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Introduction
In modelling spatial data there is often the need to use mod-
els that are able to capture some form of correlation be-
tween some variables. For example, we may want to in-
troduce spatial dependence in the rates of occurrence of an
epidemic in some geographical regions. Additionally, we
can use the flexible modelling provided by Bayesian non-
parametric methods.

Bayesian nonparametric modelling
The term “Bayesian nonparametric models” refers to prob-
ability models with infinitely many parameters. One way
to construct such models is by using random probability
measures (RPM), i.e. probability measures that are them-
selves random. The mostly used RPM is the Dirichlet pro-
cess (DP) (Ferguson, 1973). An alternative choice is the
normalised inverse-Gaussian process (N-IGP) (Lijoi, Mena
and Pr̈unster, 2005).
RPMs are usually used in some middle stage of a hierarchi-
cal model, for example:

Yi ∼ g(θi), i = 1, 2, . . . , n

θi ∼ F

F ∼ RPM(λ)

λ ∼ H

For the cases of DP and N-IGP, for example, this structure
can help overcome the discreteness of their realisations.
Also, a hierarchical structure can lead to mixture models.
Almost all methods for posterior inference proposed in the
literature are Markov Chain Monte Carlo (MCMC) meth-
ods, and especially Gibbs sampling.

Combining inference
It is the case where we have data that have some form of
correlation, as in the example provided in the Introduction.
There are many ways to model such data. In the nonpara-
metric context, we might consider using related nonpara-
metric models. An example of such a nonparametric model
is proposed in (M̈uller, Quintana and Rosner, 2004):

The model of Müller, Quintana and Rosner
(2004)
Assume that we haveJ related submodels, each corre-
sponding to the distributionsH1, H2, . . . , HJ. From each
submodelj we have observationsyji, i = 1, 2, . . . , nj. Sup-
pose that each distributionHj can be written as
Hj = εF0 + (1− ε)Fj, j = 1, 2, . . . , J, 0 ≤ ε ≤ 1, where
F0, F1, . . . , FJ are some nonparametric distributions. We
therefore have a common part (F0) and an idiosyncratic part
(Fj), specific for eachHj (and respective submodel j). In
this way, we have introduced dependence between the sub-
models. Additionally, in this model we can directly infer
about each model-specific part and about the part that is
common in all the submodels. Note thatε is common in all
distributionsHj and can be seen as the level of borrowing
strength across them.
For example, consider the following hierarchical mixture of
Dirichlet processes (MDP) model:

yji ∼ N(µji, S), j = 1, 2, . . . , J, i = 1, 2, . . . , nj

µji ∼ Hj, whereHj = εF0 + (1 − ε)Fj (1)

Fj ∼ DP(Mj, G0(m, B)), j = 0, 1, 2, . . . , J

M0, M1, . . . , MJ
iid
∼ Ga(a0, b0), ε ∼ p(ε),

S ∼ IW (q, (qR)−1), (m, B) ∼ π(m, B)

whereIW (s, D) denotes the inverse Wishart distribution
with s degrees of freedom and matrix parameterD,
G0 ≡ N(m, B), a multivariate normal distribution with pa-
rametersm andB, which are given a conjugate hyperprior
distribution:π(m,B) = N(m0, A) × IW (c, (cC)−1). The
authors suggest a prior forε that allows for positive proba-
bilities for the two extreme casesε = 0 andε = 1 :

p(ε) = π0δ0(ε) + π1δ1(ε) + (1 − π0 − π1)Be(αε, βε)

whereαε, βε > 0, 0 ≤ π0, π1 < 1 andπ0 + π1 < 1.
Note in model (1) that the common and idiosynchratic
casesF0 andFj have the same base distributionG0 and
what distinguish them are their concentration parameters
M0 andMj.

Our proposed work
It is known that both the DP and the N-IGP can be con-
structed by normalising the gamma process and the inverse-
Gaussian process, respectively:∀ B ⊂ Ω,

F (B) = G(B)
G(Ω) , whereF ∼ DP/N-IGP(MH) and

G ∼ GammaPr/Inv-GaussianPr(MH).
In fact, normalising a random measure is a general method
of constructing random probability measures.
The idea of our project will be to exploit the infinite divis-
ibility of the underlying random measure, in order to con-
struct random probability measures which are identically
distributed, but not independent. Those models could be
used in modelling spatial data, when it is natural to con-
sider them as identically distributed and dependent.
As a simple example, consider the DP. The gamma process
is infinitely divisible, i.e. if
G∗ ∼ GammaPr(MH), Gi ∼ GammaPr(MiH), i =
1, 2, . . . , k, and

∑k
i=1 Mi = M, then∀ A ⊂ Ω,

G∗(A)
d
=

k∑

i=1

Gi(A).

