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The Metropolis Algorithm

I The Metropolis algorithm is a popular method for generating
samples from virtually any distribution π.

I Idea: simulate a Markov chain {Φk}k≥0 on X with transition
kernel P where P is such that πP = π.

I Algorithm:

1. Given that the chain is at x, draw y from some symmetric
distribution q.

2. With probability α(x, x + y) = 1 ∧ π(x+y)
π(x) , the chain moves to

x + y. Otherwise, the chain stays at its current location x.

I P is reversible with respect to π, and therefore admits π as
invariant distribution.



Stability and Rate of Convergence

I Questions:
I Stability ? for which functions can I expect that

Ex[f(Φk)] → π(f) for any x ∈ X ?
I Rate of Convergence ? Can I determine a sequence {r(n)} and

control functions f and V such that, for any x ∈ X,

r(n) sup
|φ|≤f

|Pnf(x)− π(f)| ≤ V (x)



Problems

I Classical answers: identify a small set C and a drift function
V satisfying either

I Foster-Lyapunov drift conditions, e.g. PV ≤ λV + b1C

I (Gersende Fort) Weaker form drift, e.g. PV ≤ V − cV α + b1C .

I Problem: Identifying small sets for MCMC is not a difficult
issue (but minorizing constants can be very small !)... but
checking drift conditions is often a tedious job.

I Today: another approach inspired by fluid limit techniques
developed to study the stability of stochastic networks



The Metropolis Algorithm: Martingale Decomposition

Φk+1 = Φk + Bk+1Yk+1 Bk ∼ Ber (α(Φk,Φk + Yk+1))
= Φk + ∆(Φk) + εk+1

1. εk+1
def= Φk+1 − E [Φk+1 |Φk] is a martingale increment

2. ∆(x) =
∫
Rx

y
(

π(x+y)
π(x) − 1

)
q(y)dy where

Rx
def= {y, π(x + y) < π(x)} is the (potential) rejection region.

Can we say something sensible from this simple recurrence
equation ?



The classical ODE Method

I Consider a dynamical system described by the recurrence
equation

Φγ
k+1 = Φγ

k + γH(Φγ
k , Uk+1) , k ≥ 0 ,

where {Uk} is an i.i.d. † sequence, H : X× R → X is a
smooth function and γ is a small parameter.

I ODE method: guess properties of {Φγ
k} from the ODE

µ̇
def= h(µ)

where h(x) def= E[H(x,U)] is the mean field.

†More complicated noise models can be considered



ODE method: characterization of the stationary
distributions

(after Fredlin-Wentzell, Fort-Pages)

I {Φγ
k} is an homogeneous Markov chain.

I Under mild conditions, for 0 < γ ≤ γ0, the chain has (at
least) one invariant distribution πγ . In addition, the set
{πγ}γ≤γ0 is tight.

I The ODE µ̇ = h(µ) has invariant distribution(s) satisfying the
flow-invariance property. Denote by Jh the set of such
distributions.

I Results The limiting points of {πγn} where {γn} is any
sequence satisfying limn γn = 0 is included in Jh.



ODE method and Stochastic Stability
(after Borkar-Meyn)

I ODE can also be used to establish stochastic stability of

Φγ
k+1 = Φγ

k + γH(Φγ
k , Uk+1)

= Φγ
k + γh(Φγ

k) + γεγ
k+1

where εγ
k+1

def= H(Φγ
k , Uk+1)− h(Φγ

k).
I Assumptions:

1. the radial limits h∞(µ) = limr→∞ h(rµ)/r exist and the origin
is an asymptotically stable equilibrium for the limiting ODE
µ̇ = h∞(µ)

2. E
[
|εγ

k+1|p
∣∣Fk

]
≤ C(1 + |Φγ

k |p).
I Results: The Markov chain {Φk} is stable in the sense that,

for all 0 ≤ γ ≤ γ0, i.e. for any x ∈ X,

lim sup
n→∞

Ex

(
|Φγ

k |
p
)

< ∞

The ODE method can be used to establish both the stability
and convergence of the stochastic approximation method.



Interpolated Process

I In the ODE method, all the results are obtained by letting the
stepsize γ → 0.

I In the recursion Φk+1 = Φk + ∆(Φk) + εk+1 there is no such
small parameter...

I To be able to play with limits (Gareth’s talk), scale {Φk}
simultaneously in SPACE, TIME and INITIAL CONDITION.



