Perfect simulation with the Randomness Recycler for arbitrary state spaces

Mark Huber

Department of Mathematics and Institute of Statistics and Decision Sciences Duke University

August 22, 2006

Mark Huber (Duke University)

RR on continuous state spaces

・ 同 ト ・ ヨ ト ・ ヨ ト

Grayscale images

Configuration: assignment of number in [0,1] to each pixel $\Omega = [0,1]^{\mathcal{V}}$

Mark Huber (Duke University)

RR on continuous state spaces

伺下 イヨト イヨト

Outline

The Model

- Bayesian approach
- Autonormal model
- Perfect sampling
 - What is perfect sampling?
 - CFTP and RR
- RR for Autonormal
 - RR for continuous state spaces
 - RR for this model
 - Analyzing the running time

Three ingredients:

- Prior Π: probabilistic model on parameter space
- 2 Statistical model of data X given parameters θ
- Bayes rule

For imaging:

- Parameters are the true image values
- Faulty camera: Gaussian error (known variance) on each pixel

Prior provides pixel peer pressure

Idea: pixels interact with neighbors according to some graph

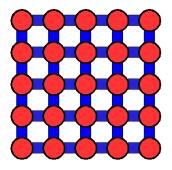
Mark Huber (Duke University)

RR on continuous state spaces

∃ ► ∢

A 1

Prior provides pixel peer pressure



Idea: pixels interact with neighbors according to some graph

Mark Huber (Duke University)

RR on continuous state spaces

→ Ξ → +

A 1

Known parameters: β and σ

$$\Pi(\mathsf{d} x) \propto \left[\prod_{\{i,j\}\in E} \exp\{-\beta(x(i)-x(j))^2\}\right] \mathbf{1}(x\in\Omega) \,\mathsf{d} x$$

Faulty camera:

$$\mathbb{P}(X \in \mathsf{d} x | \theta) \propto \left[\prod_{i \in V} \exp\{-(.5)\sigma^{-2}(x(i) - \theta(i))^2\} \right] \mathbf{1}(x \in \Omega) \, \mathsf{d} x$$

Mark Huber (Duke University)

э

DQC

Besag coined term Auto-models [1], later applied to images [2] Let *d* be the data configuration:

$$\pi(dx) = Z^{-1} \left[\prod_{i \in V} \exp\{-(.5)\sigma^{-2}(x(i) - d(i))^2\} \right]$$
$$\left[\prod_{\{i,j\} \in E} \exp\{-\beta(x(i) - x(j))^2\} \right]$$

э

For a graph (V, E), let

$$\pi(\mathsf{d} x) = Z^{-1} \left[\prod_{i \in V} g_i(x(v)) \right] \left[\prod_{\{i,j\} \in E} f_{\{i,j\}}(x(i), x(j)) \right]$$

Problems of this form:

- Ising and Potts models
- Gas models

Not of this form:

- Random cluster model
- Spanning trees

э

Outline

1 The Mode

- Bayesian approach
- Autonormal model

Perfect sampling
What is perfect sampling?
CFTP and RR

- 3 RR for Autonormal
 - RR for continuous state spaces
 - RR for this model
 - Analyzing the running time

→ Ξ → +

- The

Suppose that π is determined by a finite measure μ :

$$\pi(\mathsf{d} x) = rac{\mu(\mathsf{d} x)}{Z}, \ Z = \int_{\Omega} \mu(\mathsf{d} x).$$

Definition

A *perfect sampling* algorithm generates random variates exactly from π without the need to calculate the normalizing constant *Z*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Coupling from the past:

- Uses underlying Markov chain with π as stationary distribution
- Read-twice, noninterruptible, $\Theta(n \ln n)$
- Can take advantage of monotonicity

Randomness Recycler

- Uses absorbing bivariate Markov chain
- Read-once, interruptible, can be $\Theta(n)$
- Not known how to take advantage of monotonicity

Randomness Recycler is to strong stationary stopping times as **Coupling from the past** is to coupling

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Coupling from the past:

- Uses underlying Markov chain with π as stationary distribution
- Read-twice, noninterruptible, $\Theta(n \ln n)$
- Can take advantage of monotonicity

