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Scaling of MH algorithms

Diffusions and MCMC

• Diffusions as limits of MCMC algorithms

• Diffusions as motivation for the construction of MCMC algorithms

• MCMC for inference for diffusions
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Scaling of MH algorithms

Why ‘limits’ of MCMC algorithms?

• Useful for understanding algorithms

• Useful for comparing different algorithms

• Can be used to guide implementation

A very loose classification of some common algorithms:

Local Global

Vanilla Random walk Independence

Metropolis sampler

Problem Langevin Gibbs sampler/

specific algorithms IID

Diffusion limit results exist for most of these algorithms

Scaling problems arise for local algorithms.
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Metropolis-Hastings algorithm

Given a target density π(·) that we wish to sample from, and a Markov chain

transition kernel density q(·, ·), we construct a Markov chain as follows. Given

Xn, generate Yn+1 from q(Xn, ·). Now set Xn+1 = Yn+1 with probability

α(Xn, Yn+1) = 1 ∧ π(Yn+1)q(Yn+1, Xn)

π(Xn)q(Xn, Yn+1)
.

Otherwise set Xn+1 = Xn.
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Symmetric Random Walk Metropolis algorithm

q(x,y) = q(|y − x|)
The acceptance probability simplifies to

α(x,y) = 1 ∧ π(y)

π(x)

For example q ∼ MV Nd(x, σ2Id).

Algorithm is geometrically ergodic “most of the time” when the tails of the

target density are no heavier than exponential.
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MALA (Metropolis adjusted Langevin)

(for example Besag, 1994, R and Tweedie, 1996)

Since the SDE

dXt = dBt + ∇ log π(Xt) dt/2

has stationary distribution π, why not use a proposal distribution based on a

discrete approximation (the Euler approximation) of this?

q(x, ·) ∼ MV Nd(x + σ2∇ log π(x)/2, σ2Id)

say.

A broader class of Langevin diffusions exist with stationary distribution π.

Alternative discretisations exist too. (Andrew Stuart, Jochen Voss talks.)
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The Goldilocks dilemma
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Scaling problems and diffusion limits

Choosing σ in the above algorithms to optimise efficiency. For ‘appropriate

choices’ the d-dimensional algorithm has a limit which is a diffusion. The

faster the diffusion the better!

• How should σd depend on d for large d?

• What does this tell us about the efficiency of the algorithm?

• Can we optimise σd in some sensible way?

• Can we characterise optimal (or close to optimal) values of σd in terms of

observable properties of the Markov chain?

For RWM and MALA (and some other local algorithms) and for some simple

classses of target distributions, a solution to the above can be obtained by

considering a diffusion limit (for high dimensional problems).
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Metropolis-within-Gibbs

At each iteration, choose d × cd components at random, and update these

components according to a Metropolis algorithm which preseves the

conditional distribution of those co-ordinates given the rest. The remaining

d(1 − cd) components stay unchanged.

This is not really a generalisation of the Metropolis algorithm.

How should be jointly choose (cd, σ
2) to optimise the Markov chain?
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What is “efficiency”?

Let X be a Markov chain. Then for a π-integrable function f , efficiency can

be described by

lim
n→∞

nVar

(∑n
i=1 g(Xi)

n

)

.

In general relative efficiency between two possible Markov chains varies

depending on what function of interest g is being considered. As d → ∞ the

dependence on g disappears, at least in cases where we have a diffusion limit

as we will see....
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“Efficiency” for diffusions

Consider two Langevin diffusions, both with stationary distribution π.

dXi
t = h

1/2
i dBt + hi∇ log π(Xi

t)/2, i = 1, 2,

with h1 < h2.

X2 is a “speeded-up” version of X1.
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A diffusion limit

Consider the Metropolis case.

Suppose π ∼∏d
i=1 f(xi), q(x, ·) ∼ N(x, σ2

dId), X0 ∼ π.