Interpolated Process



Understanding the scaling

Rewrite the recurrence equation as a function of the interpolated
process

η1
r ((k + 1)/r;x) = η1

r (k/r;x) + r−1∆
(
rη1

r (k/r;x)
)

+ r−1εk+1 .

Assuming the existence of the radial limits limr→∞ ∆(rµ) = h(µ)

η1
r (t;x) = η1

r (0;x) +
∫ t

0
h

(
η1

r (u;x)
)
du + E1

r (t;x) + R1
r(t;x) ,

where E1
r (t;x) def= r−1

∑[tr]
k=0 εk+1 and R1

r(t;x) is a remainder
term.



Understanding the scaling (α = 1)

I Provided that supx Ex[|ε1|p] < ∞, then

sup
x

Ex

∣∣∣∣∣∣r−1

[tr]∑
k=0

εk+1

∣∣∣∣∣∣
p

≤ Cr−p(tr)p/2

which goes to zero.

I Therefore, if we can control the error |∆(rµ)− h(µ)| as
r →∞, it is not difficult to believe that the sequence
{η1

r (t;x)} converges to a limit {η1
∞(t;x)} which happens to

be the solution of the ODE µ̇ = h(µ)...



Example: Metropolis Algorithm on R

π h(x) = limr→∞ ∆(rx)
e−x2/2σ2 −sign(x) CG

e−|x|/σ −sign(x) CL

e−|x/σ|β 0
0 < β < 1

Table: ODE associated for the Metropolis Algorithm for different choices
of the target distribution

Note that the field is radially invariant, h(rx) = h(x)



Metropolis on R: Gaussian Target
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Metropolis on R: Laplacian Target
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Metropolis on R: Weibulian Target
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Questions

1. Can we relax the assumptions ?
I What happens if ∆(rx) do not have radial limits for all x ?
I How can we avoid that the mean field h ≡ 0 be trivial ?

2. What does the stability of the solutions of the ODE (or more
generally, of potential limits of the scaled process) tell us
about the stability of the Markov chain {Φk} ?



Changing the normalization

I For the Weibul target, we do not obtain a meaningful limit
because limr→∞ ∆(rx) = 0...

I Nevertheless, modifying the normalization,

lim
r→∞

|x|1−δr1−δ∆(rx) = −sign(x)CW
def= ∆∞(x) ,

where CW
def= δ

∫∞
0

y2q(y)dy.

I Solution: Use a different scaling for TIME and SPACE.

I Set β = 1− δ and consider the polygonal process ηβ
r (t;x) that

agrees with Φk/r at the knots k/r1+β .



Changing the normalization



Changing the normalization

ηβ
r (t;x) = ηβ

r (0;x) +
∫ t

0

h(ηβ
r (u;x))du + Eβ

r (t;x) + Rβ
r (t;x)

where h(x) def= |x|−β∆(x), Eβ
r (t;x) def= r−1

∑dtr1+βe
k=1 εk and Rβ

r (t;x) is
a remainder term.

I Provided that supx Ex[|ε1|p] < ∞, then

sup
x

Ex|Eβ
r (t;x)|p ≤ Cr−p(tr)p(1+β)/2

which goes to zero as r →∞ provided that β < 1.

I When β = 1, the limit are no longer deterministic (work in progress)



Metropolis on R: weibulian target



Tightness and Continuity

I Denote by C(I,X) the space of continuous X-valued functions
on I ⊆ R+ equipped with the uniform topology.

I Denote by Qα
r;x the distribution of ηα

r (·;x) on C(R+,X).
I A probability measure Qα

x on C(R+,X) is said to be an α-
fluid limit if there exist {rn} ⊂ R+ and {xn} ⊂ X satisfying
limn→∞ rn = +∞ and limn→∞ xn = x such that {Qα

rn;xn
}

converges weakly to Qα
x on C(R+,X)

Qα
rn;xn

⇒ Qα
x .



Tightness and Continuity

I Assumption: Φk+1 = Φk + ∆(Φk) + εk+1 with {εk}
martingale increment and

1. limK→∞ supx∈X Ex[|ε1|p1{|ε1| ≥ K}] = 0
2. supx∈X

{
(1 + |x|β)|∆(x)|

}
< ∞

I Result: For all 0 ≤ α ≤ β and any sequences satisfying
limn→∞ rn = +∞ and limn→∞ xn = x,

{Qα
rn;xn

} is tight

I Fluid limits exist even if ∆ does not have meaningful radial
limits!

