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What BPMC is

• aimed at a fixed target

• population Monte Carlo, but not as we know it

• dependent on ergodicity

• different, we hope, but speculative

What BPMC isn’t

• aimed at a sequentially evolving target

• much to do with particle filters

• dependent on importance sampling

• proven to be useful

2



Motivation

Branching processes

• can support antithetic behaviour in a natural way by
making offspring negatively correlated

• may assist in navigating past slowly-mixing parts of the
state space

• are analytically amenable
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Contents

We explore the possible use of branching processes for Monte
Carlo simulation, & in particular discuss:

• basic theory of branching processes as could be used for
Monte Carlo sampling

• the appropriate analogue of global balance with respect to
the target distribution

• evaluation of moments, in particular asymptotic variances
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Bienaymé/Galton/Watson branching process

Single-sex individuals give birth to random number (generically,
Y ) of probabilistic replicas of themselves – once created, each
individual is independent of everything else.

Individuals may have random lifetimes, but we will be satisfied
with counting individuals in generations: Zn in generation n.

Zn+1 =
Y∑

i=1

Z(i)
n =

Zn∑
i=1

Y (i)

(where (i) denote probabilistic replicas)
⇒ analysis via composition of probability generating functions:
g(s) = E(sY ), gn(s) = E(sZn |Z0 = 1),

gn+1(s) = g(gn(s)) = gn(g(s))
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Extinction and criticality

The extinction time T is min{n > 0 : Zn = 0}, so we
immediately have P{T ≤ n} = P{Zn = 0} = gn(0);
with a little more work we find that P{T < ∞} = ζ, where
ζ = inf{s ≥ 0 : g(s) = s}.

It is well known that the process has a threshold behaviour
depending on a = g′(1) = E(Y ), the mean family size.

• if a < 1 then ζ = 1 and E(T ) < ∞: subcritical

• if a = 1 and var(Y ) > 0 then ζ = 1 but E(T ) = ∞: critical

• if a > 1 then ζ < 1 and so P (T = ∞) > 0: supercritical
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Branching processes and Monte Carlo

For the purposes of Monte Carlo simulation, we associate with
each individual in the process a value x in a general state space
X .

We are given a target distribution π on X , and are interested in
efficiently estimating Eπf =

∫
f(x)π(dx) for one or more

functions f : X → R, based on a realisation of our process.

The standard estimator will be the average of the f(x) values of
all the Z1 + Z2 + · · ·+ Zn individuals in the first n generations of
a branching process.
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A realisation of BPMC
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Branching processes with types

In branching process theory, x corresponds to the ‘type’ of an
individual, a factor introduced into branching process models
initially to handle individual characteristics such as sex or age in a
biological population, or energy in a nuclear cascade process.

In a branching process with general types (x ∈ arbitrary X ), the
population evolves exactly according to the Galton-Watson
assumptions made above, but additionally the x values of the
individuals propagate through the population, with the x for
offspring generated conditionally on their parent’s x.

In the language of graphical models, the tree describing the
population structure is a directed acyclic graph defining the
conditional independence structure of the x process.
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Point process notation

In the general-type branching process, the population size Zn is
replaced as the key variable by a finite point process on X , giving
the types of the individual in the nth generation. Note that
several individuals may have the same type, so that this is a point
process allowing multiple coincident points. This point process,
an integer-valued random measure, will also be denoted by Zn:

Zn(A) = #{individuals in generation n with value ∈ A}

We suppose the initial individual is of type x, taken as nonrandom
but variable for the present, so Z0 = δx or just x in brief.

The entire distribution of the process is governed by the
distribution of Z1 given Z0 = x.
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A convenient representation of this offspring distribution uses the
moment generating functional (MGF) defined for a dummy
variable s that is now a nonnegative measurable function from X
to R. The offspring MGF is

Φ(x)(s) = E(e−
R

sdZ1 |Z0 = x).

If Z1 is listed as {X(i), i = 1, 2, . . . , Y }, then we can also write
the MGF as

Φ(x)(s) = E(e−
PY

i=1 s(X(i))|Z0 = x).
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The basic recurrence obeyed by the process is formally similar to
the standard case:

Zn+1 =
Y∑

i=1

Z(i)
n

but now the Z
(i)
n have different initial x-values, so are not i.i.d.

