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Gene Network For Time-Course Microarray Data

• Technological advances allow biologists to collect gene
expression data at multiple times within a relatively short
period of time.

• Time series expression data are essential to understand
individual cellular behaviors such as mobility, division and
differentiation.

• Gene regulatory network is important knowledge of biological
pathways.
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Figure 1: Reverse Transfection Reporter Microarray (Ziauddin and
Sabatini, Nature, 2001)

 
3

'

&

$

%

Primary Tasks in Gene Network Reconstruction

• Who are related?

• How are they related, if related?
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Figure 2: If related? A network defined by 0-1 connectivity.
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• The graphic representation describes pairwise relationships,
which may be summarized by a square matrix of dependencies
(correlation or partial correlation) or connectivity (0/1).

• Entries of the matrix are parameters of interest in gene
network construction.

• How are they related?–The meaning of entries in the
relationship matrix.

• Statistical inference in gene network pertains to the
existence and/or the direction of an edge.
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Gene-Gene Dependency: Beyond Linear Correlation

• A measure for gene-gene relationship should reflect the fact
that the genes’ induction and inhibition routes are determined
through specific molecular interactions.

• In literature, most research work on gene network construction
utilizes 0-1 connectivity or traditional correlation (e.g. partial
correlation) as a dependency measure between two genes.

• Partial correlation, obtained from the inverse of a covariance
matrix, is no longer available for measuring dependency
between two time series.

• Cross-correlation function (CCF, Haugh, 1976), dynamic
correlation (DC, Dubin and Muller, 2005), sample dynamic
correlation (SDC, Opgen-Rheinard and Strimmer, 2006) are
linear dependency measures.
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• Correlation-based measures essentially reflect the strength of
concordance and discordance between genes’ expression
processes.

• A single number is not sufficient to describe complicated
molecular interactions between genes.

• We propose to use the mechanism of transitions to characterize
gene-gene interactions, as by monitoring transitions of
expression levels over time, we hope to tell a more detailed
story about gene-gene dependency/interaction.

• This motivates us to consider a dynamical (stochastic)
framework rather than a static framework to construct gene
networks.
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Figure 3: Three-gene networks: Static versus Stochastic.
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Hidden Markov Model

• Assume Xgtjs denote the sth replicate (e.g. plate) of the gene
expression value of gene g at time t, t = 1, . . . , T, treatment
level j, j = 1, 2.

• To investigate whether or not gene g is differentially expressed,
a summary two-sample t-statistic may be considered:

Yg,t =
Xgt1 −Xgt2√

s2
gt1
n1

+
s2

gt2
n2

• At time t, assume there is a hidden state

Sg,t =

 1, gene g is differentially expressed (DE),

0, gene g is not differentially expressed (NDE).
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• Given the hidden state Sg,t = 0, the conditional distribution of
Yg,t is denoted as ft0, whereas the conditional distribution of
Yg,t when Sg,t = 1, is denoted as ft1.

• The two densities are estimated by Efron’s (2001)
nonparametric empirical Bayesian method and held fixed in the
remaining analysis.

• For a pair of genes, gene g1, and gene g2, with the joint hidden
state vector St = (Sg1,t, Sg2,t)′ ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

• Assume that the joint state vector at time t + 1, St+1, obeys
the Markovian property. Denote the joint transition matrix
between time t and time t + 1 by Λ(St+1|St).
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Pairwise Transition Dependency

• A measure of gene-gene dependency between two genes is
defined by the following transition dependency matrix:

Dg1,g2 = Λ(Sg1,t+1|Sg1,t)⊗ Λ(Sg2,t+1|Sg2,t)− Λ(St+1|St).

• If the transitions of the two genes independently occur,
Dg1,g2 = 0.

• Deviations from zero indicate not only the magnitude of the
dependency but also the nature of dependency effects.

• Therefore, testing hypothesis of Dg1,g2 = 0 is useful to assess
the relationship between the two genes.

• Note a matrix, rather than a number, is used to describe the
gene-gene dependency.
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Interpretation of Transition Dependency Matrix

• Inhibition Effect:

P (Sg1,t+1 = 1|Sg1,t = 0)P (Sg2,t+1 = 1|Sg2,t = 1)

−P (St+1 = (1, 1)′|St = (0, 1)′) > 0

• DE state of gene g2 reduces the probability of gene g1

changing from NDE state to DE state.