Set σ2
d = ℓ2/d. Consider

Zd
t = X

(1)
[td] . Speed up time by factor d

Zd is not a Markov chain, however in the limit as d goes to ∞, it is Markov:

Zd ⇒ Z

where Z satisfies the SDE,

dZt = h(ℓ)1/2dBt +
h(ℓ)∇ log f(Zt)

2
dt ,

for some function h(ℓ).
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h(ℓ) = ℓ2 × 2Φ

(

−
√

Iℓ

2

)

,

and I = Ef [((log f(X))′)2]. So

h(ℓ) = ℓ2 × A(ℓ) ,

where A(ℓ) is the limiting overall acceptance rate of the algorithm, ie the

proportion of proposed Metropolis moves ultimately accepted. So

h(ℓ) =
4

I

(

Φ−1(A(ℓ))
)2

A(ℓ) ,

and so the maximisation problem can be written entirely in terms of the

algorithm’s acceptance rate.
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When can we ‘solve’ the scaling problem?

We need a sequence of target densities πd which are sufficiently regular as

d → ∞ in order that meaningful (and optimisable) limiting distributions

exist.

Examples include

1. π ∼
∏d

i=1 f(xi).

2. π ∼∏d
i=1 f(cixi), q(x, ·) ∼ N(x, σ2

dId). for some inverse scales ci. See

Mylene Bedard’s talk later! Also talks by Jochen Voss and Andrew Stuart

3. Elliptically symmetric target densities. See Chris Sherlock’s poster later!

4. The components form a homogeneous Markov chain.

5. π is a Gibbs random field with finite range interactions.

6. Purely discrete product form distributions.
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Some questions

• Most results need smoothness conditions on the target. What happens

for discontinuous densities?

• Results for ‘Metropolis within Gibbs’ and ‘Langevin within Gibbs’

• What happens to algorithms started out in the tails?

• What happens if we use heavy-tailed proposals?

• What about multivariate scaling problems? See Jeff Rosenthal’s talk

• What about scaling in different ways in different parts of the space. See

Jeff Rosenthal’s talk



Scaling of MH algorithms

Discontinuous target densities

Suppose π ∼∏d
i=1 f(xi), with

f(x) =

{

exp(g(x)), 0 < x < 1

0 otherwise

where g ∈ C1[0, 1].

q(x, ·) ∼∏d
i=1 U(xi − σd, xi + σd), X0 ∼ π.

Set σ2
d = ℓ2/d2. Consider

Zd
t = X

(1)
[td2] . Speed up time by factor d2
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Zd ⇒ Z

where Z satisfies the reflected Langevin SDE on [0, 1],

dZt = h(ℓ)1/2dBt +
h(ℓ)∇ log f(Zt)

2
dt ,

with

h(ℓ) =
2ℓ2

3
exp

(

−f∗ℓ

2

)

and f∗ = limx↓0

(

f(x)+f(1−x)
2

)
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Partial dimensional updating

At each iteration, choose d × cd components at random, and update

according to the conditional distribution of those co-ordinates given the rest.

Can we maximise (σ, cd)?
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Suppose π ∼∏d
i=1 f(xi).

Set cdσ
2
d = ℓ2/d, cd → c as d → ∞. Consider

Zd
t = X

(1)
[td] . Speed up time

Zd is not a Markov chain, however in the limit as d goes to ∞, it is Markov:

Zd ⇒ Z

where Z satisfies the SDE,

dZt = h(ℓ)1/2dBt +
h(ℓ)∇ log f(Zt)

2
dt ,

for the same function h(ℓ) for all c.
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So we can do as well just updating a proportion of our components.

Therefore taking into account computing time, full dimensional updating can

never be better than strategies which update smaller-dimensional

components.
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Behaviour in high dimensions

Let Td be the ‘mixing time’ for a problem in d dimensions.

• Random Walk Metropolis In the best case scenario, for large d need

to take σ2
d = O(d−1).

Td = O(d)

for all choices of 0 < c ≤ 1.

• Langevin algorithms

For large d we need to take σ2
d = O((cdd)−1/3).

Td = O(c
−2/3
d d1/3)

So it is typically optimal to update large proportions of components in a

Langevin algorithm, even after taking into account computing cost

considerations.
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Figure 6: A comparison of Metropolis and Langevin algorithms in terms of

efficiency.
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Dependence and partial updating

Dependence in target densities makes mixing worse for any partial updating

algorithm.

