Composite Likelihood Approach To Gene Network Construction

Peter Song
Department of Biostatistics
\section*{University of Michigan}
pxsong@umich.edu
Joint work with Xin Gao and Daniel Q. Pu.

Gene Network For Time-Course Microarray Data

- Technological advances allow biologists to collect gene expression data at multiple times within a relatively short period of time.
- Time series expression data are essential to understand individual cellular behaviors such as mobility, division and differentiation.
- Gene regulatory network is important knowledge of biological pathways.

Figure 1: Reverse Transfection Reporter Microarray (Ziauddin and Sabatini, Nature, 2001)

Primary Tasks in Gene Network Reconstruction

- Who are related?
- How are they related, if related?

Figure 2: If related? A network defined by 0-1 connectivity.

5

- The graphic representation describes pairwise relationships, which may be summarized by a square matrix of dependencies (correlation or partial correlation) or connectivity ($0 / 1$).
- Entries of the matrix are parameters of interest in gene network construction.
- How are they related?-The meaning of entries in the relationship matrix.
- Statistical inference in gene network pertains to the existence and/or the direction of an edge.

Gene-Gene Dependency: Beyond Linear Correlation

- A measure for gene-gene relationship should reflect the fact that the genes' induction and inhibition routes are determined through specific molecular interactions.
- In literature, most research work on gene network construction utilizes 0-1 connectivity or traditional correlation (e.g. partial correlation) as a dependency measure between two genes.
- Partial correlation, obtained from the inverse of a covariance matrix, is no longer available for measuring dependency between two time series.
- Cross-correlation function (CCF, Haugh, 1976), dynamic correlation (DC, Dubin and Muller, 2005), sample dynamic correlation (SDC, Opgen-Rheinard and Strimmer, 2006) are linear dependency measures.
- Correlation-based measures essentially reflect the strength of concordance and discordance between genes' expression processes.
- A single number is not sufficient to describe complicated molecular interactions between genes.
- We propose to use the mechanism of transitions to characterize gene-gene interactions, as by monitoring transitions of expression levels over time, we hope to tell a more detailed story about gene-gene dependency/interaction.
- This motivates us to consider a dynamical (stochastic) framework rather than a static framework to construct gene networks.

Figure 3: Three-gene networks: Static versus Stochastic.

9

Hidden Markov Model

- Assume $X_{g t j s}$ denote the s th replicate (e.g. plate) of the gene expression value of gene g at time $t, t=1, \ldots, T$, treatment level $j, j=1,2$.
- To investigate whether or not gene g is differentially expressed, a summary two-sample t-statistic may be considered:

$$
Y_{g, t}=\frac{\bar{X}_{g t 1}-\bar{X}_{g t 2}}{\sqrt{\frac{s_{g t 1}^{2}}{n_{1}}+\frac{s_{g t 2}^{2}}{n_{2}}}}
$$

- At time t, assume there is a hidden state

$$
S_{g, t}=\left\{\begin{array}{l}
1, \text { gene } g \text { is differentially expressed (DE) } \\
0, \text { gene } g \text { is not differentially expressed (NDE). }
\end{array}\right.
$$

- Given the hidden state $S_{g, t}=0$, the conditional distribution of $Y_{g, t}$ is denoted as $f_{t 0}$, whereas the conditional distribution of $Y_{g, t}$ when $S_{g, t}=1$, is denoted as $f_{t 1}$.
- The two densities are estimated by Efron's (2001) nonparametric empirical Bayesian method and held fixed in the remaining analysis.
- For a pair of genes, gene g_{1}, and gene g_{2}, with the joint hidden state vector $\boldsymbol{S}_{t}=\left(S_{g_{1}, t}, S_{g_{2}, t}\right)^{\prime} \in\{(0,0),(0,1),(1,0),(1,1)\}$.
- Assume that the joint state vector at time $t+1, \mathbf{S}_{t+1}$, obeys the Markovian property. Denote the joint transition matrix between time t and time $t+1$ by $\Lambda\left(\boldsymbol{S}_{t+1} \mid \boldsymbol{S}_{t}\right)$.