• Induction Effect:

P (Sg1,t+1 = 1|Sg1,t = 0)P (Sg2,t+1 = 1|Sg2,t = 1)

−P (St+1 = (1, 1)′|St = (0, 1)′) < 0

• DE state of gene g2 increases the probability of gene g1

changing from NDE state to DE state.
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Example: Dependency Matrix vs Traditional Correlation

• The joint transition matrix is

Λ =


0.80 0.10 0.10 0.00

0.10 0.10 0.70 0.10

0.10 0.70 0.10 0.10

0.00 0.10 0.10 0.80

 .

• The resulting stationary distribution is
π = (0.25, 0.25, 0.25, 0.25).

• Thus, the two marginal processes have zero correlation (the
same prob to have concordant and discordant pairs).

• But these two genes are indeed a conjugate pair; that is, they
reconcile to reach an equilibrium state.
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• When two genes are at the same hidden states, the two series
undergo equilibrium periods.

• When the equilibrium is broken, the two series oscillate rapidly
to reach the equilibrium.
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• The sample correlation is −0.06, little evidence on such
dependency.

• However, the dependency matrix D is the difference of the two:
0.80 0.10 0.10 0.00

0.10 0.10 0.70 0.10

0.10 0.70 0.10 0.10

0.00 0.10 0.10 0.80

−


0.3025 0.2475 0.2475 0.2025

0.2475 0.3025 0.2025 0.2475

0.2475 0.2025 0.3025 0.2475

0.2025 0.2475 0.2475 0.3025

 .
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Statistical Inference: Composite Likelihood Approach

• For a given network of N genes, the grand joint transition
matrix is of 2N × 2N dimension.

• The high dimensionality of the parameter space makes
infeasible the computation of the full likelihood.

• Composite likelihood method helps us to carry out “dimension
reduction” (e.g. based on pairs) and perform a valid inference.

• It needs an EM type algorithm in the composite likelihood
context.
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Notation

• Let Y g = (Yg,1, . . . , Yg,T )′ denote the vector of summary
statistics from the expression data of gene g. Simultaneously
consider N genes expression profile together
Y = (Y 1, . . . , Y N ), corresponding to the hidden vectors of
states S = (S1, . . . , SN ), whereas Sg = (Sg,1, . . . , Sg,T )′.

• 22N transition probabilities:
Λ = [P{(S1,t, . . . , SN,t)|(S1,t−1, . . . , SN,t−1)}].

• To apply the CL method, we reparametrize these transition
probabilities as follows: Univariate transitions, bivariate
transitions given univariate transitions, trivariate transitions
given bivariate transitions, and so on.
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• The CL method considers the simultaneous inferences of all the
pairwise gene-gene dependency and discards higher order
transitions.

• Let Λgg′
denote the bivariate transition matrix of the vector

(Sg,t, Sg′,t). Let Λg denote the marginal transition matrix of
Sg,t, and Λg′

denote the marginal transition matrix of Sg′,t.

• The composite likelihood based on all the pairs takes the form:

Lc(Y) =
∏

(g<g′)

P (Yg,Yg′)

=
∏

(g<g′)

Ef(Sg)Ef(Sg′ )P (Sg,Sg′)P (Yg|Sg)P (Yg′ |Sg′).

• Note that the dimensionality of this model is now only O(N2).

19

'

&

$

%

Composite Likelihood EM (CLEM) Algorithm

• As usual, the hidden Markov process is treated as missing data,
so the EM algorithm in the contexts of composite likelihood is
needed.

• Let {f(z; θ), z ∈ Z, θ ∈ Θ} be a parametric statistical model,
with Z ⊆ Rn, Θ ⊆ Rd, n ≥ 1, and d ≥ 1. Consider a set of
measurable events {Ai : i ∈ C ⊆ N}. A composite likelihood is
defined as

Lc(θ; z) =
∏
i∈C

Li(θ; z)wi ,

where Lc,i(θ; z) = f(z ∈ Ai; θ), with {wi, i ∈ C} being a set of
suitable weights.
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• There exists another sample space Y and a many-to-one
(attrition) mapping z → y(z) from Z to Y. Instead of
observing the complete data z in Z, we observe the incomplete
data y in Y.