The analogue to the composition of PGFs is also formally similar,
but for the effective change of variable from s to e−s(·), and we
get the MGF recurrence

Φ(x)
n+1(s) = Φ(x)(− log Φ(·)

n (s)).

as a generalisation of the earlier PGF recurrence

gn+1(s) = g(gn(s))
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The recursion

Φ(x)
n+1(s) = Φ(x)(− log Φ(·)

n (s)).

in principle determines the distribution of Zn (and can be
extended to cover all Zn jointly). For example, differentiating
with respect to (the function) s gives recursions for moments.

In practice, is it usually easier to work from first principles for each
moment, using the same condition-on-the-first-family argument.
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Moments

We define the mean kernel M(x, B) = E(Z1(B)|Z0 = x) – the
mean number of offspring with values in B born to an individual
of value x. Note that this involves integrating over the offspring
distribution, but not the value space: in the non-branching case,
it is just the transition kernel P (x,B).

Then E(Zn+1(B)) =

E[E(Zn+1(B)|Zn)] = E[
∫

M(·, B)dZn] =
∫

M(·, B)E(dZn)

So if E(Zn(B)) = µn(B),

µn+1(B) =
∫

µn(dx)M(x,B) = (µnM)(B),

say (we make much use of such operator notation).
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Global balance

Suppose that the process Zn (whose values are integer-valued
measures) is stationary [how? wait and see!]; then
E(Zn(B)) = µ(B) for all n, and so
E(Zn+1(B)) = (µM)(B) = µ(B). Thus

µM = µ

is the BPMC equivalent of global balance (invariance).

As we will see, averages of f(x) over the population converge to
expectations with respect to µ, normalised to be a probability
distribution: designing a BPMC sampler means choosing the
mean kernel M to satisfy µM = µ.
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Rules of the game

The objective is to sample from π(dx), so as with ordinary
MCMC, we can only use π (up to proportionality) to create the
branching process. For example, the following are valid:

• generate a random number of offspring from a fixed
distribution, and draw children’s x values i.i.d. from a
reversible transition kernel P (x,B) leaving π invariant, e.g.
by Metropolis-Hastings

• as above, but P need not be reversible

• as above but children’s x’s can be dependent draws from
P (x, B) (e.g. negatively correlated)

• .. other rules in the same spirit (M constructed implicitly
from π) for which µM can be controlled
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Reconciling branching and stability

Can we follow the branching paradigm strictly (individuals give
birth to random number of probabilistic replicas of themselves –
once created, each individual is independent of everything else)
and still obtain a process that is useful for Monte Carlo
simulation?

The threshold theorem seems to tell us that a branching process
can never be stable – the population size goes to 0 or ∞.

(We stated this result for the single-type process, but it holds in
the multi-type case, in the absence of degeneracy).
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A subcritical BP
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A critical BP
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A supercritical BP
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So we have some unattractive alternatives:

• a subcritical or critical process dies out, generating an a.s.
finite total number of individuals: if the average f(x) isn’t
accurate enough, all you can do is independently re-start.

• a supercritical process, if it doesn’t die out, grows
exponentially, so you are putting a lot of computing effort
into ‘genealogies’ that are short, relatively – convergence?

• introducing immigration stabilises a (sub)critical process,
but means constantly refreshing population with x values
out of equilibrium

Some of these may be worth exploring, but our preference is
construct a degenerate process that circumvents the problem.
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Multi-category branching processes

For convenience and practicality in formulating such processes, it
is best to extend the ‘type’ of each individual to encode more
than just the ‘value’ x. We will illustrate this by adding a discrete
‘category’ k, so that the type is now (k, x).

We can then easily devise useful branching process MC methods
where k (but not x) is used to regulate the reproduction process,
while x values remain distributed asymptotically as π(dx).

It is convenient to write

Zn({k}×B) = Zk
n(B) and M((k, x), {k′}×B) = Mkk′

(x,B),

etc., thus regarding Zn as a (dependent) collection (indexed by
k) of point processes on X , rather than a single point process on
a richer space.
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The crown process (a.k.a. ‘kings and bastards’)

Individuals are of two categories (0=king, 1=bastard):

• a king has one king-type child, and a random number of
bastards

• each bastard has no king-type children, and a (mean < 1)
number of bastards

For the moment, we just sum f(x) over individuals of both
categories.

