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Setting the scene (I)

• Propp and Wilson (1996)
(and precursors);

• modify favourable MCMC
algorithms to be exact;

• use coupling ;

• resulting algorithms have
random run-times;

Dyer and Greenhill (1999)’s
Disconcerting Observation,

Huber’s Rejoinder.
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Setting the scene (II)

Successful CFTP
needs “secret plans
and clever tricks”:

• search for monotonicity;

• crossover (WSK 1998);

• small sets (Murdoch and Green 1998);

• bounding chains (Häggström and
Nelander 1999; Huber 2003);

• finitary CFTP (space as well as time)
(WSK 1997, Häggström and Steif 2000);

• multi-shift (Wilson 2000b);

• read-once (Wilson 2000a);

• FMMR (Fill, Machida, Murdoch, and
Rosenthal 2000).
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Impractical CFTP (I)

When is CFTP possible in principle?

• Foss and Tweedie (1998): classic
CFTP is equivalent to uniform
ergodicity

(small-set CFTP, sub-sampling).

• Nevertheless a notion of “dominated
CFTP” can be made to work in
some cases of geometric ergodicity
(WSK 1998, WSK and Møller 1999).

Application to
perpetuities
(Xn+1 = Uα

n+1(1 + Xn)):
exp(M/D/1 workload)
dominates.

Algorithm performance
is even better for 64-bit
computing . . .
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Impractical CFTP (II)

WSK (2004): any geometrically ergodic Markov chain X can (in
principle) be adapted to domCFTP.

Sketch:
• Geometric ergodicity yields Foster-Lyapunov condition

E [V (Xn+1)|Xn] ≤ γV (Xn) + b I [C] (Xn).

• Markov’s inequality: domination by exp(D/M/1 workload).

• Need γ < e−1 to make workload positive-recurrent!

• Sub-sample to improve Foster-Lyapunov γ.

• Domination maintained even under regeneration /
non-regeneration at small set C: (argument of
transportation type, eg Roberts and Rosenthal 2001).

Impractical, but similar to perpetuity example.
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Beyond Geometric Ergodicity (I)
(Joint work with Stephen Connor)

Consider polynomial ergodicity, eg
E [V (Xn+1)|Xn] ≤
V (Xn) − V (Xn)

α + b I [C] (Xn).

• Previous approach cannot work in
general.

• Many Markov chains are slow because of
“slow-down” in extremities of state-space;

• so use adaptive sub-sampling:
σn+1 = σn + dλV (Xσn)

δe;
• X is tame if (suitably) geometrically

ergodic under σ-sub-sampling.
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Beyond Geometric Ergodicity (II)

Idea: σ-time-changed X has domCFTP so “undo” time-change.

Construct stationary dominating process D
which delivers exp(D/M/1 workload)
dominator under σ-time-change.

Build X dominated by D
by coupling only at times
when D changes;

Careful conditional
probability to show how
to draw from X0;

Proceed as with geometric ergodicity.
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Beyond Geometric Ergodicity (III)

Examples of non-geometrically-ergodic tame chains:

• “Epoch chain”: spend random length of
time at random level before jumping to 0
and regenerating;

• Delayed death processes;

• Delayed simple random walks;

• Random walks on half-lines
(Tuominen and Tweedie 1994,
Jarner and Roberts 2002).

Actual examples often permit direct
domination (hence domCFTP) without
adaptive σ-sub-sampling.
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To polynomial ergodicity and beyond!

Are all polynomially ergodic chains tame?

Sub-geometric ergodicity and CFTP?

Positive recurrence and CFTP?

Sub-sampling versus maximal coupling?

Questions?
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Häggström, O. and K. Nelander (1999).
On exact simulation of Markov random fields using coupling from the past.
Scandinavian Journal of Statistics Theory and Applications 26(3), 395–411.

http://links.jstor.org
http://projecteuclid.org
http://www.cup.cam.ac.uk
http://www.interscience.wiley.com/jpages/1042-9832/
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<290::AID-RSA6>3.0.CO;2-Q
http://www.dekker.com/servlet/product/productid/STM
http://www.blackwellpublishers.co.uk/journals/sjos/


Setting the scene Impractical CFTP Beyond Geometric Ergodicity References
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