Randomness Recycler

- Uses absorbing bivariate Markov chain
- Read-once, interruptible, can be $\Theta(n)$
- Not known how to take advantage of monotonicity

Randomness Recycler is to strong stationary stopping times as Coupling from the past is to coupling

・ロト ・ 同ト ・ ヨト ・ ヨト

- generalization of acceptance/rejection methods
- originally used to construct Strong Stationary Stopping Times
- Created for self-organizing lists [Fill,Huber]
- Applications: Ising model, Potts model, proper colorings, discrete gas models
- All discrete state spaces [3]
- Today: extension to continuous spaces

- generalization of acceptance/rejection methods
- originally used to construct Strong Stationary Stopping Times
- Created for self-organizing lists [Fill,Huber]
- Applications: Ising model, Potts model, proper colorings, discrete gas models
- All discrete state spaces [3]
- Today: extension to continuous spaces

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- generalization of acceptance/rejection methods
- originally used to construct Strong Stationary Stopping Times
- Created for self-organizing lists [Fill,Huber]
- Applications: Ising model, Potts model, proper colorings, discrete gas models
- All discrete state spaces [3]
- Today: extension to continuous spaces

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

12/47

- generalization of acceptance/rejection methods
- originally used to construct Strong Stationary Stopping Times
- Created for self-organizing lists [Fill,Huber]
- Applications: Ising model, Potts model, proper colorings, discrete gas models
- All discrete state spaces [3]
- Today: extension to continuous spaces

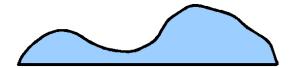
・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Acceptance/Rejection

Input: $f(x) \le m(x)$ **Output**: *X* from density proportional to f(x)

- 1) Repeat
- 2) **Draw** *X* from density proportional to *m*
- 3) **Draw** *U* uniformly from [0, 1]
- 4) **Until 1**(U < f(X)/m(X))
- 5) **Output** *X*

< ロト < 同ト < ヨト < ヨト

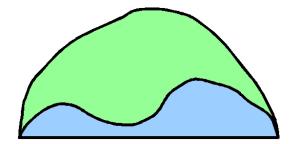


RR on continuous state spaces

New Developments in MCMC 14 / 47

臣

900



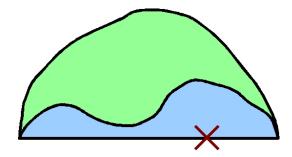
RR on continuous state spaces

New Developments in MCMC 14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

うへで 14/47

2



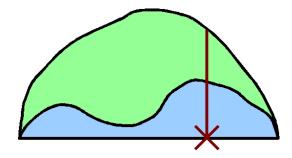
RR on continuous state spaces

New Developments in MCMC 14 / 47

2

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶



RR on continuous state spaces

New Developments in MCMC 14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

うへで 14/47

2

Recall our general problem:

$$\pi(\mathsf{d} x) = Z^{-1} \left[\prod_{i \in V} g_i(x(v)) \right] \left[\prod_{\{i,j\} \in E} f_{\{i,j\}}(x(i), x(j)) \right]$$

Suppose that for all $i \in V$:

$$\int_{\mathbb{R}} g_i(s) \, \mathsf{d} s < \infty$$

and for all $\{i, j\} \in E$:

 $\sup_{s} f_{\{i,j\}}(s) < \infty$

Mark Huber (Duke University)

RR on continuous state spaces

New Developments in MCMC 15 / 47

・ 同 ト ・ ヨ ト ・ ヨ ト

The idea:

- Draw each node assignment according to g
- Accept or reject independently at each edge using f

Sequential Acceptance/Rejection **Input**: $n, f_e(x), g_i(x)$ Repeat 1) 2) Let flag = 1 3) **For** each $i \in V$ do 3) **Draw** X(i) from density proportional to q_i For each $e \in E$ do 4) 5) **Draw** U uniformly from [0, 1] Let flag \leftarrow flag \cdot 1($U < f_e(X(e)) / sup_s f_e(s)$) 6) 7) Until flag = 18) Output X

Single run through repeat loop:

Pick edgeSuccessPick edgeSuccessPick edgeSuccessPick edgeSuccessPick edgeFailureStart OverSuccess

・ 同 ト ・ ヨ ト ・ ヨ ト

- Chance of acceptance is exponential in # of dimensions
- Suppose each edge accepts with probability at least α :

 $\mathbb{P}(\text{accepting all edges}) \geq \alpha^{|\mathcal{E}|}$

• Need $\exp\{-\beta\} > 1 - c/n$ for linear run time

イロト 不得 トイヨト イヨト 二日

Solution is to Recycle

- Do not throw away sample after rejection
- Keep as much as possible that is still "random"
- In other words, recycle

Mark Huber (Duke University)

Single run through repeat loop:

Pick edge	Success
Pick edge	Success
Pick edge	Success
Pick edge	Success
Pick edge	Failure
Recycle	
Pick edge	Success
Pick edge	Success

Usually only small portion of sample contaminated by rejection

:

Outline

- ۲

• What is perfect sampling?

RR for Autonormal

- RR for continuous state spaces
- RR for this model
- Analyzing the running time

- The

- Measurable space (Ω, \mathcal{F}) (the *primary state space*)
- **2** Measurable space $(\Omega^*, \mathcal{F}^*)$ (the *dual state space*)
- **③** For all $x^* \in \Omega^*$, a distribution $\Lambda(x^*, \cdot)$ on Ω
- The target distribution π on Ω
- **5** A dual state x_{π}^* where $\Lambda(x_{\pi}^*, \cdot) = \pi(\cdot)$
- An initial dual state x_0^* where $\Lambda(x_0^*, \cdot)$ is easy to simulate
- **O** Bivariate kernel **K** on $\Omega^* \times \Omega$ with design property

RR runs a bivariate chain:

$$A_t = (\text{index for distribution of } X_t, \text{ state } X_t \text{ in } \Omega)$$

always making sure that

 $\mathbb{P}(X_t \in A | \text{history of index states}) = \Lambda(\text{last index state}, A)$

イロト イポト イヨト イヨト

3

Notation for history of process up until time *t*:

$$\mathcal{H}_t^* = \sigma(X_0^*, \ldots, X_t^*)$$

Desire the following invariant:

$$(\forall A \in \mathcal{F})(\mathbb{P}(X_t \in A | \mathcal{H}_{t-1}^*, X_t^* = x_t^*) = \Lambda(x_t^*, A))$$

This gives us interruptibility

$$(\forall A \in \mathcal{F})\mathbb{P}(X_T \in A | T < \infty) = \pi(A)$$

Mark Huber (Duke University)

RR on continuous state spaces

New Developments in MCMC 24 / 47

Notation for history of process up until time *t*:

$$\mathcal{H}_t^* = \sigma(X_0^*, \ldots, X_t^*)$$

Desire the following invariant:

$$(\forall A \in \mathcal{F})(\mathbb{P}(X_t \in A | \mathcal{H}_{t-1}^*, X_t^* = x_t^*) = \Lambda(x_t^*, A))$$

This gives us interruptibility

$$(orall A \in \mathcal{F})\mathbb{P}(X_T \in A | T < \infty) = \pi(A)$$

Mark Huber (Duke University)

New Developments in MCMC 24 / 47

Notation for history of process up until time *t*:

$$\mathcal{H}_t^* = \sigma(X_0^*, \ldots, X_t^*)$$

Desire the following invariant:

$$(\forall A \in \mathcal{F})(\mathbb{P}(X_t \in A | \mathcal{H}_{t-1}^*, X_t^* = x_t^*) = \Lambda(x_t^*, A))$$

This gives us interruptibility

$$(orall A \in \mathcal{F})\mathbb{P}(X_T \in A | T < \infty) = \pi(A)$$

Mark Huber (Duke University)

・ 同 ト ・ ヨ ト ・ ヨ ト

Classic interruptible algorithm: acceptance/rejection

- Can abort procedure in middle
- Can start over any time without affecting output

Noninterruptible algorithm: CFTP

- probability of aborting early must equal 0
- otherwise introduces unknown amount of bias

Use the design property.

