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Latent Gaussian models

Definition

Latent Gaussian models

We will consider the following class of models

1. Observed data y = {yi : i ∈ I} where m = |I|

π(y | x) =
∏
i∈I

π(yi | xi )

2. Latent Gaussian field x = (x1, . . . , xn)
T

π(x | θ) = N (x; µ, Σ(θ))

3. Hyperparameters θ
π(θ)

4. Possible linear constraints: Ax = e
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Latent Gaussian models

Definition

Latent Gaussian models

Characteristic features

I Dimension of the latent Gaussian field, n, is large, 102 − 105.

I Dimension of the hyperparameters dim(θ) is small, 1− 5, say.

I Dimension of the data dim(y) might vary, but is often
non-Gaussian.

Exceptions exists, but we do not consider these.
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Latent Gaussian models

Examples: 2D

Examples of latent Gaussian models: 2D

Disease mapping: Poisson data
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Examples: 2D

Examples of latent Gaussian models: 2D

Joint disease mapping: Poisson data
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Latent Gaussian models

Examples: 2D

Examples of latent Gaussian models: 2D

Spatial GLM with Binomial data
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Examples of latent Gaussian models: 2D

Log-Gaussian Cox-process; Weed-data
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Log-Gaussian Cox-process; Oaks-data
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Latent Gaussian models

Examples: 2D+

Examples of latent Gaussian models: 2D+

Spatial logit-model with semiparametric covariates
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Latent Gaussian models

Examples: 3D

Examples of latent Gaussian models: 3D

Scans in time; fMRI
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Latent Gaussian models

Characteristic features

Characteristic precision/covariance structure

The Gaussian x, is either

I Markov with a local neighbourhood, or

I stationary on a grid or torus

We will focus on Gaussians with local neighbourhood, ie x is a
Gaussian Markov random fields (GMRF).

Discuss the stationary case later on.
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Gaussian Markov Random fields (GMRFs)

GMRFs: def

A Gaussian Markov random field (GMRF), x = (x1, . . . , xn)
T , is a

normal distributed random vector with additional Markov
properties

xi ⊥ xj | x−ij ⇐⇒ Qij = 0

where Q is the precision matrix (inverse covariance)
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Gaussian Markov Random fields (GMRFs)

GMRFs: computational properties

I Due to Markov properties Q is a (very) sparse matrix, often
only O(n) non-zero terms

I “Computing” with GMRFs involves sparse matrices
I Factorising Q into LLT

I Solving Lu = v and LTu = v

Using numerical methods for sparse (SPD) matrices:

Case Factorisation cost

Time O(n)

Spatial O(n3/2)
Time×Space O(n2)
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Gaussian Markov Random fields (GMRFs)

GMRFs: what can we do?

I Unconditional sampling and evaluation of the log density
I Conditional sampling and evaluation of the log density

I condition on a subset
I condition on linear hard constraints
I condition on linear soft constraints

I Compute marginal variances with/without linear constraints
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MCMC based inference

MCMC based inference

Posterior

π(x,θ | y) ∝ π(θ) π(x | θ)
∏
i∈I

π(yi | xi )

Main problem concerning MCMC:

I The strong interaction between θ and x.

I Unless they are blocked, the convergence can be painfully
slow.
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MCMC based inference

The GMRF-approximation

The GMRF-approximation

Build block-MCMC algorithms based on the GMRF-approximation
π̃(x|θ, y):

I A Gaussian approximation to π(x|θ, y) matching mode and
curvature

I Markov and computational properties are preserved

Joint updates of (θ, x) are needed.
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MCMC based inference

Example

Example

Convergence for single-site sampling can be very slow and the un-
certainty can be seriously underestimated.
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Approximate inference

Goals

Approximate inference

In most cases the task for the inference, is to compute

I Posterior marginals for xi

π(xi | y)

I Sometimes, also posterior marginals for θj

π(θ | y)

Approximate inference:

I Can we use the GMRF-approximation to estimate these
directly without any MCMC?

I Can we gain robustness, accuracy and speed?
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Approximate inference

The Laplace-approximation for π(θ|y)

The Laplace approximation

Let π̃(x | y,θ) denote the family of GMRF-approximations indexed
by θ and constructed at modes x∗ = x∗(θ).

