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Grayscale images

Configuration: assignment of number in [0, 1] to each pixel

Ω = [0, 1]V
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Bayesian approach

Three ingredients:
1 Prior Π: probabilistic model on parameter space
2 Statistical model of data X given parameters θ

3 Bayes rule
For imaging:

1 Parameters are the true image values
2 Faulty camera: Gaussian error (known variance) on each pixel
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Prior provides pixel peer pressure

Idea: pixels interact with neighbors according to some graph
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Prior + defective camera = model

Known parameters: β and σ

Π(dx) ∝

 ∏
{i,j}∈E

exp{−β(x(i)− x(j))2}

 1(x ∈ Ω) dx

Faulty camera:

P(X ∈ dx |θ) ∝

[∏
i∈V

exp{−(.5)σ−2(x(i)− θ(i))2}

]
1(x ∈ Ω) dx
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Autonormal model

Besag coined term Auto-models [1], later applied to images [2]

Let d be the data configuration:

π(dx) = Z−1

[∏
i∈V

exp{−(.5)σ−2(x(i)− d(i))2}

]
 ∏
{i,j}∈E

exp{−β(x(i)− x(j))2}
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Node/Edge models

For a graph (V , E), let

π(dx) = Z−1

[∏
i∈V

gi(x(v))

]  ∏
{i,j}∈E

f{i,j}(x(i), x(j))


Problems of this form:

Ising and Potts models
Gas models

Not of this form:
Random cluster model
Spanning trees
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Perfect sampling algorithms

Suppose that π is determined by a finite measure µ:

π(dx) =
µ(dx)

Z
, Z =

∫
Ω

µ(dx).

Definition
A perfect sampling algorithm generates random variates exactly from π
without the need to calculate the normalizing constant Z .
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CFTP and RR

Coupling from the past:
Uses underlying Markov chain with π as stationary distribution
Read-twice, noninterruptible, Θ(n ln n)

Can take advantage of monotonicity

Randomness Recycler
Uses absorbing bivariate Markov chain
Read-once, interruptible, can be Θ(n)

Not known how to take advantage of monotonicity
Randomness Recycler is to strong stationary stopping times as
Coupling from the past is to coupling
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History of RR

The Randomness Recycler
generalization of acceptance/rejection methods
originally used to construct Strong Stationary Stopping Times
Created for self-organizing lists [Fill,Huber]
Applications: Ising model, Potts model, proper colorings, discrete
gas models
All discrete state spaces [3]
Today: extension to continuous spaces
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Acceptance rejection in 1 dimension

Acceptance/Rejection
Input: f (x) ≤ m(x)
Output: X from density proportional to f (x)

1) Repeat
2) Draw X from density proportional to m
3) Draw U uniformly from [0, 1]
4) Until 1(U < f (X )/m(X ))
5) Output X
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A/R in action
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High dimensions: sequential acceptance/rejection

Recall our general problem:

π(dx) = Z−1

[∏
i∈V

gi(x(v))

]  ∏
{i,j}∈E

f{i,j}(x(i), x(j))


Suppose that for all i ∈ V : ∫

R
gi(s) ds <∞

and for all {i , j} ∈ E :
sup

s
f{i,j}(s) <∞
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Dealing with high dimensions

The idea:
1 Draw each node assignment according to g
2 Accept or reject independently at each edge using f
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Dealing with high dimensions

Sequential Acceptance/Rejection
Input: n, fe(x), gi(x)

1) Repeat
2) Let flag = 1
3) For each i ∈ V do
3) Draw X (i) from density proportional to gi
4) For each e ∈ E do
5) Draw U uniformly from [0, 1]
6) Let flag ← flag · 1(U < fe(X (e))/supsfe(s))
7) Until flag = 1
8) Output X

Mark Huber (Duke University) RR on continuous state spaces New Developments in MCMC 16 / 47



One edge at a time

Single run through repeat loop:

Pick edge Success
Pick edge Success
Pick edge Success
Pick edge Success
Pick edge Failure
Start Over
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The problem

Chance of acceptance is exponential in # of dimensions
Suppose each edge accepts with probability at least α:

P(accepting all edges) ≥ α|E |

Need exp{−β} > 1− c/n for linear run time

Mark Huber (Duke University) RR on continuous state spaces New Developments in MCMC 18 / 47



Solution is to Recycle

Do not throw away sample after rejection
Keep as much as possible that is still “random”
In other words, recycle
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One edge at a time...