Notation for distribution of (X_{t+1}^*, X_{t+1}) given X_t^* and $[X_t|X_t^*] \sim \Lambda(X_t^*, \cdot)$:

$$\mathbb{P}^{\Lambda}(X_{t+1}^* \in B, X_{t+1} \in A | X_t^* = x^*) := \\ \int_{x \in \Omega} \Lambda(x^*, \mathsf{d}x) \mathbb{P}(X_{t+1}^* \in B, X_{t+1} \in A | X_t^* = x^*, X_t = x)$$

Design property

Kernel **K** has the *design property* if for all x^* and y^* satisfying $\mathbb{P}(X_{t+1}^* \in dy^* | X_t^* = x^*) > 0$ and all $A \in \mathcal{F}$:

$$\Lambda(y^*, A) = \mathbb{P}^{\Lambda}(X_{t+1} \in A | X_{t+1}^* = y^*, X_t^* = x^*)$$

Mark Huber (Duke University)

RR on continuous state spaces

New Developments in MCMC 26 / 47

イロト 不得 トイヨト イヨト 二日

The design property similar to reversibility for Markov chains

- Reversibility is how Gibbs and Metropolis work
- Do not need to check reversibility to use Gibbs and Metropolis
- Gibbs or Metropolis guarantee reversibility
- Similarly, there is automatic way to get design property
- Once the design property in place, generating variates easy

The Randomness Recycler method

1) Let
$$t \leftarrow 0, X_0^* \leftarrow x_0^*$$

- 2) **Choose** X_0 from distribution $\Lambda(x_0^*, \cdot)$
- 3) While $X_t^* \neq x_\pi^*$ do steps 4 and 5
- 3) **Choose** (X_{t+1}^*, X_{t+1}) by taking on step in bivariate chain

4) Let
$$t \leftarrow t + 1$$

5) Let
$$T \leftarrow t$$

6) **Output** X_T

イロト イヨト イヨト イヨト

28/47

Begin with no edges in graph

- makes generating variate easy
- all nodes independent

Add in edges

index needs to keep track of which edges are added

When reject recycle

- accept probability $f(x(e))/sup_s f(s)$
- reject weight $1 f(x(e)) / sup_s f(s)$
- freeze endpoints of e at their current values

Some are as before...

1 Measurable space (Ω, \mathcal{F}) (the *primary state space*) $\Omega = [0, 1]^V$, with Borel sets

4 The target distribution π on Ω

$$\pi(dx) = Z^{-1} \left[\prod_{i \in V} \exp\{-(.5)\sigma^{-2}(x(i) - d(i))^2\} \right]$$
$$\left[\prod_{\{i,j\} \in E} \exp\{-\beta(x(i) - x(j))^2\} \right]$$

Mark Huber (Duke University)

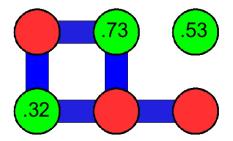
New Developments in MCMC 30/47

3

Dual state space

The dual state space keeps track of two things

- Which edges are *enforced* in the graph
- Which nodes are *frozen* at their values

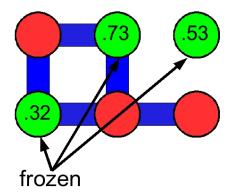


ъ

Dual state space

The dual state space keeps track of two things

- Which edges are *enforced* in the graph
- Which nodes are *frozen* at their values

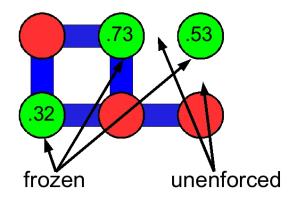


ъ

Dual state space

The dual state space keeps track of two things

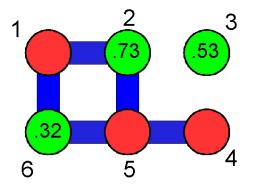
- Which edges are *enforced* in the graph
- Which nodes are frozen at their values



ъ

Notation for index sets

2 Measurable space $(\Omega^*, \mathcal{F}^*)$ (the *dual state space*)



 $x^* = (\emptyset, .73, .53, , \emptyset, \emptyset, .32, \{\{1, 2\}, \{1, 6\}, \{2, 5\}, \{4, 5\}, \{5, 6\}\})$

