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Introduction wherea., 3. > 0, 0 < m,m < 1 andmy + m < 1. e Model 2: Due to the prior distribution far, the poste-

In modelling spatial data there is often the need to use mddpte in model (1) that the common and idiosynchraticrior distributions forAZ; and M/, are not of known form.
els that are able to capture some form of correlation ggasest; andF; have the same base distributiohh and  We therefore use a Metropolis-Hastings step for updating
tween some variables. For example, we may want to Mhat distinguish them are their concentration parametershem. For all other parameters we use Gibbs sampling.
troduce spatial dependence in the rates of occurrence of\énand/;.

epidemic in some geographical regions. Additionally, w Results

can use the flexible modelling provided by Bayesian no@-ur proposed work We checked the two models using simulated data.

parametric methods. It iIs known that both the DP and the N-IGP can be Coﬁxample Consider the case
structed by normalising the gamma process and the inverse=,; —

Bayesian nonparametric modelling Gaussian process, respectivelyB C (), Y ~ 0.2-N(—-10,1) + 0.8 - N(1, 1.)7 i=1,2,...,162
The term “Bayesian nonparametric models” refers to prob{B) = %, whereF' ~ DP/N-IGRAM H) and Yoi ~ 0.5 j N_(& 1)_ T _O°5 ) N(1’_1)> v=1,2,...,162.

ability models with infinitely many parameters. One wag ~ GammaPr/Inv-Gaussianie H ) The predictive distributions in both_ cases were as we would
to construct such models is by using random probability fact, normalising a random measure is a general metHfatPect them to be and are shown in figure 1.

measures (RPM), i.e. probability measures that are thepficonstructing random probability measures. 0.06
selves random. The mostly used RPM is the Dirichlet préhe idea of our project will be to exploit the infinite divis-
cess (DP) (Ferguson, 1973). An alternative choice is thity of the underlying random measure, in order to con-

normalised inverse-Gaussian process (N-IGP) (Lijoi, Mes#tuct random probability measures which are identically

0.04

0.02

and Piinster, 2005). distributed, but not independent. Those models could be Y s o & o s 1
RPMs are usually used in some middle stage of a hierardi$ed in modelling spatial data, when it is natural to con- .
cal model, for example: sider them as identically distributed and dependent. 0:03_
As a simple example, consider the DP. The gamma process 0.02)
Yi~vgl(lh), i=1,2,...,n is infinitely divisible, i.e. if

0 ~ F G* ~ GammaPiMH), G; ~ GammaP{M;H), i = e

1,2,....k, and>", M; = M, thenv A C Q,

'~ RPM()) Figure 1: The predictive distribution for Y; and Y;

k
X d . .
A~ H G'(A) = > _Gi(A). Note also that, in order to have a common weight in the two
For the cases of DP and N-IGP, for example, this structure data sets, this must be between 0 and 0.5, and since the case
can help overcome the discreteness of their realisatioBy.normalising this expression, we haweA C (2, e = 0.5 (w = 0.5) leads to the most parsimonious alloca-
Also, a hierarchical structure can lead to mixture models. (A ey E OOV A tion of the case$’;, the Bayesian methodology will tend to
Almost all methods for posterior inference proposed In thep™*( A) = (4) — 2iz Gil4) =) {()Gi(A) favor this one. So,
| i G*(Q) YF,Gi(Q) = F GG iid
literature are Markov Chain Monte Carlo (MCMC) meth- j=147 i=1 Zuj=i i Yo ~ 0.2-N(—10,1) 4+ 0.3 - N(1,1) +0.5-N(1,1) . and

ods, and especially Gibbs sampling. oAy ek oG9 ) F Fy
o = FHA) = 2wk (d) wherew, = =205 o) Yo 2 0.5 N(8,1)+0.5- N(1, 1)
Combining inference Consider now the two-components case 2 = —
It is the case where we have data that have some formLet F;, ~ DP(M,, H) and F;, F3 ~ DP(M,, H). The predictive distributions faF;,, F; andFs;, shown in fig-
correlation, as in the example provided in the IntroductioBy normalisingF; and F5> we get: ure 2 were also as one would expect to be.
There are many ways to model such data. In the nonpara- ) .
metric context, we might consider using related nonpara- FY(A) = whi(A) + (1 — w)F3(A)
metric models. An example of such a nonparametric modgly by normalising, andF; we get: Pl - /\ -
IS proposed in (Miller, Quintana and Rosner, 2004). %% 5 10 s o0 s 10 15
. . Ff(A) = wF(A) + (1 — w)F3(A) 0.06 . . | | | |