• The observed composite likelihood is defined as
Lc(θ; y) =

∏
i∈C Lc,i(θ; y)wi with

Lc,i(θ; y) =
∫
Ai∩Z(y)

f(z; θ)dz, and Z(y) denoting the subset of
Z determined by the equation y = y(z).

• Varin et al. (2005) considered the pairwise EM algorithm. We
considered a general setup for all the theorems given below.
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• In the spirit of dimension reduction, instead of conditioning on
the entire y which may be of large dimension and has
complicated dependency structure, we consider an expected
composite likelihood based on subsets:

Qc(θ|θn) =
∑
i∈C

wiE {log f(z ∈ Ai; θ)|yAi , θn} ,

where yAi = {y(z) : z ∈ Ai ∩ Z(y)}.
• E Step: Given the current estimate θn, obtain the expected

composite likelihood Qc(θ|θn).

• M Step: Maximize Qc(θ|θn) with respect to θ, and update the
estimate θn+1. Repeat these two-step iterations until
convergence.
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• Theorem 1 The proposed CLEM algorithm possesses the
ascent property: the composite likelihood of the observed data
is nondecreasing as we update the estimates:∑

i∈C wi log f(yAi ; θn+1) ≥
∑

i∈C wi log f(yAi ; θn).

• Theorem 2 We assume that
Θθ0 = {θ ∈ Θ : Lc(θ; y) ≥ Lc(θ0, y)} is compact for any
Lc(θ0; y) > −∞ and Lc is continuous in Θ and differentiable in
the interior of Θ. Under the smoothness assumption of the
function Q(θ|θ′) in both θ and θ′, the CLEM algorithm
converges to the stationary point of the observed composite
likelihood surface.
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Application of CLEM Algorithm on Gene Network

• Sort out constraints in the transition probabilities.

• Invoke re-parametrization to facilitate the estimation.

• E-step is carried out by the Forward-Backward algorithm.

• M-step is carried out by quasi-Newton algorithm with the
utility of Lagrange multipliers for the constraints.
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Selection of Network Topology

• In practice, usually one starts with a gene of interest, and
screen all possible pairwise dependencies with this target gene.

• At the completion of this screening analysis, a small pool of
genes are identified for a joint analysis, say, under an FDR
level.

• Because of involved falsely discovered genes in the previous
screening analysis, there is a need to select the final network
among a few candidate networks.

• Each candidate network corresponds to a specification of a
composite likelihood and hence leads to the network-specific
estimation for the vector of model parameters θ.
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• To derive an AIC-type model selection criterion, minimize the
expected Kullback-Leibler distance based on the composite
likelihood, which is equivalent to maximizing the following
form:

Ef0(y)

[∑
i∈C

Ef0(z)wi

{
log f(Z ∈ Ai; θ̂MCL(y))

}]
,

where Z is the future observation and f0 is the true model.

• In the composite likelihood context, the proposed first-order
unbiased selection statistic (Varin and Vidoni, 2005) is

ℓc(θ̂MCL;Y) + tr{V̂ (Y)Ĥ(Y)−1}.

• For our application, we use the slightly modified statistic as
follows:

ℓc(θ̂MCL;Y) + tr{Σ̂(Y)Ĥ(Y)}.
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Simulation Study I: Performance of CLEM Algorithm

• Consider a three-gene network, including 23 × 23 = 64
transition probabilities.

• A simpler case of all pairwise transition probabilities
(3 ∗ 32 = 27).

• M = 30, T = 40 (not realistic but for asymptotics), and 1000
simulations.

• Λab is shown, and the others are similar.
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transProb=

0.15 0.15 0.35 0.35

0.15 0.15 0.35 0.35

0.35 0.35 0.15 0.15

0.35 0.35 0.15 0.15

MEANab=

0.1498 0.1503 0.3510 0.3487

0.1486 0.1496 0.3508 0.3507

0.3502 0.3501 0.1499 0.1496

0.3501 0.3496 0.1506 0.1495

SDab=

0.0229 0.0223 0.0309 0.0284

0.0232 0.0230 0.0302 0.0305

0.0303 0.0297 0.0235 0.0234

0.0296 0.0309 0.0238 0.0227
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Simulation Study II: Selection of Network Topology

(a) Network N1 (b) Network N2

(c) Network N3 (d) Network N4

29

'

&

$

%

Empirical success rates of selecting the true network topology (N1)

versus each of the candidate networks using the COMP-AIC method

over 100 simulation data sets.