Pairwise Transition Dependency

- A measure of gene-gene dependency between two genes is defined by the following transition dependency matrix:

$$
\boldsymbol{D}_{g_{1}, g_{2}}=\Lambda\left(S_{g_{1}, t+1} \mid S_{g_{1}, t}\right) \otimes \Lambda\left(S_{g_{2}, t+1} \mid S_{g_{2}, t}\right)-\Lambda\left(\boldsymbol{S}_{t+1} \mid \boldsymbol{S}_{t}\right) .
$$

- If the transitions of the two genes independently occur, $D_{g_{1}, g_{2}}=\mathbf{0}$.
- Deviations from zero indicate not only the magnitude of the dependency but also the nature of dependency effects.
- Therefore, testing hypothesis of $D_{g_{1}, g_{2}}=\mathbf{0}$ is useful to assess the relationship between the two genes.
- Note a matrix, rather than a number, is used to describe the gene-gene dependency.

Interpretation of Transition Dependency Matrix

- Inhibition Effect:

$$
\begin{aligned}
P\left(S_{g_{1}, t+1}=1 \mid S_{g_{1}, t}\right. & =0) P\left(S_{g_{2}, t+1}=1 \mid S_{g_{2}, t}=1\right) \\
& -P\left(\mathbf{S}_{t+1}=(1,1)^{\prime} \mid \mathbf{S}_{t}=(0,1)^{\prime}\right) \quad>0
\end{aligned}
$$

- $D E$ state of gene g_{2} reduces the probability of gene g_{1} changing from $N D E$ state to $D E$ state.
- Induction Effect:

$$
\begin{array}{r}
P\left(S_{g_{1}, t+1}=1 \mid S_{g_{1}, t}=0\right) P\left(S_{g_{2}, t+1}=1 \mid S_{g_{2}, t}=1\right) \\
-P\left(\mathbf{S}_{t+1}=(1,1)^{\prime} \mid \mathbf{S}_{t}=(0,1)^{\prime}\right)<0
\end{array}
$$

- DE state of gene g_{2} increases the probability of gene g_{1} changing from $N D E$ state to $D E$ state.

Example: Dependency Matrix vs Traditional Correlation

- The joint transition matrix is

$$
\Lambda=\left[\begin{array}{llll}
0.80 & 0.10 & 0.10 & 0.00 \\
0.10 & 0.10 & 0.70 & 0.10 \\
0.10 & 0.70 & 0.10 & 0.10 \\
0.00 & 0.10 & 0.10 & 0.80
\end{array}\right]
$$

- The resulting stationary distribution is $\pi=(0.25,0.25,0.25,0.25)$.
- Thus, the two marginal processes have zero correlation (the same prob to have concordant and discordant pairs).
- But these two genes are indeed a conjugate pair; that is, they reconcile to reach an equilibrium state.
- When two genes are at the same hidden states, the two series undergo equilibrium periods.
- When the equilibrium is broken, the two series oscillate rapidly to reach the equilibrium.

- The sample correlation is -0.06 , little evidence on such dependency.
- However, the dependency matrix \mathbf{D} is the difference of the two:
$\left[\begin{array}{llll}0.80 & 0.10 & 0.10 & 0.00 \\ 0.10 & 0.10 & 0.70 & 0.10 \\ 0.10 & 0.70 & 0.10 & 0.10 \\ 0.00 & 0.10 & 0.10 & 0.80\end{array}\right]-\left[\begin{array}{llll}0.3025 & 0.2475 & 0.2475 & 0.2025 \\ 0.2475 & 0.3025 & 0.2025 & 0.2475 \\ 0.2475 & 0.2025 & 0.3025 & 0.2475 \\ 0.2025 & 0.2475 & 0.2475 & 0.3025\end{array}\right]$

Statistical Inference: Composite Likelihood Approach

- For a given network of N genes, the grand joint transition matrix is of $2^{N} \times 2^{N}$ dimension.
- The high dimensionality of the parameter space makes infeasible the computation of the full likelihood.
- Composite likelihood method helps us to carry out "dimension reduction" (e.g. based on pairs) and perform a valid inference.
- It needs an EM type algorithm in the composite likelihood context.