The model of Muller, Quintana and Rosner -
(2004) Clearly, the two produced RPMs are identically distribyted LN N
Assume that we havd related submodels, each correbut not independent. In fact, it can be shown thate (2, R S S
sponding to the distributionél,, H,, ..., H;. From each M, |
submodel we have observations;, ¢ = 1,2,...,n,. Sup- Corr(F{(A), Fy(A)) = . | /\

o . / My + My 0 . . .
pose that each distributiald; can be written as 20 s 0 s o 5 10 1
Hj = eFy+ (1—e)F;, j=1,2,...,J,0<e <1, where Nowwe can embed the above structure into a hierarchical
Fy, Fy,...,F; are some nonparametric distributions. Weiodel thatis very similar to model (1) (for = 2) - Figure 2: The predictive distribution for £y, 7 and F;

therefore have a common paf,j and an idiosyncratic part The posterior sample for the weight Is centered around the
(£), specific for each{; (and respective submodel ). In value 0.5, again as expected (figure 3). In this prediction,
this way, we have introduced dependence betweenthe suby, . ~ H,, H, = wF, + (1—w)F;,,,j=1,2 (2) however, using model (2), we get an additional mode at

models. Additionally, in this model we can directly infer o zero. This drawback is obviously due to the prior of w.
about each model-specific part and about the part that i§1 ™ DP(My, Go(m, B)), Iy, Fy ~ DP(Ma, Go(m, B)) -
common in all the submodels. Note thas common in all My, My, %S Galag, by), w ~ Be(M;j, My),
distributionsf{; and can be seen as the level of borrowin . e |
strength across them. 3 IW(g, (qR)™), (m, B) ~ N(mq, 4) x IW (e, (cC') ™) >
For example, consider the following hierarchical mixtufe o 29007
Dirichlet processes (MDP) model: We can see that in this m0d9|, we have an additional “rela- 2000
tionship” between our parameters,~ Be(M;, M,). This ool
yji ~ N(pji, S), j=1,2,...,J,i=1,2,...,n; relationship can cause some complications, both in alge- .
braic calculations and in posterior simulation. However,
pji ~ Hj, wheret; = eky + (1 —e)F 1) thisis a very special case and the behaviour of such models .
Fy ~ DP(M;, Go(m, B)), j=0,1,2,...,J must be studied in a broader context. % o1 o0z o3 o4 05 05 oF
1d
Mo, My, ..., My ~ Gaag, by), € ~ ple), Computational issues Figure 3: Posterior sample ofe for model 1
S ~ IW(q, (C]R)_l), (m, B) ~ m(m, B) In models (1) and (2), we are mostly interesteldinally, we tried using the first model by fixing thé ;. For

- e ST mall values of them, the results were as before, whereas
where I'W (s, D) denotes the inverse Wishart distributiof? the predictive distributions for each datasefqr[arger values (e.g. 25), the results weren’t so good.

with s degrees of freedom and matrix parameber PYjn41lYj1s -5 Yjn;) @nd probably in the posterior
Gy = N(m, B), a multivariate normal distribution with pa_dIStrIbuthnS of the concentration parametéfsand of the p farances

rametersn, and B, which are given a conjugate hyperpriof®Mmmon weights of the common patt,or w. Posterior

. _ : : : : - ~~ 1] Ferguson, T.S. (1973), A Bayesian Analysis of some noaapatrics problems,
dlStI’IbUtIOﬂZ?T(m, B) — N(mo,A) X ]W(C, (CC)_l). The inference for both models Is eaSIIy Implemented usmg[ The Annals of Satistics, 1, 209-230.

authors suggest a prior ferthat allows for positive proba- MCMC algorithms: 2] Miller, P., Quintana, F.A. & Rosner, G. (2004), A Method fom@ining In-

e . 4 : : - otr i _  ference Across Related Nonparametric Bayesian Modelsnal of the Royal
bilities for the two extreme cases= 0 ande = 1 - e Model 1: For conjugate prior distributions of the pa Satistical Society Series B, Vol 66, No. 3, 735-749.

rameters, this algorlthm Is a Gibbs Sampler' SImUIatlon_%s] Lijoi, A., Mena, R.H. & Prinster, I. (2005), Hierarchical Mixture Modelling

p(e) = modo(e) +moi(e) + (1 —m — m)Bela, 5) are also enhanced by using appropriate auxiliary vari- With Normalized Inverse Gaussian Priodsurnal of the American Statistical
ables Association, Vol. 100, No. 472, 1278-1291.