M00 is an ergodic probability transition kernel, M01 arbitrary,
M10 ≡ 0, M11 is subcritical. This makes Zn ergodic.

If M01 and M11 preserve π (the invariant distribution of M00)
up to proportionality, we have unbiased sampling.
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A realisation of a crown process
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A longer run
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Convergence of cumulative population
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A more complicated variation
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Ergodic averages

Our BPMC estimator of the expectation of f is Sn/Nn, where
Sn is the total of f(x) for all individuals in generations
0, 1, . . . , n− 1:

Sn =
n−1∑
j=0

∫
fdZj

and Nn is the number of individuals involved, the same
expression with f replaced by 1, the function that is identically 1.

We can adapt the earlier argument to obtain a recursive
expression for the joint MGF of (Sn, Nn):

E(exp(−t1Sn−t2Nn)|Z0 = x) = Ψ(x)
n (s) where s(·) = t1f(·)+t2

and
Ψ(x)

n+1(s) = e−s(x)Φ(x)(− log Ψ(·)
n (s))
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Now under stationarity,

E(Sn) =
n−1∑
j=0

∫
fE(dZj) =

n−1∑
j=0

∫
fdµ = n

∫
fdµ = nµ′f

say, and E(Nn) = nµ′1.

Under appropriate conditions, we will have a law of large
numbers, and

Sn

Nn

a.s.→ µ′f

µ′1
= Eπ(f)

where π = µ/µ′1 is µ normalised to be a probability measure.
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Variances

The second-order structure of the process (again, integrating over
the branching, not the value space) is controlled by the
covariance kernel G(x,B,C) = cov[Z1(B), Z1(C)|Z0 = x].

Suppose γn(B,C) = cov[Zn(B), Zn(C)], then

γn+1(B,C) = E[cov(Zn+1(B), Zn+1(C)|Zn)]

+cov[E(Zn+1(B)|Zn), E(Zn+1(C)|Zn)]

=
∫

G(z,B, C)µn(dz) +
∫ ∫

M(z,B)M(z′, C)γn(dz, dz′)

= ((µn �G) + M ′γnM)(B,C), say.

Under stationarity, in brief

γ = (µ�G) + M ′γM

30



Asymptotic variance 1

For the variance of Sn/Nn, we need variances and covariances of
Sn and Nn.

To find the variance of Sn, we need the equilibrium
autocovariances of the sequence (

∫
fdZn). We have

cov(
∫

fdZ0,

∫
fdZn) = f ′γMnf

for n ≥ 0.

We are writing

f ′γMnf =
∫ ∫ ∫

f(x1)γ(dx1, dx′)Mn(x′, dx2)f(x2)

where

Mn(x,B) =
∫

M(x, dx′)Mn−1(x′, B).
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Asymptotic variance 2

Thus

n−1var(Sn) →
∞∑

j=−∞
cov

(∫
fdZ0,

∫
fdZj

)

= lim
n→∞

n−1∑
j=−n+1

cov

(∫
fdZ0,

∫
fdZj

)

= lim
n→∞

f ′

n−1∑
j=1

M ′jγ + γ + γ
n−1∑
j=1

M j

 f

= lim
n→∞

f ′Cnf, say.

32



Asymptotic variance 3

But Mn → M∞, where MM∞ = M∞M = M∞ and
γM∞ = 0, whence we find

(I −M + M∞)′Cn(I −M + M∞) = γ −M ′γM = µ�G

Thus

Cn → C = ((I −M + M∞)′)−1(µ�G)(I −M + M∞)−1

and
var(Sn) ∼ nf ′Cf.

By the same argument,

cov(Sn, Nn) ∼ nf ′C1 and var(Nn) ∼ n1′C1.
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Asymptotic variance 4

By the delta method, the variance of our branching Monte Carlo
estimator Sn/Nn is

var

(
Sn

Nn

)
=

v∗(f)
E(Nn)

+ O(E(Nn)−2)

as n →∞, where the variance factor v∗(f) characterising the
performance of the estimator is

lim
n→∞

1
E(Nn)

{
var(Sn)− 2

E(Sn)
E(Nn)

cov(Sn, Nn) +
E(Sn)
E(Nn)

2

var(Nn)

}

=
1

µ′1

{
f ′Cf − 2

(
µ′f

µ′1

)
f ′C1 +

(
µ′f

µ′1

)2

1′C1

}
.
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Asymptotic variance 5

One use for this is to try to understand how to design the process
to reduce variance. The key is

C = ((I −M + M∞)′)−1(µ�G)(I −M + M∞)−1

where

(µ�G)(B,C) =
∫

G(z,B, C)µ(dz)

Loosely, negatively associated offspring reduces f ′Cf .
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Unhelpful toy example

Univariate x, target N(0, 1), using “AR(1)” dynamics:

xchild = ρxparent +
√

1− ρ2N(0, 1), with ρ = 0.8.