Notation

- Let $\boldsymbol{Y}_{g}=\left(Y_{g, 1}, \ldots, Y_{g, T}\right)^{\prime}$ denote the vector of summary statistics from the expression data of gene g. Simultaneously consider N genes expression profile together $\boldsymbol{Y}=\left(\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{N}\right)$, corresponding to the hidden vectors of states $\boldsymbol{S}=\left(\boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{N}\right)$, whereas $\boldsymbol{S}_{g}=\left(S_{g, 1}, \ldots, S_{g, T}\right)^{\prime}$.
- $2^{2 N}$ transition probabilities:
$\boldsymbol{\Lambda}=\left[P\left\{\left(S_{1, t}, \ldots, S_{N, t}\right) \mid\left(S_{1, t-1}, \ldots, S_{N, t-1}\right)\right\}\right]$.
- To apply the CL method, we reparametrize these transition probabilities as follows: Univariate transitions, bivariate transitions given univariate transitions, trivariate transitions given bivariate transitions, and so on.
- The CL method considers the simultaneous inferences of all the pairwise gene-gene dependency and discards higher order transitions.
- Let $\boldsymbol{\Lambda}^{g g^{\prime}}$ denote the bivariate transition matrix of the vector $\left(S_{g, t}, S_{g^{\prime}, t}\right)$. Let Λ^{g} denote the marginal transition matrix of $S_{g, t}$, and $\boldsymbol{\Lambda}^{g^{\prime}}$ denote the marginal transition matrix of $S_{g^{\prime}, t}$.
- The composite likelihood based on all the pairs takes the form:

$$
\begin{aligned}
L_{c}(\mathbf{Y}) & =\prod_{\left(g<g^{\prime}\right)} P\left(\mathbf{Y}_{g}, \mathbf{Y}_{g^{\prime}}\right) \\
& =\prod_{\left(g<g^{\prime}\right)} E_{f\left(\mathbf{S}_{g}\right)} E_{f\left(\mathbf{S}_{g^{\prime}}\right)} P\left(\mathbf{S}_{g}, \mathbf{S}_{g^{\prime}}\right) P\left(\mathbf{Y}_{g} \mid \mathbf{S}_{g}\right) P\left(\mathbf{Y}_{g^{\prime}} \mid \mathbf{S}_{g^{\prime}}\right) .
\end{aligned}
$$

- Note that the dimensionality of this model is now only $O\left(N^{2}\right)$.

Composite Likelihood EM (CLEM) Algorithm

- As usual, the hidden Markov process is treated as missing data, so the EM algorithm in the contexts of composite likelihood is needed.
- Let $\{f(z ; \theta), z \in \mathcal{Z}, \theta \in \Theta\}$ be a parametric statistical model, with $\mathcal{Z} \subseteq \mathcal{R}^{n}, \Theta \subseteq \mathcal{R}^{d}, n \geq 1$, and $d \geq 1$. Consider a set of measurable events $\left\{\mathcal{A}_{i}: i \in C \subseteq \mathcal{N}\right\}$. A composite likelihood is defined as

$$
L_{c}(\theta ; z)=\prod_{i \in C} L_{i}(\theta ; z)^{w_{i}}
$$

where $L_{c, i}(\theta ; z)=f\left(z \in \mathcal{A}_{i} ; \theta\right)$, with $\left\{w_{i}, i \in C\right\}$ being a set of suitable weights.

- There exists another sample space \mathcal{Y} and a many-to-one (attrition) mapping $z \rightarrow y(z)$ from \mathcal{Z} to \mathcal{Y}. Instead of observing the complete data z in \mathcal{Z}, we observe the incomplete data y in \mathcal{Y}.
- The observed composite likelihood is defined as
$L_{c}(\theta ; y)=\prod_{i \in C} L_{c, i}(\theta ; y)^{w_{i}}$ with $L_{c, i}(\theta ; y)=\int_{\mathcal{A}_{i} \cap \mathcal{Z}(y)} f(z ; \theta) d z$, and $\mathcal{Z}(y)$ denoting the subset of \mathcal{Z} determined by the equation $y=y(z)$.
- Varin et al. (2005) considered the pairwise EM algorithm. We considered a general setup for all the theorems given below.
- In the spirit of dimension reduction, instead of conditioning on the entire \mathbf{y} which may be of large dimension and has complicated dependency structure, we consider an expected composite likelihood based on subsets:

$$
Q_{c}\left(\theta \mid \theta_{n}\right)=\sum_{i \in C} w_{i} E\left\{\log f\left(z \in \mathcal{A}_{i} ; \theta\right) \mid y_{\mathcal{A}_{i}}, \theta_{n}\right\}
$$

where $y_{\mathcal{A}_{i}}=\left\{y(z): z \in \mathcal{A}_{i} \cap \mathcal{Z}(y)\right\}$.

