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How to improve/optimize MCMC?

Can just choose a “reasonable” algorithm, and hope for the best.

Or: can examine many different trial runs, to attempt to e.g. min-
imize autocorrelations, or maximize average step sizes, or achieve
a theoretically determined optimal acceptance rate (“0.234”, etc.:
Roberts, Gelman, and Gilks; Roberts and R.; Bédard; Sherlock).
Time-consuming, difficult, unreliable.

Or, can adapt, by having the computer modify the chain adap-
tively, i.e. choose a sequence {Γn} of values for γ “on the fly”, to
automatically seek better Markov chains.
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Adaptive MCMC

The Dream: Given a distribution π(·), the computer:

• efficiently and cleverly tries out different MCMC algorithms;

• automatically “learns” the best one(s);

• runs the algorithms for “long enough”;

• obtains excellent samples from π(·);
• uses these samples to do great estimation;

• reports the results clearly and concisely, with the user unaware
of the complicated MCMC and adaption that was used.

The Reality: Easier said than done! But some hope . . .
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Java Applet Illustrative Example

X = {1, 2, 3, 4, 5, 6}, π{2} = 0.0001, π{1} = π{3} = π{4} =
π{5} = π{6} .= 0.2. [And π(x) = 0 for x 6∈ X .]

Let γ ∈ N, X0 ∈ X . Do “random-walk Metropolis” (RWM):

• Given Xn, first propose a state Yn+1 ∈ Z, with
Yn+1 ∼ Uniform{Xn − γ, . . . , Xn − 1, Xn + 1, . . . , Xn + γ}.
• Then, with probability min[1, π(Yn+1)/π(Xn)], accept proposal
and set Xn+1 = Yn+1.

• Otherwise, with probability 1−min[1, π(Yn+1)/π(Xn)], reject
proposal and set Xn+1 = Xn.

Works: L(Xn)→ π(·). [APPLET]
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Adaption in Java Applet Example

Should γ = 1, or 50, or . . .??

Want acceptance rate to be not too small, not too big (“Goldilocks
Principle”). Start with γ set to Γ0 = 2 (say). Then:

Each time proposal is accepted, set Γn+1 = Γn + 1 (so γ increases,
and acceptance rate decreases).

Each time proposal is rejected, set Γn+1 = max(Γn − 1, 1) (so γ
decreases, and acceptance rate increases).

Logical, natural adaptive scheme. Computer performs “search”
{Γn} for a good γ, on the fly. But does it work? [APPLET]
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NO IT DOESN’T!!

The chain eventually gets stuck with Xn = Γn = 1 for long
stretches of time. [Asymmetric: entering {Xn = Γn = 1} much
easier than leaving it.]

Chain doesn’t converge to π(·) at all.

The adaption has RUINED the algorithm. Disaster!!

[Could convolve with N(0, 10−6), to make it continuous . . .]
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When Does Adaptation Preserve Stationarity?

• Can adapt at regeneration times T1, T2, . . . with XTi ∼ ν(·)
(Gilks, Roberts, and Sahu, 1998; Brockwell and Kadane, 2002).

• “Adaptive Metropolis” algorithm [Haario, Saksman, and Tam-
minen, 2001]: Use proposal distribution MVN(x, (2.38)2Σn / d).

• More general/flexible adaptive schemes [Atchadé and R., An-
drieu and Moulines, Andrieu and Robert, Andrieu and Atchadé].
Require complicated conditions involving drift functions and con-
vergence rates. Also require that {Γn} → γ∗, i.e. no infinite adap-
tation.
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Simple Convergence Theorem: Uniform Case

THEOREM [Roberts and R.]: An adaptive scheme on {Pγ}γ∈Y
will converge, i.e. limn→∞ ‖L(Xn)− π(·)‖ = 0 (and WLLN), if:

• [Stationarity] π(·) is stationary for each Pγ. [Of course.]

• [Diminishing Adaptation] supx∈X ‖PΓn+1(x, ·)−PΓn(x, ·)‖ → 0
as n→∞ (at least, in probability). [At any rate . . . adaptations
can be small, or done with prob p(n)→ 0. User controlled.]

• [Uniform Convergence Rate] For all ε > 0, there is N = N(ε) ∈
N such that ‖PN

γ (x, ·) − π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y .
[Too strong! But still useful . . .]
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Corollaries of Simple Convergence Theorem

COR: Have limn→∞ ‖L(Xn) − π(·)‖ = 0 if have Stationarity (of
course), and Diminishing Adaptation, and either
(a) X and Y are both finite, or
(b)X andY are both compact, and transition densities continuous.

COR: Validity of “Adaptive Metropolis” algorithm.
(So, the theorem provides easier proof of previously-known result.)

COR: Can replace Uniform Convergence Rate condition with:
∀ε > 0, {Tε(Xn,Γn)}∞n=0 is Bounded in Probability, where

Tε(x, γ) = inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε} .

(This also follows from various drift conditions, etc.)
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What about Java Applet Example?

Stationarity: Yes (of course).

Diminishing Adaptation: No. But yes if at time n, adapt only
with probability p(n) → 0, otherwise leave γ unchanged. [e.g.
p(n) = 1/n, so ∑

n p(n) =∞, i.e. infinite adaptation.]