Sac

くぼう くほう くほう

③ For all $x^* ∈ Ω^*$, a distribution $Λ(x^*, ·)$ on Ω

$$\begin{split} \Omega(x^*) &:= \{ x \in [0,1]^n : (\forall v \in V) (x^*(v) \neq \emptyset \to x(v) = x^*(v) \} \\ H(x^*,x) &:= -\frac{1}{2\sigma^2} \sum_{v \in V} (x(v) - d(v))^2 - \sum_{\{i,j\} \in x^*(n+1)} \frac{1}{2} \beta(x(i) - x(j))^2 \\ \Lambda(x^*,dx) &:= Z(x^*)^{-1} \mathbf{1} (x \in \Omega(x^*)) \exp(-H(x^*,x)), \end{split}$$

Configurations in $\Omega(x^*)$ have nodes frozen at values $H(x^*, x)$ only enforces edges in $x^*(n+1)$

Mark Huber (Duke University)

RR on continuous state spaces Ne

New Developments in MCMC 33 / 47

イロト 不得 ト イヨト イヨト

- A dual state x_{π}^* where $\Lambda(x_{\pi}^*, \cdot) = \pi(\cdot)$ $x_{\pi}^* = (\emptyset, \dots, \emptyset, E)$
- $(x_{\pi}^* = all edges enforced, no nodes frozen)$
 - An initial dual state x_0^* where $\Lambda(x_0^*, \cdot)$ is easy to simulate $x_0^* = (\emptyset, \dots, \emptyset, \emptyset)$

(easy to generate when no edges!)

Consider an edge $\{1,2\}$ that is not enforced

Accept the addition of the edge with probability

$$f_{\{1,2\}}(x(1),x(2))/sup_{a,b\in[0,1]}f_{\{1,2\}}(a,b)$$

Mark Huber (Duke University)

RR on continuous state spaces

New Developments in MCMC 35 / 47

3

Consider an edge $\{1,2\}$ that is not enforced

Accept the addition of the edge with probability

$$f_{\{1,2\}}(x(1),x(2))/sup_{a,b\in[0,1]}f_{\{1,2\}}(a,b)$$

Mark Huber (Duke University)

RR on continuous state spaces

New Developments in MCMC 35 / 47

э

When accept, multiplies weight of configuration by:

 $f_{\{1,2\}}(x(1),x(2))$

When reject, multiplies weight of configuration by:

$$1 - f_{\{1,2\}}(x(1), x(2)) / sup_{a,b \in [0,1]} f_{\{1,2\}}(a, b)$$

Solution: freeze endpoints of the edge

Mark Huber (Duke University)

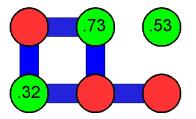
RR on continuous state spaces

New Developments in MCMC 36 / 47

3

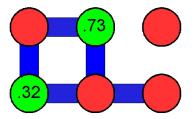
・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- Suppose no edges adjacent to frozen node
- Recolor node according to g_v



< 回 ト < 三 ト < 三

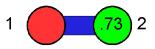
- Suppose no edges adjacent to frozen node
- Recolor node according to g_v



-

• I > • = • •

One step: removing an edge



Accept the removal of the edge with probability

$$f_{\{1,2\}}(x(1),x(2))^{-1}/sup_{a,b\in[0,1]}f_{\{1,2\}}(a,b)^{-1}$$

Mark Huber (Duke University)

RR on continuous state spaces New Developments in MCMC

イロト イポト イヨト イヨト

38/47

1 (.73) 2

Accept the removal of the edge with probability

$$f_{\{1,2\}}(x(1),x(2))^{-1}/sup_{a,b\in[0,1]}f_{\{1,2\}}(a,b)^{-1}$$

Mark Huber (Duke University)

RR on continuous state spaces New Developments in MCMC

イロト イポト イヨト イヨト

38/47

When accept, multiplies weight of configuration by: $f_{\{1,2\}}(x(1), x(2))^{-1}$

{1,2}(~(·),~(-))

