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Abstract

We develop a Bayesian “sum-of-trees” model where each tree is constrained by a
prior to be a weak leaner. Fitting and inference are accomplished via an iterative back-
fitting MCMC algorithm. This model is motivated by ensemble methods in general,
and boosting algorithms in particular. Like boosting, each weak learner (i.e., each
weak tree) contributes a small amount to the overall model, and the training of a weak
learner is conditional on the estimates for the other weak learners. The differences
from boosting algorithms are just as striking as the similarities: BART is defined by a
statistical model: a prior and a likelihood, while boosting is defined by an algorithm.
MCMC is used both to fit the model and to quantify inferential uncertainty through
the variation of the posterior draws.

The BART modelling strategy can also be viewed in the context of Bayesian non-
parametrics. The key idea is to use a model which is rich enough to respond to a
variety of signal types, but constrained by the prior from overreacting to weak signals.
The ensemble approach provides for a rich base model form which can expand as
needed via the MCMC mechanism. The priors are formulated so as to be interpretable,
relatively easy to specify, and provide results that are stable across a wide range of
prior hyperparameter values. The MCMC algorithm, which exhibits fast burn-in and
good mixing, can be readily used for model averaging and for uncertainty assessment.

KEY WORDS: Bayesian backfitting; Boosting; CART; MCMC; Sum-of-trees model;
Weak learner.
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1 Introduction

We consider the fundamental problem of making inference about an unknown

function f that predicts an output Y using a p dimensional vector of inputs x

when

Y = f(x) + ε, ε ∼ N(0, σ2). (1)

To do this, we consider modelling or at least approximating f(x), the mean of Y

given x, by a sum of m regression trees

f(x) = g1(x) + g2(x) + . . . + gm(x) (2)

where each gi denotes the fit from a regression tree model. We assume familiarity

with the initial CART formulation of Breiman, Friedman, Olshen & Stone (1984),

and the Bayesian CART formulations of Chipman, George & McCulloch (1998)

(hereafter CGM98) and Denison, Mallick & Smith (1998), although the essentials

of CGM98 are reviewed in Sections 2, 3 and 4.

A sum-of-trees model (1) and (2) is fundamentally an additive model with

multivariate components. It is vastly more flexible than a single tree model which

does not easily incorporate additive effects. For example, Hastie, Tibshirani &

Friedman (2001) (p.301) illustrate how a sum-of-trees model can realize half the

prediction error rate of a single tree model when the true underlying f is a

thresholded sum of quadratic terms. And because multivariate components can

easily account for high order interaction effects, a sum-of-trees model is also much

more flexible than typical additive models that use low dimensional smoothers

as components.

Various methods which combine a set of tree models, so called ensemble meth-

ods, have attracted much attention for prediction. These include boosting (Fre-

und & Schapire (1997), Friedman (2001)), random forests (Breiman 2001) and

bagging (Breiman 1996), each of which use different techniques to fit a linear

combination of trees. Boosting fits a sequence of single trees, using each tree to
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fit data variation not explained by earlier trees in the sequence. Bagging and

random forests use data randomization and stochastic search to create a large

number of independent trees, and then reduce prediction variance by averaging

predictions across the trees. Yet another approach that results in a linear combi-

nation of trees is Bayesian model averaging applied to the posterior arising from

a Bayesian model for a single tree as in CGM98. Such model averaging uses

posterior probabilities as weights for averaging the predictions from individual

trees.

In this paper, we propose a new Bayesian approach called BART for fitting a

sum-of-trees model. In sharp contrast to previous Bayesian single tree methods,

BART treats the sum of trees as the model itself, rather than let it arise out of

model-averaging over a set of single-tree models. As opposed to ending up with a

weighted sum of separate single tree attempts to fit the entire function f , BART

ends up with a sum of trees, each of which explains a small and different portion

of f . This is accomplished by imposing a strong prior on each of the trees to keep

their effect small, effectively making them into “weak learners”. To fit each of

these weak trees, BART uses a new version of a backfitting MCMC algorithm (see

Hastie & Tibshirani (2000)) that iteratively constructs and fits successive resid-

uals. Although similar to the gradient boosting approach of Friedman (2001),

BART is fundamentally different in both how it weakens the individual trees by

instead using a prior, and how it performs the iterative fitting by instead using

MCMC. Conceptually, we are proposing a Bayesian nonparametric approach that

fits a parameter rich model using substantial prior information.