Model # Par. Rate Rate

(M = 10, T = 10) (M = 10, T = 20)

N1 108 0.77 0.96

N2 117 0.20 0.03

N3 54 0.00 0.01

N4 27 0.03 0.00
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Data Analysis

• A set of 15 oligonucleotide microarrays in an experiment
designed by Kobayashi et al. (2005, J. Leukocyte Biology) to
study spontaneous neutrophil apoptosis and regulation of cell
survival by granulocyte macrophage-colony stimulating factor
(GM-CSF).

• The experiment was performed at 5 (T ) time points (0, 6, 12,
18, 24 hrs), with 3 (M) blood donors.

• We considered a total of 12,624 genes, with the focus of gene
139 (CD44) which was found to be a key player in human
immune system for host defense and transduction.

• Preliminary analysis concerned all two-gene networks, all the
p-values are plotted in a histogram below.
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• Using FDR control at 0.1 level, we detected 302 significant
genes in the pairwise analysis.

• The 15 most significant candidate genes dependent with CD44
are listed.

• Kobayashi et al. (2005) highlighted Caspase 8 as one of the
most important genes in the apoptosis regulation. It’s ranked
at 5th in our HMM list and at 308th in the DC list. The
estimated dependency matrix D̂ is

0.24 −0.24 −0.24 0.24

0.55 −0.28 −0.19 −0.07

0.50 −0.19 −0.28 −0.03

0.22 −0.22 −0.22 0.22

 .
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Probe pDC pHMM Gene Title

38336 at 0.00110891 9.505e-05 FERM domain containing 4B

947 at 0.04692277 0.00011089 Gene function unknown

39237 at 0.51548517 0.00017426 mitogen-activated protein ...

40968 at 0.00367525 0.00017426 suppressor of cytokine signaling 3

31491 s at 0.00107723 0.00019010 caspase 8 (CASP8)

36985 at 0.02434851 0.00020594 isopentenyl-diphosphate delta ...

36344 at 0.01527129 0.00022178 coagulation factor II receptor-like ...

1441 s at 0.01954851 0.00023762 tumor necrosis factor receptor ...

31792 at 0.00267723 0.00023762 annexin A3 (ANXA3)

33289 f at 0.00365941 0.00023762 zinc finger protein 263 (ZNF263)

953 g at 0.01698218 0.00023762 Gene function unknown

35799 at 0.02151287 0.00025347 DnaJ (Hsp40) homolog, subfamily B

2035 s at 0.00327921 0.00026931 enolase 1, (alpha) (ENO1)

31318 at 0.03653069 0.00028515 Gene function unknown

296 at 0.03504159 0.00030099 Gene function unknown

34



'

&

$

%

Network of CD44

• Build the network for CD44 (denoted by a) using the top 15
probes, where 4 probes with unknown biological functions are
not considered, for the ease of interpretation.

• First, conducted a pairwise analysis for all paired edges, and
found 8 more edges significant than the previous result (11
edges) at the threshold p < 0.0003. This formed one candidate
network.

• Second, relaxing the threshold to p < 0.005, we found 55 edges
significant. This formed another candidate network.

• Third, invoked COMP-AIC and found Network 1 is better
supported by the data and strong biological evidences.
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Network 1 (19 edges) Network 2 (55 edges)

36



'

&

$

%

Concluding Remarks

• In the reconstruction of gene networks, the transition
probability appears to be more appealing than the
correlation-based dependency measures to characterize
gene-gene dependency/interaction.

• The CL framework provides an efficient dimension reduction
inference to deal with high-throughput gene expression data
that have complicated dependency structures.

• Also, the CL framework allows us to estimate parameters in
the pairwise transition probabilities when they are modeled by
some common features, e.g environmental covariates.

• Assuming stationary transition is a limitation of the method.
Extensions of this work would lead to better and faster
machinery to the reconstruction of gene networks.
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Thanks For Your Attention!
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