Single run through repeat loop:

Pick edge Success
Pick edge Success
Pick edge Success
Pick edge Success
Pick edge Failure
Recycle

Pick edge Success
Pick edge Success

...

Usually only small portion of sample contaminated by rejection
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Elements of an RR algorithm

1 Measurable space (Ω,F) (the primary state space)
2 Measurable space (Ω∗,F∗) (the dual state space)
3 For all x∗ ∈ Ω∗, a distribution Λ(x∗, ·) on Ω

4 The target distribution π on Ω

5 A dual state x∗
π where Λ(x∗

π, ·) = π(·)
6 An initial dual state x∗

0 where Λ(x∗
0 , ·) is easy to simulate

7 Bivariate kernel K on Ω∗ × Ω with design property
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In words

RR runs a bivariate chain:

At = (index for distribution of Xt , state Xt in Ω)

always making sure that

P(Xt ∈ A|history of index states) = Λ(last index state, A)
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Invariant on the bivariate chain

Notation for history of process up until time t :

H∗
t = σ(X ∗

0 , . . . , X ∗
t )

Desire the following invariant:

(∀A ∈ F)(P(Xt ∈ A|H∗
t−1, X ∗

t = x∗
t ) = Λ(x∗

t , A))

This gives us interruptibility

(∀A ∈ F)P(XT ∈ A|T <∞) = π(A)
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Interruptibility

Classic interruptible algorithm: acceptance/rejection
Can abort procedure in middle
Can start over any time without affecting output

Noninterruptible algorithm: CFTP
probability of aborting early must equal 0
otherwise introduces unknown amount of bias
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How is invariant maintained?

Use the design property.

Notation for distribution of (X ∗
t+1, Xt+1) given X ∗

t and [Xt |X ∗
t ] ∼ Λ(X ∗

t , ·):

PΛ(X ∗
t+1 ∈ B, Xt+1 ∈ A|X ∗

t = x∗) :=∫
x∈Ω Λ(x∗, dx)P(X ∗

t+1 ∈ B, Xt+1 ∈ A|X ∗
t = x∗, Xt = x)

Design property
Kernel K has the design property if for all x∗ and y∗ satisfying
P(X ∗

t+1 ∈ dy∗|X ∗
t = x∗) > 0 and all A ∈ F :

Λ(y∗, A) = PΛ(Xt+1 ∈ A|X ∗
t+1 = y∗, X ∗

t = x∗)
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Reversibility

The design property similar to reversibility for Markov chains
Reversibility is how Gibbs and Metropolis work
Do not need to check reversibility to use Gibbs and Metropolis
Gibbs or Metropolis guarantee reversibility
Similarly, there is automatic way to get design property
Once the design property in place, generating variates easy
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Generating variates with RR

The Randomness Recycler method
1) Let t ← 0, X ∗

0 ← x∗
0

2) Choose X0 from distribution Λ(x∗
0 , ·)

3) While X ∗
t 6= x∗

π do steps 4 and 5
3) Choose (X ∗

t+1, Xt+1) by taking on step in bivariate chain
4) Let t ← t + 1
5) Let T ← t
6) Output XT

Mark Huber (Duke University) RR on continuous state spaces New Developments in MCMC 28 / 47



Elements of RR for node/edge models

Begin with no edges in graph
makes generating variate easy
all nodes independent

Add in edges
index needs to keep track of which edges are added

When reject recycle
accept probability f (x(e))/supsf (s)

reject weight 1− f (x(e))/supsf (s)

freeze endpoints of e at their current values
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Some are as before...

1 Measurable space (Ω,F) (the primary state space)

Ω = [0, 1]V , with Borel sets

4 The target distribution π on Ω

π(dx) = Z−1

[∏
i∈V

exp{−(.5)σ−2(x(i)− d(i))2}

]
 ∏
{i,j}∈E

exp{−β(x(i)− x(j))2}
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Dual state space

The dual state space keeps track of two things
Which edges are enforced in the graph
Which nodes are frozen at their values
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Notation for index sets

2 Measurable space (Ω∗,F∗) (the dual state space)

x∗ = (∅, .73, .53, , ∅, ∅, .32, {{1, 2}, {1, 6}, {2, 5}, {4, 5}, {5, 6}})
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How to index a distribution

3 For all x∗ ∈ Ω∗, a distribution Λ(x∗, ·) on Ω

Ω(x∗) := {x ∈ [0, 1]n : (∀v ∈ V )(x∗(v) 6= ∅ → x(v) = x∗(v)}

H(x∗, x) := − 1
2σ2

∑
v∈V

(x(v)− d(v))2 −
∑

{i,j}∈x∗(n+1)