I Any limiting point Qα
x of a sequence {Qα

rn;xn
} is referred to as

an α-fluid limit and the set of all possible α-fluid limits is
called the α-fluid limit model.



Stability of the fluid limit model

Stability (after Stolyar): The β-fluid limit model is said to be
stable if there exist T > 0 and ρ < 1 such that for any x ∈ X with
|x| = 1,

Qβ
x

(
η ∈ D(R+,X), inf

0≤t≤T
|η(t)| ≤ ρ

)
= 1 .

I Gaussian & Laplacian cases: satisfied with β = 1.

I Weibulian case: satisfied with β = 1− δ.



Fluid limits



Stability of the fluid limit model implies the ergodicity of
the Markov Chain

I Assumptions:

1. {Φk} phi-irreducible, aperiodic, and compact sets are petite.
2. Φk+1 = Φk + ∆(Φk) + εk+1 with {εk} martingale increment

and
I limK→∞ supx∈X Ex[|ε1|p1{|ε1| ≥ K}] = 0
I supx∈X

�
(1 + |x|β)|∆(x)|

	
< ∞

3. The β-fluid limit model is stable.

I Results: for any 1 ≤ q ≤ (1 + β)−1p and any function f such
that supx∈X |f(x)|/(1 + |x|p−q(1+β)) < ∞,

nq−1 |Ex[f(Φn)]− π(f)| → 0



Step 1: State Dependent Drift Conditions

I Assumptions:

1. {Φk}k≥0 is a phi-irreducible and aperiodic.
2. There exist a function V : X → [1,∞), a stopping time τ ≥ 1,

a constant ε ∈ (0, 1) and a petite set C ⊂ X , such that,

Ex

[
τ−1∑
k=0

V 1−α(Φk)

]
≤ V (x) , x 6∈ C

Ex [V (Φτ )] ≤ (1− ε)V (x) , x 6∈ C

sup
C
{V + PV } < ∞ .

I Results: Then P is positive Harris with invariant probability π
and

1. limn→∞ n(1−α)/α ‖Pn(x, ·)− π‖TV = 0.
2. limn→∞ ‖Pn(x, ·)− π‖V 1−α = 0.



Step 2: From Fluid Limit Model Stability to
State-Dependent Drift

I The stability of the fluid limit model implies (by the
Portmanteau Theorem)

lim sup
|x|→∞

Px

(
σ > dT |Φ0|1+βe

)
= 0 ,

with σ
def= inf {k ≥ 0, |Φk| < ρ|Φ0|}.

I On the other hand, from sup(1 + |x|β)|∆(x)| < ∞ and
Lp-uniform integrability of ε,

sup
x∈X

(1 + |x|)−pEx

[
sup

0≤k≤bT |Φ0|1+βc
|Φk|p

]
< ∞ ,

I Finally, set τ
def= σ ∧ dT |Φ0|1+βe. Combining the two previous

results,
1. there exists M such that sup|x|≥M |x|−pEx [|Φτ |p] < 1,

2. Ex

[∑τ−1
k=0 |Φk|p

]
≤ C |x|p+1+β



Fluid Limit Characterization

I How can we establish the stability of the β-fluid model ?

I Answer: Not straightforward in general, except when ∆
satisfies scaling properties:

Radial Limits

There exist an open cone O ⊆ X \ {0} and a continuous function
∆∞ : O → X such that, for any compact subset H ⊆ O,

lim
r→+∞

sup
x∈H

∣∣∣rβ|x|β∆(rx)−∆∞(x)
∣∣∣ = 0 ,



Fluid Limits and ODE flow

I Assumptions:
1. Φk+1 = Φk + ∆(Φk) + εk+1 with {εk} martingale increment

and
I limK→∞ supx∈X Ex[|ε1|p1{|ε1| ≥ K}] = 0
I supx∈X

�
(1 + |x|β)|∆(x)|

	
< ∞

2. For any compact set H ⊂ O,
limr→+∞ supx∈H

∣∣rβ |x|β∆(rx)−∆∞(x)
∣∣ = 0,

I Results For any 0 ≤ s ≤ t, and any β-fluid limit Qβ
x, on the

event {η ∈ C(R+,X) : η(u) ∈ O for all u ∈ [s, t]} , the fluid
limit agrees with the flow of the ODE µ̇ = h(µ), where

h(x) def= |x|−β ∆∞(x), i.e.

sup
s≤u≤t

∣∣∣∣η(u)− η(s)−
∫ u

s
h ◦ η(v)dv

∣∣∣∣ = 0 , Qβ
x − a.s.