Then the Laplace approximation for π(θ|y) is

π(θ | y) =
π(x, θ|y)

π(x|y,θ)
(any x)

≈ π(x, θ|y)

π̃(x|y,θ)

∣∣∣∣∣
x=x∗(θ)

= π̃(θ|y) (1)
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Approximate inference

The Laplace-approximation for π(θ|y)

Remarks

The approximation
π̃(θ|y)

turn out to be very good, since

I x|y,θ is essentially Gaussian, since x is Gaussian.

I The error is relative and O(m−3/2) in a m−1/2 neighbourhood
after renormalisation (Tierney and Kadane, 1986).
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Approximate inference

The Laplace-approximation for π(xi |θ, y)

Approximating π(xi |y, θ)

This task is more challenging, since

I dimension of x, n is large

I and there are potential n marginals to compute, or at least
O(n).

An obvious alternative is to use the GMRF-approximation.
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Approximate inference

The Laplace-approximation for π(xi |θ, y)

Approximating π(xi |y, θ) using the Laplace approximation

I Let π̃(x−i |xi , y,θ) be the family of GMRF-approximations
indexed by (xi ,θ) and constructed at the mode
x∗−i = x∗−i (xi ,θ).

I The Laplace approximation is then

π̃(xi | y,θ) ≈ π(x,θ|y)

π̃(x−i |xi , y,θ)

∣∣∣∣∣
x−i=x∗−i (xi ,θ)

I Again, it’s essentially Gaussian

I However, a such approach is not “practical” for large n,
unless...



Approximative inference for latent Gaussian models

Approximate inference

The Laplace-approximation for π(xi |θ, y)

Approximating π(xi |y, θ) using the Laplace approximation

I Let π̃(x−i |xi , y,θ) be the family of GMRF-approximations
indexed by (xi ,θ) and constructed at the mode
x∗−i = x∗−i (xi ,θ).

I The Laplace approximation is then

π̃(xi | y,θ) ≈ π(x,θ|y)

π̃(x−i |xi , y,θ)

∣∣∣∣∣
x−i=x∗−i (xi ,θ)

I Again, it’s essentially Gaussian

I However, a such approach is not “practical” for large n,
unless...



Approximative inference for latent Gaussian models

Approximate inference

The Laplace-approximation for π(xi |θ, y)

Approximating π(xi |y, θ) using the Laplace approximation

I Let π̃(x−i |xi , y,θ) be the family of GMRF-approximations
indexed by (xi ,θ) and constructed at the mode
x∗−i = x∗−i (xi ,θ).

I The Laplace approximation is then

π̃(xi | y,θ) ≈ π(x,θ|y)

π̃(x−i |xi , y,θ)

∣∣∣∣∣
x−i=x∗−i (xi ,θ)

I Again, it’s essentially Gaussian

I However, a such approach is not “practical” for large n,
unless...



Approximative inference for latent Gaussian models

Approximate inference

The Laplace-approximation for π(xi |θ, y)

Approximating π(xi |y, θ) using the Laplace approximation

I Let π̃(x−i |xi , y,θ) be the family of GMRF-approximations
indexed by (xi ,θ) and constructed at the mode
x∗−i = x∗−i (xi ,θ).

I The Laplace approximation is then

π̃(xi | y,θ) ≈ π(x,θ|y)

π̃(x−i |xi , y,θ)

∣∣∣∣∣
x−i=x∗−i (xi ,θ)

I Again, it’s essentially Gaussian

I However, a such approach is not “practical” for large n,
unless...



Approximative inference for latent Gaussian models

Approximate inference

Practicalities

Practicalities: Overview

...we cut the costs!

I Reduce the size n to involving only the “important”
neighbours in some sense

I Remove the optimisation step in the GMRF-approximation
π̃(x−i |xi , y,θ)



Approximative inference for latent Gaussian models

Approximate inference

Practicalities

Practicalities: Overview

...we cut the costs!