1
2
β(x(i)− x(j))2

Λ(x∗, dx) := Z (x∗)−11(x ∈ Ω(x∗)) exp(−H(x∗, x)),

Configurations in Ω(x∗) have nodes frozen at values
H(x∗, x) only enforces edges in x∗(n + 1)
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Special dual states

5 A dual state x∗
π where Λ(x∗

π, ·) = π(·)

x∗
π = (∅, . . . , ∅, E)

(x∗
π = all edges enforced, no nodes frozen)

6 An initial dual state x∗
0 where Λ(x∗

0 , ·) is easy to simulate

x∗
0 = (∅, . . . , ∅, ∅)

(easy to generate when no edges!)
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One step: adding an edge

Consider an edge {1, 2} that is not enforced

Accept the addition of the edge with probability

f{1,2}(x(1), x(2))/supa,b∈[0,1]f{1,2}(a, b)
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Rejection

When accept, multiplies weight of configuration by:

f{1,2}(x(1), x(2))

When reject, multiplies weight of configuration by:

1− f{1,2}(x(1), x(2))/supa,b∈[0,1]f{1,2}(a, b)

Solution: freeze endpoints of the edge
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One step: Unfreezing a node

Suppose no edges adjacent to frozen node
Recolor node according to gv

Mark Huber (Duke University) RR on continuous state spaces New Developments in MCMC 37 / 47



One step: Unfreezing a node

Suppose no edges adjacent to frozen node
Recolor node according to gv

Mark Huber (Duke University) RR on continuous state spaces New Developments in MCMC 37 / 47



One step: removing an edge

Accept the removal of the edge with probability

f{1,2}(x(1), x(2))−1/supa,b∈[0,1]f{1,2}(a, b)−1
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One step: removing an edge

Accept the removal of the edge with probability
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Rejection

When accept, multiplies weight of configuration by:

f{1,2}(x(1), x(2))−1

When reject, multiplies weight of configuration by:

1− f{1,2}(x(1), x(2))−1/supa,b∈[0,1]f{1,2}(a, b)−1

Solution: freeze endpoints of the edge
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Algorithm overview

If no frozen nodes exist, try to add edge
If frozen node has adjacent edge, try to remove edge
If frozen nodes exist with no adjacent edge, recolor nodes
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How fast is algorithm?

Theorem
Let

∆ := maximum degree of the graph
p̃ := min

s:f (s)>0
f (s)/ max

s
f (s)

δ := −1 + (2∆− 1)[1− p̃]

T := number of steps taken by one run of RR.

If δ < 0 then
E[T ] ≤ min{3|E |δ−1, 3|E |2}.

Each step takes time O(∆) to execute.
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Proof

Consider

Φ(x∗
t ) = # of unenforced edges + # edges next to frozen nodes in x∗

t

Can show that

E(Φ(X ∗
t+1|X ∗

t )) ≤ X ∗
t + δ, w/ probability 1
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For instance, removing an edge analysis

Chance of accepting and removing an edge is at least

p̃

Chance of accepting and increasing Φ by 2∆− 2 at most

1− p̃

Hence
E(Φ(X ∗

t+1|X ∗
t )) ≤ X ∗

t − p̃ + (1− p̃)(2∆− 2)
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For Autonormal models

Corollary
Let

∆ := maximum degree of the graph
δ := −1 + (2∆− 1)[1− exp(−β)]

T := number of steps taken by one run of RR.

If δ < 0 or equivalently:

β ≤ ln
(

1 +
1

2∆− 1

)
then

E[T ] ≤ min{3|E |δ−1, 3|E |2}.

Each step takes time O(∆) to execute.
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Other work

A. Gibbs [4] showed
Gibbs sampler for Autnormal model converges in O(n ln n) time in
Wasserstein metric
Came close to similar result for perfect sampling

Method can be updated
Gibbs + catalytic coupling + multishift coupling for uniforms gives
perfect simulation with CFTP [5]
Run time O(n ln n) (constant complex function of σ, β)
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Summary

Large β (low temperature) CFTP wins
Run time Θ(n ln n)

Pick one: interruptible, read-once
Small β (high temperature) RR wins

Run time Θ(n)

Interruptible, read-once
More complicated problems

CFTP loses monontonic advantage, use variants
RR same algorithm as presented earlier
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