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Outline

• Stochastic Volatility (SV) models in statistical finance

• Lévy processes

• The Barndorff-Nielsen and Shephard (BNS) model

• Inference using MCMC

• Extensions
I Different marginal models
I Different correlation structures
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Framework

A stochastic process {S(t), t > 0} is used to represent the
evolution of an asset value through time.

Typically use a process driven by Brownian motion W (t),
with drift, satisfying the SDE

dS(t) = µS(t)dt +σS(t)dW (t)

• σ , the volatility, is presumed constant.
• If X (t) = log S(t), then

dX (t) = {µ−σ
2/2}dt +σdW (t).

• Typically, the log asset value is observed discretely at
intervals of length 4, say, yielding data x0, . . . ,xT

• If Yt = Xt −Xt−1 then

Yt ∼ N((µ−σ
2/2)4,σ24)

with Y1, ...,YT independent; these are the log returns.
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S&P 500 Index (log scale) : Five minute
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S&P 500 Index (log scale) : Daily
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Deficiencies of constant volatility

The problem is ... this model does not capture observed
behaviour.

Empirically, using y2
t as a proxy for the volatility for time

interval (4(t−1),4t), it is apparent that

• volatility is not apparently constant

• volatility exhibits autocorrelation

• marginal distribution of y1, . . . ,yT appears leptokurtic
(heavy-tailed compared to normal).

... every single assumption underlying the
Black-Scholes model is routinely rejected by the
type of data that are routinely used in practice.

Barndorff-Nielsen and Shephard [2001]
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DAX Index log returns
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CISCO log returns
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K Equity log returns squared

Autocorrelation function (ACF) K Equity stock y2
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Lévy Processes

The BNS Model

Inference
MCMC

Deficiencies

Fitting the
General
Model

Extensions
Correlation

Observation
Equation

References

S&P 500 Index (log scale) : Daily
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S&P 500 Index : ACF for Squared log-returns
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Stochastic Volatility: The BNS model

Allow volatility to vary stochastically over time

dS(t) = µS(t)dt +σ(t)S(t)dW (t)

• Random volatility increases kurtosis of log returns

• Correlation in volatility process induces correlation in
square of log returns

Barndorff-Nielsen and Shephard [2001] (BNS) suggest to
make SV process follow the Ornstein-Uhlenbeck (OU)
equation

dσ
2(t) =−λσ

2(t)dt +dZ (λ t)

This model induces, for s, t > 0,

Corr
[
σ

2(s),σ2(s + t)
]

= exp{−λ t}.

Here, Z (t), t > 0 is a Lévy process
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Lévy Processes

A Lévy Process, Z (t), t > 0 is a continuous time stochastic
process such that

1. Z (0) = 0.

2. Z has independent increments ; for t0 < t1 < .. . < tn,
the random quantities

Zt0 ,Zt1 −Zt0 ,Zt3 −Zt2 , . . . ,Ztn −Ztn−1

are independent.

3. Z has stationary increments ; for t ,h > 0, the
distribution of Zt+h−Zt does not depend on t .

4. Z is stochastically continuous ; for all t ,h,ε > 0,

lim
h→0

P [|Zt+h−Zt | ≥ ε] = 0.
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Lévy Processes and Infinite Divisibility

A distribution, with density f (x) and characteristic exponent
Ψ(s), is infinitely divisible iff there exists

• a ∈ Rd ,

• a positive semi-definite quadratic form Q on Rd

• a measure U(dx) on Rd/{0} with density u(x).

such that ∀s ∈ Rd

Ψ(s) = iaTs +Q(s)/2+
∫

Rd

[
1−eisTx + isTx1{|x |<1}

]
u (x)dx

and ∫ ∞

−∞
min{1,x2}u (x)dx < ∞.
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Lévy Processes and Infinite Divisibility

The identity above is called the Lévy-Khintchine formula

• U(dx) is the Lévy measure of f

• u (x) is the Lévy density of f

• Q(s) is the Gaussian coefficient.

• a 1-1 correspondence between ID distributions and
Lévy processes

• f (x) is the marginal law of Z .

In
dσ

2(t) =−λσ
2(t)dt +dZ (λ t)

we interpret the dZ (t) term as the (random) change in Z at
instant t .