Crown process, with offspring bastard distribution (0.0, 0.0, 1.0)
for kings and (0.51, 0.0, 0.49) for bastards, yields asymptotic
variance ≈ 29.7/N . (N = total number generated; variance
estimated from 1000 independent replicates.)

Antithetic version, using maximally antithetic normal increments,
yields ≈ 20.6/N (30% better).

However, ordinary MCMC asymptotic variance is
N−1(1 + ρ)/(1− ρ) = 9/N with ρ = 0.8.

Can potential advantages of branching overcome the
disadvantage that pairs of individuals are on average closer
together, so more correlated?
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A realisation of a crown process
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Unimpressive toy example

For finite state space chains, we can use the asymptotic variance
results (or indeed compute variances for finite runs if desired).

It is difficult to discern a general pattern from our experiments,
but our examples include cases (with the same offspring
distributions as above) where

• branching without antithetics is 21% worse than regular
MCMC and two kinds of antithetic modification are 10% or
52% better than regular MCMC

• branching without antithetics is 1% worse than regular
MCMC and two kinds of antithetic modification are 33% or
97% better than regular MCMC
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Ergodic weighted averages

Consider the weighted BPMC estimatorSw
n /Nw

n , where Sw
n is the

total of w(x)f(x) for all individuals in generations 0, 1, . . . , n− 1:

Sw
n =

n−1∑
j=0

∫
wfdZj

and Nw
n is the total of the w(x) involved, the same expression

with f replaced by 1. Now under stationarity,

E(Sw
n ) =

n−1∑
j=0

∫
wfE(dZj) =

n−1∑
j=0

∫
wfdµ = n

∫
wfdµ = nµ′(wf)

say, and E(Nw
n ) = nµ′w.
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Under appropriate conditions, we will have a law of large
numbers, and

Sw
n

Nw
n

a.s.→ µ′(wf)
µ′w

= Eπ(f)

where π is wµ normalised to be a probability measure, i.e.

π(dx) ∝ w(x)µ(dx).
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Category-specific invariant measures

Suppose we have multiple categories, indexed by k ∈ K. Recall
the notation

Zn({k}×B) = Zk
n(B) and M((k, x), {k′}×B) = Mkk′

(x,B).

Suppose the process is ergodic, then E(Zk
n(B)) = µk(B) does

not depend on n, but may be different for different k; the global
balance (invariance) equations are

µk =
∑
j∈K

µjM jk
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If we use category-specific weights wk(x) in accumulating f(x),
then

Sw
n

Nw
n

a.s.→ µ′(wf)
µ′w

= Eπ(f)

where
π(dx) ∝

∑
k∈K

wk(x)µk(dx).

So we can have different invariant measures in different
categories, and either weight out (wk(x) = 0) those where
µk\∝ π, or use weights to adjust appropriately. You could have
one or more categories where µk is deliberately over-dispersed
(tempered) to assist mixing, but which are not used in ergodic
averaging.
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Fractional individuals

Freeing Zn from being integer-valued (but remaining discrete)
allows us to represent weighted individuals {(xi, θi)},

Zn(A) =
∑

individuals in generation n

θiI[xi ∈ A]

Individuals can ‘decide for themselves’ whether to

• pass on their weight θ to their offspring

• resample/replicate: generate random number (with mean θ,
arbitrary distribution) of offspring and give them weight 1

• (etc)

. . . still have µn+1 = µnM where µn(B) = E(Zn(B)).
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Blessing or curse?

In spite of these flexibilities, we have not found a convincing
demonstration of effectiveness (yet?).

Is this the inevitable downside of the very lack of interaction
between individuals, once created, that is key to the analysis?

Answers to:

P.J.Green@bristol.ac.uk

Antonietta.Mira@uninsubria.it
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