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Introduction
Modelling binary data implies the choice of link function and the choice of co-

variate set. The covariate set uncertainty has been explored in the literature,

mainly through Bayesian Model Averaging (BMA). In the case of link function

uncertainty less research has been done. We propose an algorithm that consid-

ers both uncertainties within a Bayesian framework. The regression model for

binary data is an extension to the Albert and Chib (1993) model. It is defined as

a scale mixture of normals linear model based on latent continuous data to deal

with link function uncertainty. This approach allows for flexible shapes which

do not necessarily correspond to a known model. The set of covariates that are

used in the model is also left free and estimated from the data using the Green

(1995) RJMCMC algorithm.

Link Function Uncertainty
When modelling binary data the link functions commonly used in practice are the

Probit, or inverse Normal, and the Logistic: the first because of its relation with

the normal distribution, the second due to its interpretation with the Log-Odds

ratio. Nevertheless, there is no specific justification for using one or the other.

In practice, we often choose one, and do not consider the other case. However,

this selection fails to take into account the prior uncertainty in the link function.

Albert and Chib (1993), propose the use of auxiliary variables and a scale mixture

of normals to represent the noise process in Bayesian binary regression.

The model, defined in terms of the auxiliary variable zi, is as follows:

For yi ∈ {0, 1}, i = 1, ..., n a binary variable for data size n and covariate vector

xi = (xi1, ..., xip) of dimension p.

yi =







1 if zi > 0

0 otherwise

where zi = xiβ + εi and εi ∼ N (0, λ−1
i ). With β a vector of regression coeffi-

cients, zi is a linear predictor with noise εi with mean zero and scale determined

by the distribution of λi ∼ f (·).
Therefore the binary model is defined as: Yi ∼ Ber(pi) with pi = Φ(xiβ

√
λi)

the cumulative standard normal distribution evaluated at xiβ
√
λi.

The binary data is modeled as a truncated normal, and so the conditional

distribution given λ is equivalent to those under Bayesian linear re-

gression model with Gaussian noise. Then the posterior distribution of the

parameters β can be computed using standard results for normal linear models.

By using various mixing distributions f (·) for λi, we allow flexible shapes, as

heavier tails, for the augmented data zi. Therefore the distribution of Yi de-

pends on the distribution of the scale parameter λi.

Choices for λi:

1. λi = 1. This is the particular case where λi is a constant, and generates the

known Probit model.

2. λi = (2ψi)
−2 with ψi distributed as a Kolmogorov-Smirnov. The scale mix-

ture distribution generates the known Logit model. See Holmes and Held

(2006).

3. λi ∼ Ga(ν/2, ν/2). This distribution is well known in literature, it generates

a Student-tν distribution for εi.

• In the limit as ν → ∞: εi → N (0, 1) and therefore the binary model M
approximates a Probit.

4. λi ∼ LogN (−υ/2, υ). Our proposal for the mixing distribution.

• In the limit, as υ → 0 the scale mixture of normals tends to a N (0, 1)

and the binary model approximates a Probit.

The link function is defined through the scale mixture of normals by the distribu-

tion of λi. We adopt a fully Bayesian approach by letting the mixing parameters

ν and υ of λi be estimated from the data. We propose two models that con-

sider uncertainty about the link function, and allow for inference on the shape of

the link function from the data. Therefore, within the context of link function

uncertainty ν and υ will be the model determinant parameters.

Extension to covariate set uncertainty
We consider model uncertainty for covariate selection by defining a covariate in-

dicator vector γ = {γ1, ..., γp}, with p the total number of plausible covariates.

Here γi = 1 indicates that the covariate i is included in the model and γi = 0

indicates it is not, for all i = 1, ..., p. This vector is part of the model and its

update provides the posterior model probability: π(γ|D).

We increase a hierarchy in the scale mixture of normals model to incorporate

the parameter vector γ and follow Holmes and Held (2006) approach for jointly

updating {z, β}.