If the Q(s)≡ 0, then Z (t) only changes in jumps; need
positive jumps.
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BNS OU-SV model

In the BNS OU-SV model:

• Z is termed the Background Driving Lévy process
(BDLP)

• Z is a pure jumps process, and is non-decreasing

• Z has an associated marginal law (given by the
Lévy-Khintchine theorem) that does not depend on λ .

• Parameter λ controls rate of jumps of σ2(t).

Strategy is to pick appropriate Z to induce appropriate
marginal law for σ2(t).

No theoretical reason to prefer one model over another -
should make assessment statistically.
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Lévy Measures for σ2(t) and Z (t)

Denote by

• u(x) the Lévy density for the (ID) law of σ2(t)

• w(x) the Lévy density for the marginal law of Z (1).

• Under the BNS OU-SV specification

w(x) =−u(x)−x
du(x)

dx

• Tail Mass function (TMF)

W + (x) =
∫ ∞

x
w (y)dy = xu (x)

• Inverse Tail mass function (ITMF)

W−1 (x) = inf
{

y > 0 : W + (y)≤ x
}
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OU Equation: Solution and Simulation

Solution to OU equation can be written via a stochastic
integral wrt BDLP

σ
2 (t) = e−λ t

σ
2 (0)+e−λ t

∫ t

0
eλsdZ (λs)

The Ferguson and Klass [1972] infinite series
representation of Z (t) yields a means of

• simulating Z (t)

• performing inference about σ2(t)

We use the Inverse-Lévy Method: other simulation methods
exist.
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OU Equation: Solution and Simulation

We have ∫ ∆

0
f (s)dZ (s)

L
=

∞

∑
j=1

f
(
∆rj

)
W−1

(
aj

∆

)
where

• a1 < a2 < .. . are a sequence of event times in a
standard Poisson process

• rj are independent Uniforms

• W−1 is the ITMF defined earlier.

Auxiliaries (aj , rj), j = 1,2, . . . , facilitate implementation.
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Examples: Realizations of {σ2(t)}
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BNS OU-SV: Bayesian Inference

With this model for {σ2(t)}, we can carry out Bayesian
inference in light of the observed data

For the likelihood, similarly to the constant volatility case

Yt ∼ N((µ−σ
2
t /2)4,σ2

t 4)

with Y1, ...,YT independent, where

σ
2
t =

∫ 4t

0
dσ

2(s)−
∫ 4(t−1)

0
dσ

2(s)

is the discretely observed volatility.
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BNS OU-SV: Bayesian Inference

In the BNS OU-SV models, we have the following
parameters to make inference about

• λ , autocorrelation decay parameter.

• θ , the parameters of the marginal law of σ2(t).

• the list of latent variables that form the (Ferguson &
Klass) representation of the BDLP, that is

(a1,a2, . . .) (r1, r2, . . .).

• σ2(0), initial value of volatility process.

• More sophisticated model components can be added
eg leverage terms.
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BNS OU-SV: MCMC

Several MCMC algorithms and series representations exist
and are in use: see

• Roberts et al. [2004]

• Griffin and Steel [2005]

• ...

MCMC issues:

• parameterization: non-centering

• dependence: overconditioning
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BNS OU-SV: MCMC

Useful speedups :

• Joint updates for auxiliaries and parameters

• Targeted Proposals : target updates of auxiliaries (aj , rj)
in areas of poor fit to data under current state. Interval i

I has return yi
I has collection of auxiliaries θ

(i) = (a(i), r (i))
I has a discretely observed volatility σ2

i ≡ σ2
i (θ

(i)) given
any set of parameter values

I ∴ target update of θ
(i) where residual (yi −µ i)/σ i is

largest, that is, select i with probability proportional to

exp{(yi −µ i)
2/σ

2
i }

and correct in Metropolis-Hastings ratio.
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BNS OU-SV: Marginal Laws

Most interest has focussed on the Generalized Inverse
Gaussian (GIG) family of distributions as suitable as
marginal laws for σ2(t).

Specifically, MCMC inference has been implemented for a
Gamma marginal law; the ITMF takes a particularly simple
form, and the infinite series in the series representation of Z
reduces to a finite one.

This simplifies the computation significantly, although the
MCMC is still not trivial.
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Deficiencies of Gamma BNS OU-SV model

The problem is ... this model may not capture observed
behaviour.

