037) \end{aligned}$	$\begin{aligned} & \hline .0143 \\ & (.0487) \end{aligned}$	$\begin{aligned} & .9829 \\ & (.0846) \end{aligned}$	$\begin{aligned} & .0288 \\ & (.0073) \end{aligned}$	$\begin{aligned} & \hline .9692 \\ & (.0082) \end{aligned}$	$\begin{aligned} & .0116 \\ & (.0048) \end{aligned}$	$\begin{aligned} & .9873 \\ & (.0056) \end{aligned}$
10	$\begin{aligned} & .0281 \\ & (.0055) \end{aligned}$	$\begin{array}{r} .9699 \\ (.0063) \end{array}$	$\begin{aligned} & .0211 \\ & (.0027) \end{aligned}$	$\begin{array}{r} .0107 \\ (.0012) \end{array}$	$\begin{array}{r} .9881 \\ (.0016) \end{array}$	$\begin{aligned} & .0276 \\ & (.0050) \end{aligned}$	$\begin{array}{r} .9705 \\ (.0057) \end{array}$	$\begin{array}{r} .0107 \\ (.0013) \end{array}$	$\begin{array}{r} .9875 \\ (.0021) \end{array}$
25	$\begin{aligned} & .0308 \\ & (.0047) \end{aligned}$	$\begin{aligned} & .9667 \\ & (.0055) \end{aligned}$	$\begin{aligned} & .0234 \\ & (.0023) \end{aligned}$	$\begin{aligned} & .0100 \\ & (.0009) \end{aligned}$	$\begin{aligned} & .9871 \\ & (.0017) \end{aligned}$	$\begin{aligned} & .0327 \\ & (.0043) \end{aligned}$	$\begin{aligned} & .9646 \\ & (.0047) \end{aligned}$	$\begin{aligned} & .0102 \\ & (.0010) \end{aligned}$	$\begin{aligned} & .9866 \\ & (.0021) \end{aligned}$
50	$\begin{array}{r} .0319 \\ (.0046) \end{array}$	$\begin{array}{r} .9645 \\ (.0056) \end{array}$	$\begin{aligned} & .0225 \\ & (.0026) \end{aligned}$	$\begin{aligned} & .0101 \\ & (.0008) \end{aligned}$	$\begin{array}{r} .9856 \\ (.0018) \end{array}$	$\begin{aligned} & .0345 \\ & (.0037) \end{aligned}$	$\begin{aligned} & .9615 \\ & (.0042) \end{aligned}$	$\begin{array}{r} .0104 \\ (.0009) \end{array}$	$\begin{aligned} & .9848 \\ & (.0017) \end{aligned}$
96	$\begin{array}{r} .0334 \\ (.0041) \end{array}$	$\begin{array}{r} 9636 \\ (.0049) \\ \hline \end{array}$	$\begin{array}{r} .0249 \\ (.0019) \end{array}$	$\begin{array}{r} .0103 \\ (.0009) \\ \hline \end{array}$	$\begin{array}{r} .9846 \\ (.0019) \\ \hline \end{array}$	$\begin{array}{r} .0361 \\ (.0031) \\ \hline \end{array}$	$\begin{array}{r} .9601 \\ (.0034) \\ \hline \end{array}$	$\begin{array}{r} .0106 \\ (.0009) \end{array}$	$\begin{array}{r} .9841 \\ (.0018) \\ \hline \end{array}$

Contiguous Pairs									
5	.0284	.9696	.0189	.0099	.9885	.0251	.9733	.0078	.9917
	$(.0083)$	$(.0094)$	$(.0037)$	$(.0033)$	$(.0045)$	$(.0070)$	$(.0079)$	$(.0055)$	$(.0059)$
10	.0272	.9709	.0201	.0093	.9886	.0266	.9717	.0088	.9900
	$(.0054)$	$(.0062)$	$(.0027)$	$(.0016)$	$(.0018)$	$(.0049)$	$(.0055)$	$(.0018)$	$(.0020)$
25	.0307	.9668	.0227	.0089	.9889	.0315	.9660	.0088	.9894
50	$(.0049)$	$(.0056)$	$(.0024)$	$(.0011)$	$(.0012)$	$(.0044)$	$(.0050)$	$(.0012)$	$(.0013)$
	.0316	.9647	.0220	.0092	.9869	.0347	.9612	.0095	.9864
96	$(.0047)$	$(.0057)$	$(.0029)$	$(.0010)$	$(.0019)$	$(.0038)$	$(.0043)$	$(.0011)$	$(.0019)$
	.0335	.9634	.0247	.0094	.9860	.0364	.9598	.0095	.9863
	$(.0043)$	$(.0051)$	$(.0020)$	$(.0009)$	$(.0014)$	$(.0032)$	$(.0035)$	$(.0009)$	$(.0012)$

Visualizing the Differences

- Do these parameter values make any qualitative difference?
- Yes!
- Construct a plot based on Quasi- β s
- Correlation of standardized return on asset j with the standardized return on the market

Still 95 series

- Median
- Interquartile range
- 95% interval

One model, DCC, two estimators

Correlation of returns with the market.

Testing the Differences

- Do these differences matter for application?
- Yes!
- High dimension parameter space rules out in-sample testing
- composite-out-of sample experiment from January 2, 2003 December 31, 2006
- All parameters estimated using data January 2, 1997 - December 31, 2002
- Dynamic Correlation parameters largely similar to full sample
- QMLE estimate somewhat less persistent
- Examined the hedging errors of a conditional CAPM where the S\&P 100 index proxied for the market. Using one-step ahead forecasts, the conditional time-varying market betas were computed as

$$
\begin{equation*}
\widehat{\beta}_{j, t}=\frac{\widehat{h}_{j, t}^{1 / 2} \widehat{\rho}_{j m, t}}{\widehat{h}_{m, t}^{1 / 2}}, \quad j=1,2, \ldots, N \tag{4}
\end{equation*}
$$

and the corresponding hedging errors were computed as

$$
\begin{equation*}
\widehat{v}_{j, t}=r_{j, t}-\widehat{\beta}_{j, t} r_{m, t} . \tag{5}
\end{equation*}
$$

Testing for Superior Predictive Ability

- Comparisons via Giacomini-White(06) tests

$$
\widehat{\delta}_{j, t}=\left(\widehat{v}_{j, t}\left(\widehat{\rho}_{j, t}^{M C L E}\right)\right)^{2}-\left(\widehat{v}_{j, t}\left(\widehat{\rho}_{j, t}^{M M L E}\right)\right)^{2}
$$

- Test statistic is

$$
\frac{\bar{\delta}_{j}}{\operatorname{avar}\left(\sqrt{T} \bar{\delta}_{j}\right)}
$$

Conclusions I

- Paper proposes a new estimator for time varying-covariance models
- Can provide moderate to large improvements in computation time
- Or equivalently increases in feasible cross-section sizes
- Estimator is more accurate in large models
- Composite structure looks similar to Neyman-Scott problem, but has some differences which are key.
- Relatively easy to carry out statistical inference on these models
- Same problems arise when we estimate copulas!

Conclusions II

- We love composite likelihoods!