By normalising this expression, we have:∀ A ⊂ Ω,

F ∗(A) =
G∗(A)

G∗(Ω)
=

∑k
i=1 Gi(A)

∑k
j=1 Gj(Ω)

=
k∑

i=1

Gi(Ω)Gi(A)
∑k

j=i Gj(Ω)Gi(Ω)

⇒ F ∗(A) =
∑k

i=1 wiFi(A) wherewi = Gi(Ω)
∑k

j=1
Gj(Ω)

.

Consider now the two-components casek = 2 :
Let F1 ∼ DP(M1, H) andF2, F3 ∼ DP(M2, H).
By normalisingF1 andF2 we get:

F ∗
1 (A) = wF1(A) + (1 − w)F2(A)

and by normalisingF1 andF3 we get:

F ∗
2 (A) = wF1(A) + (1 − w)F3(A)

Clearly, the two produced RPMs are identically distributed,
but not independent. In fact, it can be shown that∀A ∈ Ω,

Corr(F ∗
1 (A), F ∗

2 (A)) =
M1

M1 + M2
.

Now we can embed the above structure into a hierarchical
model that is very similar to model (1) (forJ = 2) :

yji ∼ N(µji, S), j = 1, 2 i = 1, 2, . . . , nj

µji ∼ Hj, Hj = wF1 + (1 − w)Fj+1 , j = 1, 2 (2)

F1 ∼ DP(M1, G0(m, B)), F2, F3
iid
∼ DP(M2, G0(m,B))

M1, M2
iid
∼ Ga(a0, b0), w ∼ Be(M1, M2),

S ∼ IW (q, (qR)−1), (m, B) ∼ N(m0, A) × IW (c, (cC)−1)

We can see that in this model, we have an additional “rela-
tionship” between our parameters,w ∼ Be(M1, M2). This
relationship can cause some complications, both in alge-
braic calculations and in posterior simulation. However,
this is a very special case and the behaviour of such models
must be studied in a broader context.

Computational issues
In models (1) and (2), we are mostly interested
in the predictive distributions for each dataset,
p(yj,nj+1|yj,1, . . . , yj,nj

) and probably in the posterior
distributions of the concentration parametersMj and of the
common weights of the common part,ε or w. Posterior
inference for both models is easily implemented using
MCMC algorithms:

•Model 1: For conjugate prior distributions of the pa-
rameters, this algorithm is a Gibbs sampler. Simulations
are also enhanced by using appropriate auxiliary vari-
ables.

•Model 2: Due to the prior distribution forε, the poste-
rior distributions forM1 andM2 are not of known form.
We therefore use a Metropolis-Hastings step for updating
them. For all other parameters we use Gibbs sampling.

Results
We checked the two models using simulated data.
Example: Consider the case

Y1i
iid
∼ 0.2 · N(−10, 1) + 0.8 · N(1, 1), i = 1, 2, . . . , 162

Y2i
iid
∼ 0.5 · N(8, 1) + 0.5 · N(1, 1), i = 1, 2, . . . , 162.

The predictive distributions in both cases were as we would
expect them to be and are shown in figure 1:
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Figure 1: The predictive distribution for Y1 and Y2

Note also that, in order to have a common weight in the two
data sets, this must be between 0 and 0.5, and since the case
ε = 0.5 (w = 0.5) leads to the most parsimonious alloca-
tion of the casesFj, the Bayesian methodology will tend to
favor this one. So,
Y2i

iid
∼ 0.2 · N(−10, 1) + 0.3 · N(1, 1)

︸ ︷︷ ︸

F1

+0.5 · N(1, 1)
︸ ︷︷ ︸

F0

. and

Y2i
iid
∼ 0.5 · N(8, 1)

︸ ︷︷ ︸

F2

+0.5 · N(1, 1)
︸ ︷︷ ︸

F0

The predictive distributions forF0, F1 andF2, shown in fig-
ure 2 were also as one would expect to be.
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Figure 2: The predictive distribution for F0, F1 and F2

The posterior sample for the weight is centered around the
value 0.5, again as expected (figure 3). In this prediction,
however, using model (2), we get an additional mode at
zero. This drawback is obviously due to the prior of w.
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Figure 3: Posterior sample ofε for model 1
Finally, we tried using the first model by fixing theMj. For
small values of them, the results were as before, whereas
for larger values (e.g. 25), the results weren’t so good.
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