I Reduce the size n to involving only the “important”
neighbours in some sense

I Remove the optimisation step in the GMRF-approximation
π̃(x−i |xi , y,θ)



Approximative inference for latent Gaussian models

Approximate inference

Practicalities

Practicalities: Overview

...we cut the costs!

I Reduce the size n to involving only the “important”
neighbours in some sense

I Remove the optimisation step in the GMRF-approximation
π̃(x−i |xi , y,θ)



Approximative inference for latent Gaussian models

Approximate inference

Practicalities

Practicalities: part I

I Compute the conditional mean in π̃(x|y,θ) when additionally
condition on xi . Rank 1 update.

I Classify using derivatives

d

dxi
Ẽ(xj | y,θ, xi )
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Approximate inference

Practicalities

Practicalities: part II

I Construct the π̃(x−i |xi , y,θ) at the same rank 1 adjusted
conditional mean.

I This trick avoids optimisation and reduce CPU but not the
computational complexity
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Summary

The integrated nested Laplace approximation (INLA) I

Step I Explore π̃(θ|y)
I Locate the mode
I Use the Hessian to construct new variables
I Grid-search
I Can be case-specific
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The Integrated nested Laplace-approximation (INLA)

Summary

The integrated nested Laplace approximation (INLA) II

Step II For each θj

I For each i , evaluate the Laplace approximation
for selected values of xi

I Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent the conditional marginal density.



Approximative inference for latent Gaussian models

The Integrated nested Laplace-approximation (INLA)

Summary

The integrated nested Laplace approximation (INLA) II

Step II For each θj

I For each i , evaluate the Laplace approximation
for selected values of xi

I Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent the conditional marginal density.



Approximative inference for latent Gaussian models

The Integrated nested Laplace-approximation (INLA)

Summary

The integrated nested Laplace approximation (INLA) II

Step II For each θj

I For each i , evaluate the Laplace approximation
for selected values of xi

I Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent the conditional marginal density.



Approximative inference for latent Gaussian models

The Integrated nested Laplace-approximation (INLA)

Summary

The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

I For each i , sum out θ

π̃(xi | y) ∝
∑

j

π̃(xi | y,θj)× π̃(θj | y)

I Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).
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The Integrated nested Laplace-approximation (INLA)

Remarks

Remarks

I The latent Gaussian makes the critical Gaussian
approximations good, as they are “essentially” Gaussian

I Obtain relative error
I We obtain correct results in limits:

I Strong smoothing: CLT type argument
I Little smoothing: no dependence of xi .
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The Integrated nested Laplace-approximation (INLA)

Computational complexity

Computational complexity

Assume a spatial GMRF:

I Factorisation of Q: O(n3/2)
I Compute the marginal for each i

I Size of dependency O(1): cost O(1).
I Size of dependency O(n): cost O(n3/2).

I Summing out θ: O(exp(dim(θ)))

Total cost is between O(n3/2) and O(n5/2), times O(exp(dim(θ)))
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Examples

Examples: 1D

Examples: 1D

Toy example:

I AR1 model, φ = 0.9, unit variance and common unknown
mean.

I Additive noise of various types, or Bernoulli observations using
logit

Fixed θ.
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Cauchy with sum-to-zero constraint

0 20 40 60 80 100

−
40

0
−

30
0

−
20

0
−

10
0

0
10

0
20

0

data$t

da
ta

$x

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density for idx =  77

data$t

da
ta

$d



Approximative inference for latent Gaussian models

Examples

Examples: 1D

Cauchy with sum-to-zero constraint

Histogram of xx

xx

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

−6 −4 −2 0 2 4 6

0.
00

0.
01

0.
02

0.
03

0.
04

data$t

da
ta

$d



Approximative inference for latent Gaussian models

Examples

Examples: 1D

Bernoulli
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Example: Bayesian multiscale analysis of time series data

I Smoothing of time series data with noise and smoothing
parameter κ

I Exploratory tool: Consider the family of smooths for all κ and
display “significant” gradients

Example:

I Poisson count data

yi ∼ Po(exp(xi ))

I Integrated Wiener process in continuous time-prior for x with
precision κ
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Example: Bayesian multiscale analysis of time series data

Significant positive/negative gradient for level κ:

Prob(
d

dt
x(t) > 0 | y, κ) > 0.025

Prob(
d

dt
x(t) < 0 | y, κ) > 0.025

I Write the integrated Wiener process as a GMRF by
augmenting with the derivatives

I Access properties of the derivatives of x(t) directly
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Example: Bayesian multiscale analysis of time series data

Gamma burst-signals from NASAs Compton Gamma Ray
Observatory
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Example: Bayesian multiscale analysis of time series data
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Example: Bayesian multiscale analysis of time series data
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Disease mapping: The BYM-model

I Data yi ∼ Poisson(Eiexp(ηi ))

I Log-relative risk ηi = ui + vi

I Structured component u

I Unstructured component v

I Log-precisions log κu and log κv

I A hard case: Insulin Dependent Diabetes Mellitus in 366
districts of Sardinia. Few counts.

I dim(θ) = 2.
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Semi-parametric ecological regression

Semi parametric ecological regression

log(ηi ) = µ + ui + vi + f (ci )

f is an unknown function of regional covariate c :

π(f ) ∝ κ(n−2)/2 exp(−κ

2

∑
i

(fi+1 − 2fi + fi−1)
2)

Require
∑

i ui = 0, to separate the spatial vrs the covariate effect.

x = (µ,u,η, f) | hyperparameters ∼ GMRF (2)

dim(θ) = 3
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Example: Larynx cancer with smoking covariate

Larynx SMR Smoking covariate
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Example: Spatial GLMs

Model

I Stationary Gaussian field on a torus

I non-Gaussian observations

I n is huge: n = 5122 or n = 10242

I number of observations, m, is small, a few hundred.

Solve using
I INLA, but the computational tools are now very different

I Exploit the block Toeplitz structure using DFTs
I and simply rank-m correct for the observations using soft

constraints.
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Examples: 2D+

Spatial GLMs: Summary

I Main interest is to predict unobserved sites

I Gaussian approximations seems sufficient

I they are O(m)-times faster to compute...

I Can also use GMRFs for large m using GMRF-proxies for
Gaussian fields
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Examples: 2D+

Example: log-Gaussian Cox-processes

Again, excellent results!
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Examples: 3D

Example: Space-time models

I Not yet

I We see no reasons for this not to go fine as well

I Only a change in the covariance-structure in the model
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Summary and discussion I

I Latent Gaussian models are an important class of models with
a wide range of applications

I The integrated nested Laplace-approximations works
extremely well

I Obtain in practice “exact” results
I Relative error only

I Computational convenient for large n
I GMRFs: sparse matrix computations
I Stationary Gaussian fields: DFT computations
I Fast: minutes to compute all marginals
I Near instant: use the GMRF-approximation. Error check.
I Parallel computing excellent suited



Approximative inference for latent Gaussian models

Summary and discussion

Summary and discussion I

I Latent Gaussian models are an important class of models with
a wide range of applications

I The integrated nested Laplace-approximations works
extremely well

I Obtain in practice “exact” results
I Relative error only

I Computational convenient for large n
I GMRFs: sparse matrix computations
I Stationary Gaussian fields: DFT computations
I Fast: minutes to compute all marginals
I Near instant: use the GMRF-approximation. Error check.
I Parallel computing excellent suited



Approximative inference for latent Gaussian models

Summary and discussion

Summary and discussion I

I Latent Gaussian models are an important class of models with
a wide range of applications

I The integrated nested Laplace-approximations works
extremely well

I Obtain in practice “exact” results
I Relative error only

I Computational convenient for large n
I GMRFs: sparse matrix computations
I Stationary Gaussian fields: DFT computations
I Fast: minutes to compute all marginals
I Near instant: use the GMRF-approximation. Error check.
I Parallel computing excellent suited



Approximative inference for latent Gaussian models

Summary and discussion

Summary and discussion II

I Generic routines:
I All GMRF-examples use the same library: less coding and less

“errors”
I Well suited for constructing (black-box) packages for inference
I Personal view: do not use MCMC when INLA is appropriate

I Conditions apply
I dim(θ) is not to high
I Marginals only. Bi- and tri-variate marginals are also OK.
I Can always construct counter-examples where INLA breaks

down
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