Convergence Rate: Not quite Uniform (since γ unbounded), but
still satisfies “Bounded in Probability” condition.

COR: Adaptation in Java Applet example is valid if Diminishing
Adaptation modification is made. Phew!
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Example: MVN(0, I10)

X = R10; π(·) = MVN(0, I10).

Pa,b is Metropolis-Hastings algorithm with proposal

Qa,b(x, ·) =


MVN(x, e2a) , ‖x‖2 ≤ 10
MVN(x, e2b) , ‖x‖2 > 10 .

Begin with a = b = 0. After nth “batch” of 100 (say) iterations,
add or subtract δ(n) to a, to move acceptance rate on {‖x‖2 ≤ 10}
closer to 0.234.

Similarly for b and {‖x‖2 > 10}.
Diminishing Adaptation: δ(n)→ 0, e.g. δ(n) = min(0.01, n−1/2).

Does it work?
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MVN(0, I10): Mixing of First Coordinate
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(Shows excellent mixing.)
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MVN(0, I10): Convergence of E[ log(1 + ‖x‖2)]

0e+00 4e+04 8e+04

0.
0

0.
5

1.
0

1.
5

2.
0

(Rapid convergence to the true value of 2.3152.)
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MVN(0, I10): Behaviour of parameter “a”
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(Quick approach to values near −0.3, but with some oscillation.)
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MVN(0, I10): Behaviour of parameter “b”
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(Quick approach to values near −0.13; again some oscillation.)
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MVN(0, I10): Comparison to fixed a, b

a, b ACT Avr Sq Dist
adaptive (as above) 15.54 0.125
−0.3, −0.13 15.07 0.126

0.0, 0.0 17.04 0.110
−0.3, −0.3 16.01 0.122
−0.13, −0.13 15.76 0.121
−0.284, −0.284 15.91 0.123

Adaptive algorithm (top line) quite competitive with correspond-
ing fixed-parameter choice (second line), which is better than any
other fixed a and b (including bottom line: optimal homogeneous
with ea = eb = 2.38 /

√
10).
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Example: Variance Components Model

µ
↙ ↓ ↘

θ1 . . . . . . θK θi ∼ N(µ,A)
↓ . . . . . . ↓
Y1 . . . . . . YK Yi ∼ N(θi, V )

Priors: µ ∼ N(0, 1); A ∼ IG(−1, 2); V fixed (emp. Bayes).

π(·) = resulting posterior distribution for (A, µ, θ1, . . . , θK).

K = 18, so X = [0,∞)×R19 ⊆ R20.

Y1, . . . , Y18: baseball data of Morris (1983, Table 1)

Add or subtract δ(n) to a and to b, to make acceptance rates in
{∑i(θi)2 ≤ 0.15} and in {∑i(θi)2 > 0.15} closer to 0.234.
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Variance Components: θ1
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(Excellent mixing; mean very near true mean of 0.394.)
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Variance Components: E[ log (1 + ∑
i(θi)

2)]
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(Excellent convergence to true value of 0.885.)
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Variance Components: Parameter “a”
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(Rapid convergence to near −3.3.)
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Variance Components: Parameter “b”
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(Rapid convergence to near −3.2.)
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Variance Components: Comparisons

a, b ACT Avr Sq Dist ×104

adaptive (as above) 31.60 2.76
−3.3, −3.2 25.75 2.79
−2.3, −2.3 50.67 0.192
−4.3, −4.3 38.92 1.17
−3.3, −4.3 36.91 1.15
−4.3, −3.3 38.04 2.41
−0.63, −0.63 53.91 0.003

Adaptive algorithm (top line) competitive with corresponding fixed-
parameter choice (second line); better than other choices (includ-
ing bottom line: optimal homogeneous with ea = eb = 2.38 /

√
20).
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Summary

Adaptive MCMC seems promising (“computer learning”) – good.

But must be done carefully, or it will destroy stationarity – bad.

To converge to π(·), suffices to have (a) Stationarity, (b) Diminish-
ing Adaptation, and (c) convergence times Bounded in Probability
(guaranteed by e.g. compactness or drift conditions or . . . ).

Our adaptive schemes appear to perform better than arbitrarily-
chosen RWM, at least as good as wisely-chosen RWM, and nearly
as good as an ideally-chosen variable-σ2 schemes. Promising!
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Questions for Future

• Are Diminishing Adaptation and Bounded in Probability con-
ditions really necessary? (Yes in Java Applet example, but . . . )

• Infinite Oscillation: Good or Bad? (Previous adaptive MCMC
results assume {Γn} → γ∗ [Applet: ∑

n p(n) < ∞]. Hopefully
converge to “best” γ∗. But might not know best γ∗, or might
converge to “wrong” value.)

• Generalisation: “Regional Adaptive Metropolis Algorithm”
(RAMA): partition X = X1

•∪ . . . •∪Xr, and proposal Q(x, ·) =
N(x, e2ai) for x ∈ Xi, with each ai adjusted after each batch.

• Better adaptive schemes? Better choice of regions? Other func-
tional forms [e.g. σx = ea (log(1 + |x|))b ]? How to balance sophis-
tication with simplicity (e.g. 2d regions . . . )?
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