When reject, multiplies weight of configuration by:

$$1 - f_{\{1,2\}}(x(1), x(2))^{-1} / sup_{a,b \in [0,1]} f_{\{1,2\}}(a, b)^{-1}$$

Solution: freeze endpoints of the edge

Mark Huber (Duke University)

3

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- If no frozen nodes exist, try to add edge
- If frozen node has adjacent edge, try to remove edge
- If frozen nodes exist with no adjacent edge, recolor nodes

< ロト < 同ト < ヨト < ヨト

40/47

Theorem

Let

 $\Delta := maximum degree of the graph$

$$ilde{p}$$
 := $\min_{s:f(s)>0} f(s) / \max_s f(s)$

$$\delta := -1 + (2\Delta - 1)[1 - \tilde{p}]$$

T := number of steps taken by one run of RR.

If $\delta < 0$ then

$$\mathbb{E}[T] \leq \min\{3|E|\delta^{-1}, 3|E|^2\}.$$

Each step takes time $O(\Delta)$ to execute.

3

Consider

 $\Phi(x_t^*) = \#$ of unenforced edges + # edges next to frozen nodes in x_t^* Can show that

$$\mathbb{E}(\Phi(X^*_{t+1}|X^*_t)) \leq X^*_t + \delta, ext{ w/ probability 1}$$

Mark Huber (Duke University)

RR on continuous state spaces New Developments in MCMC

イロト 不得 トイヨト イヨト 二日

590

42/47

Chance of accepting and removing an edge is at least

p

Chance of accepting and increasing Φ by $2\Delta-2$ at most

$$1-\tilde{p}$$

Hence

$$\mathbb{E}(\Phi(X^*_{t+1}|X^*_t)) \leq X^*_t - ilde{
ho} + (1 - ilde{
ho})(2\Delta - 2)$$

Mark Huber (Duke University)

New Developments in MCMC 43 / 47

< ロト < 同ト < ヨト < ヨト

For Autonormal models

Corollary

Let

 $\Delta := maximum degree of the graph$

$$\delta := -1 + (2\Delta - 1)[1 - \exp(-\beta)]$$

T := number of steps taken by one run of RR.

If $\delta < 0$ or equivalently:

$$\beta \leq \ln\left(1 + \frac{1}{2\Delta - 1}\right)$$

then

$$\mathbb{E}[T] \leq \min\{3|E|\delta^{-1}, 3|E|^2\}.$$

Each step takes time $O(\Delta)$ to execute.

Mark Huber (Duke University)

RR on continuous state spaces

э

< ロ ト < 回 ト < 回 ト < 回 ト</p>

A. Gibbs [4] showed

- Gibbs sampler for Autnormal model converges in *O*(*n* ln *n*) time in Wasserstein metric
- Came close to similar result for perfect sampling
- Method can be updated
 - Gibbs + catalytic coupling + multishift coupling for uniforms gives perfect simulation with CFTP [5]
 - Run time $O(n \ln n)$ (constant complex function of σ, β)

・ロト ・ 同ト ・ ヨト ・ ヨト

Large β (low temperature) CFTP wins

- Run time $\Theta(n \ln n)$
- Pick one: interruptible, read-once
- Small β (high temperature) **RR** wins
 - Run time $\Theta(n)$
 - Interruptible, read-once
- More complicated problems
 - CFTP loses monontonic advantage, use variants
 - RR same algorithm as presented earlier

References

J. Besag.

Spatial interaction and the statistical analysis of lattice systems (with discussion). *J. Roy. Stat. Soc. B*, 36:192–236, 1974.

J. Besag.

On the statistical analysis of dirty pictures.

J. Roy. Stat. Soc. B, 48:259-302, 1986.

J. A. Fill and M. L. Huber. The Randomness Recyler approach to perfect sampling. In *Proc. 53rd Session of the ISI*, pages 69–72, 2000.

A. Gibbs.

Convergence in the Wasserstein metric for markov chain monte carlo algorithms with applications to image restoration. *Stochastic model*, 20:473–492, 2004.

M. Huber.

How many scales does a greyscale need for rapid mixing? preprint, 2006.