Fluid Limits and ODE flow

0



Characterization of the fluid limits

I Assumptions:
1. Φk+1 = Φk + ∆(Φk) + εk+1 with {εk} martingale increment

and
I limK→∞ supx∈X Ex[|ε1|p1{|ε1| ≥ K}] = 0
I supx∈X

�
(1 + |x|β)|∆(x)|

	
< ∞

2. for any x ∈ X \ {0} the ODE µ̇ = h(µ) with initial condition x
has a unique solution, denoted µ(·;x) on an interval [0, Tx].

I Results
I all β-fluid limits are deterministic and solve the ODE µ̇ = h(µ).
I For any ε > 0 and x ∈ X, and any sequences {rn} ⊂ R+ and
{xn} ⊂ X such that limn→∞ rn = +∞ and limn→∞ xn = x,

lim
n

Prnxn

(
sup

0≤t≤Tx

∣∣ηβ
rn

(t;xn)− µ(t;x)
∣∣ ≥ ε

)
= 0 .



Characterization of the fluid limits

Interpolated
processes

Trajectory of the
ODE



Back to stability

I Assumptions:

1. {Φk}k∈N phi-irreducible, aperiodic, compact sets are petite.
2. Φk+1 = Φk + ∆(Φk) + εk+1 with {εk} martingale increment

and
I limK→∞ supx∈X Ex[|ε1|p1{|ε1| ≥ K}] = 0
I supx∈X

�
(1 + |x|β)|∆(x)|

	
< ∞

3. For all H ⊂ X \ {0},
limr→+∞ supx∈H

∣∣rβ |x|β∆(rx)−∆∞(x)
∣∣ = 0,

4. stability of the ODE solution For some ρ < 1 and T > 0,
inf [0,T∧Tx] |µ(·;x)| ≤ ρ for any |x| = 1.

I Results: the β-fluid limit model is stable



Super-Exponential Target

I A probability density function π is said to be super-exponential
if π is positive, has continuous first derivatives, and

lim|x|→∞〈n(x), `(x)〉 = −∞ where `(x) def= ∇ log π(x).
I The condition implies that for any H > 0 there exists R > 0

such that

π(x + an(x))
π(x)

≤ exp(−aH) for |x| ≥ R, a ≥ 0 ,

that is, π(x) is at least exponentially decaying along any ray
with the rate H tending to infinity as |x| goes to infinity.



Figure:



Radial Limits and Homogeneity

I Assumption: The family of rejection regions
{Rrx, r ≥ 0, x ∈ O} has radial limits over O ⊆ X \ {0} if there
exists {R∞,x, x ∈ O} s.t., for any compact subset H ⊆ O,

lim
r→∞

sup
x∈H

Q (Rrx 	 R∞,x) = 0

.

I Result: for any compact set H ⊂ O,
limr→∞ supx∈H |∆(rx)−∆∞(x)| = 0, where

∆∞(x) def= −
∫

R∞,x

yq(y)dy .



Regularity in the tails

I π is regular in the tails over O if {Rrx, r ≥ 0, x ∈ O} has
radial limits over O ⊆ X \ {0} and there exists a continuous
function `∞ : X \ {0} → X such that, for all x ∈ O,

Q (R∞,x 	 {y ∈ X, 〈y, `∞(x)〉 < 0}) = 0 .

I Regularity in the tails holds with `∞(x) = limr→∞ n(`(rx))
when the curvature at 0 of the contour manifold Crx goes to
zero as r →∞.

I nevertheless, this regularity in the tails still holds in some
situations where the curvature of the contour manifolds grow
to infinity (along manifolds).



Regularity in the tails



Fluid Limit for super-exponential densities

I Assumption: π is super-exponential and regular in the tails
over O ⊆ X \ {0}. The proposal q is rotationally invariant and
has bounded moment of order p > 1.