Another very important feature of BART is the induced posterior over the

space of sum-of-trees models, and the fact that this BART posterior can be sam-

pled from by using the BART MCMC algorithm. Note that the BART posterior

is different from the single tree model posterior proposed by CGM98 which con-

veys uncertainty over single tree models but not over sum-of-tree models. The
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BART posterior can be readily used to further enhance inference. For example,

averaging of the sum-of-tree samples from the BART posterior yields an im-

proved model averaged estimate of f . Moreover, pointwise uncertainty bounds

are available for the prediction f(x) = E(Y |x) at any input value x. We will

convincingly demonstrate that these uncertainty intervals behave sensibly, for

example by widening for predictions at test points far from the training set.

The essential components of BART are the sum-of-trees model, the prior

distribution specifications and the implementation of a BART MCMC algorithm.

Although each of these components shares some common features of the Bayesian

single tree approaches of CGM98 and Denison et al. (1998), their development for

this framework requires substantially more than trivial extension. For example,

in a sum-of-trees model, each tree only accounts for part of the overall fit. Thus

to limit the creation of overly dominant terms, we employ priors that “weaken”

the component trees by shrinking heavily towards a simple fit. This shrinkage

is both in terms of the tree size (small trees are weaker learners), and in terms

of the fitted values at the terminal nodes. For this purpose, we have chosen a

prior that adapts the amount of shrinkage so that as the number of trees m in

the model increases, the fitted values of each tree will be shrunk more. This

choice helps prevent overfitting when m is large. In simulation and real-data

experiments (Section 5), we demonstrate that excellent predictive performance

can still be obtained even using a very large number of trees.

To facilitate prior specification, the prior parameters themselves are expressed

in terms of understandable quantities, enabling sensible selection of their values

for particular data sets. Prior information about the amount of residual variation,

the level of interaction involved within trees, and the anticipated number of

important variables can be used to choose prior parameters. We also indicate

how these numbers could, in turn, be ballparked from simple summaries of the

data such as the sample variance of Y , or of the residuals from a linear regression
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model. Even if these parameters are viewed from a non-Bayesian perspective as

tuning parameters to be selected by cross-validation, these recommendations can

provide sensible starting values and ranges for the search.

To sample from the complex and high dimensional posterior on the space of

sum-of-trees models, our BART MCMC algorithm iteratively samples the trees,

the associated terminal node parameters, and residual variance σ2, making use

of several analytic simplifications of the posterior. We find that the algorithm

converges quickly to a good solution, meaning that a point estimate competitive

with other ensemble methods is almost immediately available. For full inference,

additional iterations are necessary. Unlike the Bayesian CART algorithm of

CGM98, the BART algorithm mixes well enough that a single long chain can be

used for inference.

The sum-of-trees model can be incorporated into a larger statistical model,

for example, by adding other components such as linear terms or random effects.

One can also extend the sum-of-trees model to a multivariate framework such as

Yi = fi(xi) + εi, (ε1, ε2, . . . , εp) ∼ N(0, Σ), (3)

where each fi is a sum of trees and Σ is a p dimensional covariance matrix. If all

the xi are the same, we have a generalization of multivariate regression. If the xi

are different we have a generalization of Zellner’s SUR model (Zellner 1962). As

will be seen in Section 4, the modularity of the BART MCMC algorithm easily

allows for such incorporations and extensions.

Open-source software implementing BART as a stand-alone package or with

an interface to R, along with full documentation and examples, is available from

http://gsbwww.uchicago.edu/fac/robert.mcculloch/research.

The remainder of the paper is organized as follows. In Section 2, the model is

outlined. Section 3 presents prior distributions for the parameter, and describes

semi-automatic methods for hyperparameter selection. The backfitting MCMC

algorithm for estimation is described in Section 4. In Section 5, simulated and
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real examples are used to demonstrate BART performance. The paper concludes

with a discussion in Section 6.

2 The Basic Model

To elaborate the form of a sum-of-trees model, we begin by establishing notation

for a single tree model. Let T denote a tree, consisting of a set of interior nodes

with decision rules and a set of terminal nodes. Any x is “sent down the tree”

according to the decision rules until it arrives at a terminal node to which it is

assigned. We limit the decision rules to binary splits. The ith terminal node is

associated with a real parameter µi. Hence, any x is associated with one of the

µi. Letting M = (µ1, µ2, . . . , µb) where b is the number of terminal nodes of T , a

single tree model may denoted by the pair (T, M). Let g(x, T,M) denote the µi

associated with x by T .