• no particular theoretical support for a Gamma marginal

• autocorrelation decay is not always exponential

• volatility process is perhaps non-stationary

Need extension to full GIG marginal model: for parameters
γ ∈ R and ν ,α > 0, the GIG(γ,ν ,α) pdf takes the form

f (x) =
(α/ν)γ

2Kγ (να)
x γ−1exp

{
−1

2

(
ν

2x−1 +α
2x

)}
for x > 0, where Kν is a modified Bessel function of the third
kind.
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TMF/ITMF

For GIG (γ,ν ,α)

• Lévy density

u (x) =
1
x

exp
(
−α2x

2

)
{

1
2

∫ ∞

0
exp

(
− xξ

2ν2

)
gγ (ξ )dξ +max(0,γ)

}
where

gγ (x) =
2

xπ2

{
J2
|γ|

(√
x
)
+N2

|γ|
(√

x
)}−1

and J|ν | and N|ν | are Bessel functions of the first and
second kind
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• TMF W + (x) = xu (x)

• ITMF
W−1

γ,ν ,α (x) = z,

where z satisfies

x =

{
1
2

∫ ∞

0
exp

(
− zξ

2ν2

)
gγ (ξ )dξ +max(0,γ)

}
×exp

(
−α2z

2

)

Evaluating the TMF/ITMF to arbitrary accuracy is possible
using numerical integration.
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GIG Special cases

Form of GIG (γ,ν ,α) distribution Distribution

GIG
(

ν ,0,
√

2α

)
Ga(ν ,α)

GIG (1,ν ,α) PH (ν ,α)

GIG
(
−ν ,

√
2α,0

)
IGa(ν ,α)

GIG
(
−1

2 ,ν ,α
)

IG (ν ,α)

Ga is Gamma, PH is positive hyperbolic, IGa is Inverse
Gamma, IG is Inverse Gaussian
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GIG Fit to S & P 500 Data
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Other posterior analysis available

Posterior samples in the (γ,ν) plane for the Heinz and Host
Marriott data sets.

+ Heinz
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BNS OU-SV-GIG: Summary

• Desirable to be able to compare performance for
across marginal models.

• Forecasting/pricing routinely possible; gives framework
for model comparison.

• Analysis suggests that Inverse Gamma marginal model
preferable for option pricing for these share series.

• Other model assessment methods (eg posterior
predictive) for as yet unobserved returns support the
three-parameter GIG model for these data; Gamma
does OK.
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Extension: More General Correlation Structure

The exponential decay in the autocorrelation provided by
the BNS OU-SV model is limited.

• One nice method for generalizing autocorrelation is to
use superposition

I Set

σ
2(t) =

K

∑
k=1

wk σ
2
k (t)

where σ2
k (t) is BNS OU with parameter λ k .

I K = 2 readily implemented

• Can also use the approaches of Wolpert and Taqqu
[2005] to construct volatility processes with richer
autocorrelation.

I Generally more computational expense, but still feasible
to perform MCMC.
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The Wolpert and Taqqu Approach

The BNS OU-SV process can be written

σ
2 (t) =

∫ t

−∞
f2 (λ , t ,s)dZ (λs)

=
∫ ∞

0
f1 (λ , t ,s)dZ (λs)+

∫ t

0
f2 (λ , t ,s)dZ (λs)

= e−λ t
σ

2 (0)+e−λ t
∫ t

0
eλsdZ (λs) ,

where the two terms in the second equation are
independent, and

f1 (λ , t ,s) = e−λ(t+s) f2 (λ , t ,s) = e−λ(t−s).
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Changing the correlation structure

The idea is to change the choice of f1 and f2 that appear in
the form

σ
2 (t) =

∫ ∞

0
f1 (λ , t ,s)dZ (λs)+

∫ t

0
f2 (λ , t ,s)dZ (λs)

so that the correlation structure for σ2(t) changes, but the
process remains stationary.

Wolpert and Taqqu [2005] give details of how to do this.

For these models, computing the required stochastic
integrals is harder, but still possible using series
representations.
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Alternative Models

Wolpert and Taqqu [2005] adopt the moving average model

σ
2 (t) =

∫ t

−∞
h1(t−s)dZ (s)

where h1(t−s)≥ 0 if t > s.

Because of the timing change on the Lévy process, we may
not be able to make the marginal law of σ2 (t) vary
independently of the autocorrelation.