However dependence also affects full-dimensional updating.

Which does it affect most?
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Non-stationary initial distribution
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Gaussian example

Set π ∼ MV Nd(0, Id). Suppose we apply ‘optimally scaled’ RWM.

Consider W d
t = |X[td]|2/d

Theorem When W d
0 = w0 6= 1, then as d → ∞, we have W d ⇒ f , where f is

a deterministic function satisfying f(0) = w0 and

f ′(t) = aℓ(f(t))

with function aℓ(·) which can be explicitly calculated.
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Figure 10: Deterministic convergence speed, aℓ(·)
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Langevin case

Using the ‘optimal’ scaling it gets stuck...

Though using the scaling σ2
d = ℓ2/d1/2, we get a similar deterministic limit

result.
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Figure 11: Deterministic convergence speed, aℓ(·), the Langevin case.
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A Point Process Example

From Møller, Syversveen and Waagepetersen (1998 Sc. J. Stat.) Locations of

126 Scots pine saplings in a Finnish forest

Observed point pattern modelled as a Poisson point process X with intensity

Λ(s) = exp(Y (s)),

where Y (·) = {Y (s) | s ∈ R2} is a Gaussian process with mean E[Y (s)] = µ

and covariance

Cov(Y (s), Y (s′)) = σ2 exp(−‖s − s′‖/β).

The latent Gaussian process is discretised on a 64 × 64 regular grid.
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Figure 12: Scotish pine saplings. Left : locations of trees. Right : the estimated

intensity E[Λ(s) | x].
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Updating latent Gaussian field requires MALA updates.

Compare the performance of the algorithm for three different starting values.

The starting values expressed in terms of Y (which have to be transformed to

starting values for Γ) are

I : Yi,j = µ for i, j = 1, . . . , 64.

II : a random starting value, simulated from the prior Y ∼ N(µ, Σ).

III : a starting value near the posterior mode. Let Yi,j solve the equation

0 = xi,j − exp(Yi,j) − (Yi,j − β)/σ2.

In all three cases we use the scaling ℓ̂2/(4096)1/3 = 0.16 where ℓ̂ = 1.6 is

derived using ‘optimal scaling’ criteria.
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Figure 13: Scots pine saplings. Traceplots log(γ | x) when using the scaling

0.16. Left : starting value I. Middle : starting value II. Right : starting value

III.
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Now using the scaling ℓ̂2/(4096)1/2 = 0.034. The acceptance rate for all

algorithms was around 95%.
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Figure 14: Scots pine saplings. Traceplots log(γ | x) when using the scaling

0.034. Left : starting value I. Middle : starting value II. Right : starting value

III.
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Heavy-tailed proposals

If proposal variance is infinite, all the above theory fails and diffusion limits

cannot exist!
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To fix ideas, consider RWM, and replace independent Gaussian proposals in

each direction by independent Cauchy proposals in each direction.

Evidence from other results that heavy-tailed proposals improve mixing (eg

Jarner and R, 2003, 2006, talk by Gersende Fort).
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Discontinuous targets, heavy-tailed proposals

Suppose π ∼Unif(0, 1)d.

q(x, ·) ∼ Cauchy(x, σ2
dId), X0 ∼ π.

Set σ2
d = ℓ2/d log d. Consider

Zd
t = X

(1)
[td log(d)] . Speed up time by factor d log d

Zd ⇒ a scaled truncated Cauchy process

with an associated explicit optimal scaling problem.

Here, light-tailed proposals are O(d2) while Cauchy proposals are O(d log d)).
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Final comments

Smarter Langevin methods exist and can solve some of the Langevin mixing

problems. See talks by Jochen Voss and Andrew Stuart

Do we really want our algorithms to ‘look like diffusions’?

Inevitably much of the practical importance of this work lies to problems

which lie beyond the nice classes of problems for which clean diffusion limits

exist and for which the scaling problem can be rigorously solved.

Jeff Rosenthal will talk about the use of this theory in adaptive MCMC

methods.