MCMC algorithm
We proceed with a Hybrid Gibbs sampler, as suggested by Holmes and Held

(2006), the model and parameter coefficient vector {γ, β} are updated together

using the Reversible Jump Monte Carlo Markov Chain (RJMCMC), as proposed

by Green (1995). Once the model γ is determined, we consider Fernandez

and Steel (2000) sampling proposal for the update of mixing distribution. This

includes a Metropolis-Hasting step for the update of ν and υ, and rejection

sampling for the update of λi in the Lognormal mixture.

Application to the Pima Indian Data

We apply the sampling algorithms to the Pima Indian Data, referred to in Holmes

and Held (2006). The data consists of seven plausible covariates and 532 obser-

vations to model the outcome of a diabetes test. The covariates are: number

of pregnancies (NP), plasma glucose concentration (GI), distolic blood pres-

sure (BP), triceps skin fold thickness (TST), body mass index (BMI), diabetes

pedigree function (DP), and age (AG).

To illustrate the method we perform a simulation exercise, following Holmes

and Held (2006). We compare their results, Logit (HH), with the ones we ob-

tain using the following models and methods: Logit (MH) refers to the Logit

Metropolis-Hasting algorithm. Probit is the Probit modelled using the aug-

mented data approach and iterative method algorithm. Mixture Gamma and

Mixture LogNormal are the scale mixture of normals proposals, using the joint

update sampling algorithm for {β, γ} and iterative sampling for {z, λ, θ}.
In order to be comparable with each other and with Holmes and Held’s (2006)

results, we run each algorithm for 10,000 iterations, after a burn-in period of

1,000, all starting with the same random seed to avoid other sources of uncer-

tainty. All algorithms start with the full model γ = 1111111. We use the same

prior π(β) = N (0, 100Ip) in all models.

Figure 1 compares Holmes and Held’s (2006) estimate of the posterior proba-

bility E[γj] = π(γj = 1|y) to the ones we obtain from the simulation exercise.

MODEL NP GI BP TST BMI DP Ag

Logit (HH) 0.923 0.999 0.009 0.037 0.993 0.944 0.129

Logit (MH) 0.9862 1 0.0422 0.0906 1 0.9916 0.2669

Probit 0.9978 1 0.0016 0.005 0.9017 0.5746 0.0006

Gamma Mixture 0.9957 1 0.0014 0.002 0.8701 0.5084 0.0051

LogNormal Mixture 0.9585 1 0.0021 0.0217 0.8815 0.724 0.036

Figure 1: Posterior probability of including βj

In general, the estimates of E[γj] in our proposal are similar to the ones re-

ported by Holmes and Held. However, except for the Logit (MH), we observe

some differences in the diabetes pedigree (DP) and the Age (AG). The largest

difference is observed in the DP regressor. Therefore it is suggested, by the

difference between Logit, Probit, Gamma and LogNormal mixture

models, that the inclusion of a covariate is related to the choice of

link function.

The difference in models can also be appreciated in Figure 2, where for each

percentile of the posterior model probability (ordered by more likely) we plot the

binary vector γ. The inclusion of a covariate is shaded in grey, and the exclusion

in black. Covariates 1, 2 and 5 (NP, GI and BMI) are included in virtually all

models. For the 6th covariate (DP), we notice the difference between models.

Notice that even though the posterior probability of including it in the models

Probit and Gamma Mixture is very similar, the order is not the same. In the case

of considering only the most likely model we would have had different results.
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Figure 2: Posterior distribution γ

Conclusion
We presented a fully Bayesian approach to consider model uncertainty in link

function and covariate set uncertainty when modelling binary data. The proposal

is an extension to the regression model proposed by Albert and Chib (1993), a

scale mixture of normals linear model on latent continuous data. We incorpo-

rated covariate set uncertainty by adding a hierarchy in our algorithm, where the

update is done using the RJMCMC. We detailed the proposed model and the

MCMC algorithm. The flexibility and power of the model was illustrated with

an example. Our results suggest that the probability of including the covariate

j depends, at least in some way, on the link function. This is interesting to

consider, in practice, where the inclusion or exclusion of a covariate may dictate

different policies, or lead to different conclusions.
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