Using this notation, our sum-of-trees model (1) and (2) can be expressed as

Y = g(x, T1,M1) + g(x, T2,M2) + . . . + g(x, Tm, Mm) + ε, ε ∼ N(0, σ2). (4)

When m = 1, g(x, T1, M1) is the conditional mean of Y given x. However, when

m > 1, the terminal node parameters are merely components of the conditional

mean of Y given x. Furthermore, these terminal node parameters will represent

interaction effects when their assignment depends on more than one component

of x (i.e., more than one variable). And because (4) may be based on trees

of varying sizes, the sum-of-trees model can incorporate both direct effects and

interaction effects of varying orders. In the special case where every terminal

node assignment depends on just a single component of x, the sum-of-trees model

reduces to a simple additive function of splits on the individual components of x.

As will be seen, we obtain excellent predictive performance by setting the

number of trees in the sum to be quite large (e.g., m = 200). With a large number

of trees, the sum-of-trees model clearly gains increased representation flexibility.
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There are many parameters of which only σ is identified. For example, if each

tree had three terminal nodes, 200 trees would give us 600 µ’s! Furthermore, each

tree component has intermediate node decision rules which allow for a multitude

of ways to define the partition. Somewhat surprisingly, this redundancy turns out

to work to our advantage. As with any Bayesian analysis, lack of identification

is not a problem given a sensible prior specification. Under our prior setup, the

multitude of unidentified parameters adds tremendous mixing potential to the

backfitting MCMC algorithm, enabling it to rapidly find effective representations.

3 Prior Distributions

As mentioned in the introduction, the key to our approach is a prior specification

that encourages each simple tree component contribution to be small. For fixed

m, a Bayesian treatment of the sum-of-trees model requires that we put pri-

ors on all the tree components (T1,M1), (T2,M2), . . . , (Tm,Mm) and on σ. This

seemingly formidable task can be vastly simplified by incorporating a number of

independence assumptions. To begin with, we assume the tree components are

independent of σ and write

p((T1,M1), (T2,M2), . . . , (Tm,Mm), σ)

= p(T1, T2, . . . , Tm) p(M1,M2, . . . , Mm |T1, T2, . . . , Tm) p(σ). (5)

Since the dimension of each Mj depends on the corresponding Tj this conditional

structure is essential. We simplify further by imposing independence whenever

possible:

p(T1, T2, . . . , Tm) =
∏

p(Tj), (6)

p(M1,M2, . . . ,Mm |T1, T2, . . . , Tm) =
∏

p(Mj |Tj), (7)

p(Mj |Tj) =
∏

p(µi,j |Tj), (8)
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where µi,j is the ith component of Mj.

These strong independence assumptions reduce the prior choice problem to

the specification of just three prior forms (6) - (8). In addition to their important

computational advantages, these prior forms are controlled by just a few inter-

pretable hyperparameters. This allows the user to express any available prior

information, and to at least avoid unreasonable allocations of prior probability.

In particular, an overly diffuse prior formulation would be disastrous, leading to

an undue preference for smaller models. We are able to avoid this with appropri-

ately informative hyperparameter specifications. In particular, our prior below

on the µi,j’s depends on m, the number of trees in a simple way which seems to

be crucial to the effectiveness of our approach.

3.1 The Tree Prior

For p(Tj), we follow CGM98 which is easy to specify and dovetails nicely with

calculations for the Metropolis-Hastings MCMC algorithm. The prior is specified

in three components: (i) the probability that a node at depth d is nonterminal,

given by

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞), (9)

(ii) a distribution on the splitting variable in each nonterminal node, and (iii)

a distribution on the splitting rule in each nonterminal node, conditional on

splitting variable. For (ii) and (iii) we use the simple defaults used by CGM98,

namely the uniform prior on available variables for (ii) and the uniform prior on

the discrete set of available splitting values for (iii).

In a single tree model, (i.e. m = 1), a tree with many terminal nodes may be

needed to model complicated structure. However, in a sum-of-trees model with

m large, it is especially useful to keep the individual tree components simple. In

all our examples, we do this by using α = .95 and β = 2 in (9). With this choice,

trees with 1, 2, 3, 4, and ≥ 5 terminal nodes receive prior probability of 0.05,
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0.55, 0.28, 0.09, and 0.03, respectively.

Tree size can have considerable impact on the functional form and predictive

accuracy of a sum of trees model. In boosting, tree size (or perhaps maximum

depth) might be chosen by cross-validation. A prior distribution on tree size is

more flexible: If the data demands it, trees with many terminal nodes can be

grown. In one of our simulated examples, we set m = 1 and observe considerable

posterior probability on trees of size 17, even with the above prior.