I Results:

1. phi-irreducible, aperiodic, compact sets are small,
2. Φk+1 = Φk + ∆(Φk) + εk+1, with supx∈X |∆(x)| < ∞ and

{εk} martingale increment satisfying supx∈X Ex|ε1|p < ∞.
3. For any compact subset H ⊂ O,

limr→∞ supx∈H |∆(rx)−∆∞(x)| = 0 with

∆∞(x) = m1(q0)
`∞(x)
|`∞(x)|

,

where m1(q0)
def=

∫
X

y11{y1≥0}q0(y)dy > 0, where
y = (y1, . . . , yd).

The ODE may be seen as a version of steepest ascent algorithm to
maximize log π !



Fluid limit for the exponential family

I The tail regularity condition and the definition of the ODE
limit are more transparent in a class of models which are very
natural in many statistical contexts, namely, the exponential
family.

I Define the class P to consist of those everywhere positive
densities with continuous second derivatives π satisfying

π(x) ∝ g(x) exp {−p(x)}

I g is a positive function slowly varying at infinity,
I p is a positive polynomial in X of even order m and

lim|x|→∞ pm(x) = +∞, where pm denotes the polynomial
consisting only of the p’s m-th order terms.



Fluid limit for the exponential family

I Assumptions π ∈ P and let q is rotationally invariant.
I Results

I π is super-exponential,
I π is regular in the tails over X \ {0} with

`∞(x) = −n [∇pm (n(x))].
I For any x ∈ X \ {0}, there exists Tx > 0 such that the ODE

µ̇ = m1(q0)n(`∞(µ)) with initial condition x has a unique
solution on [0, Tx) and limt→T−x

µ(t;x) = 0.
I In addition, the fluid limit Q0

x is deterministic on D([0, Tx],X),
with support function µ(·;x).



Regularity in the tails
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The singular case

I In the regular case, we have assumed that ∆ has radial limits
in every direction of the space, i.e. for any compact set
H ⊂ O = X \ {0}, limr→∞ supx∈H |∆(rx)−∆∞(x)| = 0.

I What happens if this condition is satisfied only on O ( X \ {0}
? What can of conclusions can be reached in this case ?

I The problem becomes then much more involved, and we have
got only partial answers (and most presumably, there are not
much that can be said in full generality !)

I A special case: the singular regions (the points where there is
no radial limit !) are repulsive



The singular case

Theorem
I {Φk}k∈N phi-irreducible, aperiodic, compact sets are petite,

skip-free

I radial limits: for all H ⊂ O ( X,
limr→+∞ supx∈H

∣∣rβ|x|β∆(rx)−∆∞(x)
∣∣ = 0,

Assume in addition that

I there exists T0 > 0 such that, for any x, |x| = 1, and any

β-fluid limit Qβ
x, Qβ

x (η : η([0, T0]) ∩ O 6= ∅) = 1 .

I for any K > 0, there exist TK > 0 and 0 < ρK < 1 such that
for any x ∈ O, |x| ≤ K, inf [0,TK∧Tx] |µ(·;x)| ≤ ρK

I for any compact set H ⊂ O and any K,

ΩH
def= {µ([0, Tx ∧ TK ];x), x ∈ H} is a compact subset of O.

Then, the β-fluid model is stable.



Mixture of Gaussian distributions
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Conclusion

I ODE techniques provide a general and powerful approach to
establishing stability and ergodic theorems for a Markov chain.

I In typical applications, the assumptions of this work hold for
any p > 0 and consequently, the ergodic Theorem asserts that
the mean of any function with polynomial growth converges
to its steady-state mean faster than any polynomial rate. This
result is optimal (under the stated assumptions) since it is
impossible to obtain a geometric rate of convergence even
when ∆, {εk} and the function f are bounded.



Research directions

1. The ODE method developed within the queueing networks
research community has undergone many refinements, and has
been applied in many very different contexts. Some of these
extensions might serve well in MCMC

I Design of control variates (to reduce Monte-Carlo variance or
to design control methods)

I Choice of sampling policies (analysis of the limiting ODE
might help to understand the dynamic of the chain)

2. The ODE method may yield interesting results in situations
where the Lyapunov functions are difficult to use (hybrid
method, trans-dimensional MCMC - to do)

3. When π(x) is polynomial in the tails, the renormalization
should then be β = 1.. the fluid limits are then genuinely
non-deterministic (but are diffusion) and all the previous
theory need to be reconsidered (to do).

4. ....



Interpolated processes

Fluid limit

Thanks for your
attention !
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