The correlation at lag t for this model is

ρ (t) = Corr
[
σ

2(t0),σ
2(t0 + t)

]
=

∫ ∞

0
h1 (|t |+s)h1 (s)ds∫ ∞

0
h2

1 (s)ds
.
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Power Decay and fOUL model

• Power Decay model

h1 (x) =
1

(α +β |x |)λ

which, for large lags t , yields an ACF that decays like
t−λ . If λ → 1, then model exhibits (quasi) long range
dependence.

• Fractional OU Lévy Model

h1 (x) =
√

2λ
λ

κ−1

Γ(κ)
xκ−1e−λx x ≥ 0, zero otherwise

which has finite variance (and short memory) if κ > 1/2.
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Example: Power decay and fOUL model

ACF of the square of the log returns of S&P 500 data and
theoretical ACF of fitted Power Decay and fOUL processes.
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S&P 500 data: No long memory ?

Posterior for λ has most mass away from λ = 1.
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Extension: Changing the Observation Equation

Work in Progress: collaboration with Wing Yip

Motivation: To use a more general observation model to
better capture observed market behaviour.

This can be achieved by using a Lévy process with jump
components rather than a Brownian motion to drive the
observation equation.

Parallel motivation: Wing Yip’s employers (RBS)
don’t care too much about Bayesian inference,
MCMC implementation, representations of Lévy
processes ...
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The Variance Gamma Model

The Variance Gamma model for returns data is based on a
time-changed drifting Brownian motion

X (t) = µG(t)+σW (G(t))

where {G(t)} is a (one-parameter) Gamma process

• a pure-jumps non-decreasing Lévy process

• independent and stationary increments are Gamma
distributed

• an infinite activity Lévy process.

Under this model, log returns are independent, identically
distributed variates with tractable density that exhibits
skewness and kurtosis.
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The Variance Gamma Model: Option Pricing

Under the VG model, can compute option prices in closed
form.

The RBS motivation is that parameter estimates
derived from returns data do not necessarily
correspond to estimates derived from OLS
procedure on logged option prices.

Thus it may be possible to exploit mis-pricing.

However, as specified, this model is not appropriate ...
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Recall: S&P 500 Index (log scale)

Distinct volatility clustering:
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The BNS VG-OU-SV-GIG Model

Need to combine the VG and the SV model:

X (t) = µG(t)+σ(t)W (G(t))

or possibly

X (t) = µG(t)+σ(G(t))W (G(t))

where σ2(t) follows the BNS OU-SV specification.

• Inference for this model is in principle not radically more
difficult than for the BNS OU-SV model

• Other time changes can be used
• Analytic option pricing results often available for such

models.
• Classical estimation achieved using transform methods
• Discrete-time approximations in simpler models already

implemented in MCMC
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Lévy Processes

The BNS Model

Inference
MCMC

Deficiencies

Fitting the
General
Model

Extensions
Correlation

Observation
Equation

References

The General Model Form

Li et al. [2004]: Model utilized:(
dY (t)
dσ2(t)

)
=

(
µ

λ (θ −σ2(t))

)
dt

+ σ(t)
(

1 0
ρτσ

√
(1−ρ2)τσ

)(
dWy (t)
dWσ (t)

)

+

(
dJy (t)
dJσ (t)

)
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Particular Case: SV-VG

Discrete Approximation:

Yt+1 = Yt + µ4+σ t
√
4ε

y
t+1 +Jy

t+1

σ
2
t+1 = σ

2
t +λ (θ −σ

2
t )4+ τσ σ t

√
4ε

σ

t+1

with
ε

y
t+1,ε

σ

t+1 ∼ N(0,1) Corr [εy
t+1,ε

σ

t+1] = ρ

and
Jy

t+1 = αGt+1 +σ
√

Gt+1ε
J
t+1

with

Gt+1 ∼Gamma
(
4
ν

,ν

)
ε

J
t+1 ∼ N(0,1)

MCMC possible - many auxiliaries ...
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Lévy Processes

The BNS Model

Inference
MCMC

Deficiencies

Fitting the
General
Model

Extensions
Correlation

Observation
Equation

References

Conclusions

• Can extend the BNS-SV models in different directions

• Going beyond the Gamma marginal is useful

• Going beyond exponential decay in correlation is vital

• Jump components to driving processes probably
needed

• Sequential methods probably offer more attractive
realtime analysis



Lévy
Processes in
SV Models

David A.
Stephens

Introduction

Stochastic
Volatility
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