3.2 The µi,j Prior

In our model (4), E(Y |x) is the sum of m µi,j’s. Given our independence as-

sumptions, we need only specify the prior for a single scalar µi,j. As mentioned

previously, we prefer a conjugate prior, here the normal distribution. The essence

of our strategy is then to choose the prior mean and standard deviation so that

a sum of m independent realizations gives a reasonable range for the conditional

mean of Y .

For convenience we start by simply shifting and rescaling Y so that we believe

the prior probability that E(Y |x) ∈ (−.5, .5) is very high. We then center the

prior at zero and choose the standard deviation so that the mean of Y falls in

the interval (−.5, .5) with “high” probability. Now if the standard deviation of a

single µi,j is σµ, then the standard deviation of the sum of m independent µi,j’s

is
√

mσµ. We then choose σµ so that k
√

mσµ = .5 for a suitable value of k. For

example, k = 2 would yield a 95% prior probability that the expected value of

Y is in the interval (−.5, .5). In summary, our prior for each µi,j is simply

µi,j ∼ N(0, σ2
µ) where σµ = .5/k

√
m. (10)

Note that for larger k, and as the number of trees m increases, this prior dis-

tribution will apply greater shrinkage to the µi,j’s in each tree. Prior shrinkage on

µi,j’s is the counterpart of the shrinkage parameter in Friedman’s (2001) gradient
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boosting algorithm. The prior variance σµ of µi,j here and the gradient boost-

ing shrinkage parameter there, both serve to “weaken” the individual learners so

that each is constrained to play a smaller role in the overall fit. For the choice

of k, we have found that values of k between 1 and 3 yield good results, and we

recommend k = 2 as an automatic default choice. Alternatively the value of k

can be chosen by cross-validation.

To guide the initial shifting and rescaling of Y , we usually “cheat” and use

the observed y values, shifting and rescaling so that the observed y range from

-.5 to .5. Such informal empirical Bayes methods can be very useful to ensure

that prior specifications are at least in the right ballpark.

We view the extreme simplicity of our prior for µi,j as a key to the success

of our approach. Because our models are based on trees, we don’t have to think

about the space of the explanatory variables. We just have to think in terms of Y .

In contrast, methods like neural nets that use linear combinations of predictors

need to pick a reasonable standardization for each predictor.

3.3 The σ Prior

We again use a conjugate prior, here the inverse chi-square distribution σ2 ∼
ν λ/χ2

ν . For the hyperparameter choice of ν and λ, we proceed as follows. We

begin by obtaining a “rough overestimate” σ̂ of σ as described below. We then

pick a degrees of freedom value ν between 3 and 10. Finally, we pick a value of

q such as 0.75, 0.90 or 0.99, and set λ so that the qth quantile of the prior on σ

is located at σ̂, that is P (σ < σ̂) = q.

Figure 1 illustrates priors corresponding to three (ν, q) settings when the rough

overestimate is σ̂ = 2. We refer to these three settings, (ν, q) = (10, 0.75),

(3, 0.90), (3, 0.99), as conservative, default and aggressive, respectively. The prior

mode moves towards smaller σ values as q is increased. We recommend against

choosing ν < 3 because it seems to concentrate too much mass on very small σ
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Figure 1: Three priors on σ when σ̂ = 2.

values. If strong prior belief that σ is very small is specified, the model can be

prone to overfitting. In our examples, we have found these three settings work

very well and yield similar results. For automatic use, we recommend the default

setting (ν, q) = (3, 0.90) which tends to avoid extremes.

The key to an effective specification above is to come up with a reasonable

value of σ̂. In the absence of real prior information, this can be obtained by either

of the following informal empirical Bayes approaches: 1) the “naive” specification,

in which we take σ̂ to be the sample standard deviation of Y , and 2) the “linear

model” specification, in which we take σ̂ as the residual standard deviation from

a least squares linear regression of Y on the original X’s. The naive specification

represents the belief that BART can provide a much better fit than a single mean

of Y for all X values. The linear model specification represents the belief that

BART can fit better than a linear model.