- E Step: Given the current estimate θ_{n}, obtain the expected composite likelihood $Q_{c}\left(\theta \mid \theta_{n}\right)$.
- M Step: Maximize $Q_{c}\left(\theta \mid \theta_{n}\right)$ with respect to θ, and update the estimate θ_{n+1}. Repeat these two-step iterations until convergence.
- Theorem 1 The proposed CLEM algorithm possesses the ascent property: the composite likelihood of the observed data is nondecreasing as we update the estimates:
$\sum_{i \in C} w_{i} \log f\left(y_{\mathcal{A}_{i}} ; \theta_{n+1}\right) \geq \sum_{i \in C} w_{i} \log f\left(y_{\mathcal{A}_{i}} ; \theta_{n}\right)$.
- Theorem 2 We assume that
$\Theta_{\theta_{0}}=\left\{\theta \in \Theta: L_{c}(\theta ; y) \geq L_{c}\left(\theta_{0}, y\right)\right\}$ is compact for any $L_{c}\left(\theta_{0} ; y\right)>-\infty$ and L_{c} is continuous in Θ and differentiable in the interior of Θ. Under the smoothness assumption of the function $Q\left(\theta \mid \theta^{\prime}\right)$ in both θ and θ^{\prime}, the CLEM algorithm converges to the stationary point of the observed composite likelihood surface.

Application of CLEM Algorithm on Gene Network

- Sort out constraints in the transition probabilities.
- Invoke re-parametrization to facilitate the estimation.
- E-step is carried out by the Forward-Backward algorithm.
- M-step is carried out by quasi-Newton algorithm with the utility of Lagrange multipliers for the constraints.

Selection of Network Topology

- In practice, usually one starts with a gene of interest, and screen all possible pairwise dependencies with this target gene.
- At the completion of this screening analysis, a small pool of genes are identified for a joint analysis, say, under an FDR level.
- Because of involved falsely discovered genes in the previous screening analysis, there is a need to select the final network among a few candidate networks.
- Each candidate network corresponds to a specification of a composite likelihood and hence leads to the network-specific estimation for the vector of model parameters θ.
- To derive an AIC-type model selection criterion, minimize the expected Kullback-Leibler distance based on the composite likelihood, which is equivalent to maximizing the following form:

$$
E_{f_{0}(y)}\left[\sum_{i \in C} E_{f_{0}(z)} w_{i}\left\{\log f\left(Z \in \mathcal{A}_{i} ; \hat{\theta}_{M C L}(y)\right)\right\}\right]
$$

where Z is the future observation and f_{0} is the true model.

- In the composite likelihood context, the proposed first-order unbiased selection statistic (Varin and Vidoni, 2005) is

$$
\ell_{c}\left(\hat{\theta}_{M C L} ; \mathbf{Y}\right)+\operatorname{tr}\left\{\hat{V}(\mathbf{Y}) \hat{H}(\mathbf{Y})^{-1}\right\}
$$

- For our application, we use the slightly modified statistic as follows:

$$
\ell_{c}\left(\hat{\theta}_{M C L} ; \mathbf{Y}\right)+\operatorname{tr}\{\hat{\Sigma}(\mathbf{Y}) \hat{H}(\mathbf{Y})\}
$$

Simulation Study I: Performance of CLEM Algorithm

- Consider a three-gene network, including $2^{3} \times 2^{3}=64$ transition probabilities.
- A simpler case of all pairwise transition probabilities $\left(3 * 3^{2}=27\right)$.
- $M=30, T=40$ (not realistic but for asymptotics), and 1000 simulations.
- $\Lambda^{a b}$ is shown, and the others are similar.
transProb=

0.15	0.15	0.35	0.35
0.15	0.15	0.35	0.35
0.35	0.35	0.15	0.15
0.35	0.35	0.15	0.15

MEANab=

0.1498	0.1503	0.3510	0.3487
0.1486	0.1496	0.3508	0.3507
0.3502	0.3501	0.1499	0.1496
0.3501	0.3496	0.1506	0.1495

SDab=

0.0229	0.0223	0.0309	0.0284
0.0232	0.0230	0.0302	0.0305
0.0303	0.0297	0.0235	0.0234
0.0296	0.0309	0.0238	0.0227

Simulation Study II: Selection of Network Topology

(a) Network N1
(b) Network N2
(1) (3) 4) 6 7 (9)
(2) 5 1123456789
(c) Network N3
(d) Network N4

Empirical success rates of selecting the true network topology (N1) versus each of the candidate networks using the COMP-AIC method over 100 simulation data sets.

Model	\# Par.	Rate	Rate
		$(M=10, T=10)$	$(M=10, T=20)$
N1	108	0.77	0.96
N2	117	0.20	0.03
N3	54	0.00	0.01
N4	27	0.03	0.00

Data Analysis

- A set of 15 oligonucleotide microarrays in an experiment designed by Kobayashi et al. (2005, J. Leukocyte Biology) to study spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor (GM-CSF).
- The experiment was performed at $5(T)$ time points $(0,6,12$, $18,24 \mathrm{hrs}$), with 3 (M) blood donors.
- We considered a total of 12,624 genes, with the focus of gene 139 (CD44) which was found to be a key player in human immune system for host defense and transduction.
- Preliminary analysis concerned all two-gene networks, all the p-values are plotted in a histogram below.

- Using FDR control at 0.1 level, we detected 302 significant genes in the pairwise analysis.
- The 15 most significant candidate genes dependent with CD44 are listed.
- Kobayashi et al. (2005) highlighted Caspase 8 as one of the most important genes in the apoptosis regulation. It's ranked at 5 th in our HMM list and at 308 th in the DC list. The estimated dependency matrix \hat{D} is

$$
\left[\begin{array}{cccc}
0.24 & -0.24 & -0.24 & 0.24 \\
0.55 & -0.28 & -0.19 & -0.07 \\
0.50 & -0.19 & -0.28 & -0.03 \\
0.22 & -0.22 & -0.22 & 0.22
\end{array}\right] .
$$

Probe	$p_{D C}$	$p_{H M M}$	Gene Title
38336 _at	0.00110891	$9.505 \mathrm{e}-05$	FERM domain containing 4B
$947 _$at	0.04692277	0.00011089	Gene function unknown
39237 _at	0.51548517	0.00017426	mitogen-activated protein ...
40968 _at	0.00367525	0.00017426	suppressor of cytokine signaling 3
$31491 _$_at	0.00107723	0.00019010	caspase 8 (CASP8)
36985 _at	0.02434851	0.00020594	isopentenyl-diphosphate delta ...
36344 _at	0.01527129	0.00022178	coagulation factor II receptor-like ...
1441_s _at	0.01954851	0.00023762	tumor necrosis factor receptor ...
31792 _at	0.00267723	0.00023762	annexin A3 (ANXA3)
$33289 _f ~ _a t ~$	0.00365941	0.00023762	zinc finger protein 263 (ZNF263)
$953 _g ~ _a t ~$	0.01698218	0.00023762	Gene function unknown
35799 _at	0.02151287	0.00025347	DnaJ (Hsp40) homolog, subfamily B
$2035 _$_at	0.00327921	0.00026931	enolase 1, (alpha) (ENO1)
$31318 ~ _a t ~$	0.03653069	0.00028515	Gene function unknown
296 _at	0.03504159	0.00030099	Gene function unknown

Network of CD44

- Build the network for CD44 (denoted by a) using the top 15 probes, where 4 probes with unknown biological functions are not considered, for the ease of interpretation.
- First, conducted a pairwise analysis for all paired edges, and found 8 more edges significant than the previous result (11 edges) at the threshold $p<0.0003$. This formed one candidate network.
- Second, relaxing the threshold to $p<0.005$, we found 55 edges significant. This formed another candidate network.
- Third, invoked COMP-AIC and found Network 1 is better supported by the data and strong biological evidences.

Network 1 (19 edges)

Network 2 (55 edges)

Concluding Remarks

- In the reconstruction of gene networks, the transition probability appears to be more appealing than the correlation-based dependency measures to characterize gene-gene dependency/interaction.
- The CL framework provides an efficient dimension reduction inference to deal with high-throughput gene expression data that have complicated dependency structures.
- Also, the CL framework allows us to estimate parameters in the pairwise transition probabilities when they are modeled by some common features, e.g environmental covariates.
- Assuming stationary transition is a limitation of the method. Extensions of this work would lead to better and faster machinery to the reconstruction of gene networks.

Thanks For Your Attention!