3.4 Choosing the Number of Trees m

Our procedure fixes m, the number of trees. Although it appears that using too

many trees only slightly degrades predictive performance, it is still useful to have
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some intuition about reasonable values of m. We have found it helpful to first

assess prior beliefs about how many variables are likely to be important. One

might then assume that five trees are needed for each important variable. For

example, if we believe 10 out of 200 variables are important, we might try m = 50

trees. Using more than 50 trees may slow down computation with little benefit,

but if there is complicated structure it may help the fit. Often in applications

we are “lazy” and just use a large number of trees (e.g., 200). In this regard

we have found that predictive performance suffers more when too few trees are

selected than when too many are selected. Although one could consider a fully

Bayes approach that puts a prior on m, we find it easier and faster to simply

consider and compare our results for various choices of m.

4 BART MCMC

Given the observed data y, our Bayesian setup induces a posterior distribution

p((T1,M1), (T2,M2), . . . , (Tm,Mm), σ| y) (11)

on all the parameters that determine a sum-of-trees model (4). Although the

sheer size of this parameter space precludes exhaustive calculation, the following

MCMC algorithm can be used to sample from this posterior.

At a general level, our algorithm is a Gibbs sampler. For notational conve-

nience, let T(j) be the set of all trees in the sum except Tj, and similarly define

M(j). Thus T(j) will be a set of m − 1 trees, and M(j) the associated terminal

node parameters. The Gibbs sampler here entails m successive draws of (Tj,Mj)

conditionally on (T(j),M(j), σ):

(T1,M1)|T(1),M(1), σ, y

(T2,M2)|T(2),M(2), σ, y (12)
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...

(Tm,Mm)|T(m),M(m), σ, y,

followed by a draw of σ from the full conditional:

σ|T1, T2, . . . Tm, M1,M2, . . . ,Mm, y. (13)

Hastie & Tibshirani (2000) considered a similar application of the Gibbs sampler

for posterior sampling for additive and generalized additive models, but with

σ fixed, and showed how it was a stochastic generalization of the backfitting

algorithm for such models. For this reason, we refer to our algorithm as iterative

backfitting MCMC.

The draw of σ in (13) is simply a draw from an inverse gamma distribution

and so can be easily obtained by routine methods. Much more challenging is how

to implement the m draws of (Tj,Mj) in (12). This can be done by taking advan-

tage of the following reductions. First, observe that the conditional distribution

p(Tj,Mj|T(j),M(j), σ, y) depends on (T(j),M(j), y) only through

Rj ≡ y − ∑

k 6=j

g(x, Tk,Mk), (14)

the n−vector of partial residuals based on a fit that excludes the jth tree. Thus,

a draw of (Tj,Mj) given (T(j),M(j), σ, y) in (12) is equivalent to a draw from

(Tj,Mj)|Rj, σ. (15)

Now (15) is formally equivalent to the posterior of the single tree model Rj =

g(x, Tj,Mj) + ε where Rj plays the role of the data y. Because we have used a

conjugate prior for Mj,

p(Tj|Rj, σ) ∝ p(Tj)
∫

p(Rj|Mj, Tj, σ)p(Mj|Tj, σ)dMj (16)

can be obtained in closed form up to a norming constant. This allows us to carry

out the draw from (15), or equivalently (12), in two successive steps as

Tj|Rj, σ (17)
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Mj|Tj, Rj, σ. (18)

The draw of Tj in (17), although somewhat elaborate, can be obtained using

the Metropolis-Hastings (MH) algorithm of CGM98. This algorithm proposes a

new tree based on the current tree using one of four moves. The moves and their

associated proposal probabilities are: growing a terminal node (0.25), pruning a

pair of terminal nodes (0.25), changing a non-terminal rule (0.40), and swapping

a rule between parent and child (0.10). Although the grow and prune moves

change the implicit dimensionality of the proposed tree in terms of the number

of terminal nodes, by integrating out Mj in (16), we avoid the complexities

associated with reversible jumps between continuous spaces of varying dimensions

(Green 1995).

Finally, the draw of Mj in (18) is simply a set of independent draws of the

terminal node µi,j’s from a normal distribution. The draw of Mj enables the cal-

culation of the subsequent residual Rj+1 which is critical for the next draw of Tj.

Fortunately, there is again no need for a complex reversible jump implementation.

We initialize the chain with m single node trees, and then iterations are re-

peated until satisfactory convergence is obtained.

At each iteration, each tree may increase or decrease the number of terminal

nodes by one, or change one or two decision rules. Each µ will change (or cease

to exist or be born), and σ will change. It is not uncommon for a tree to grow

large and then subsequently collapse back down to a single node as the algorithm

iterates. The sum-of-trees model, with its abundance of unidentified parameters,

allows for “fit” to be freely reallocated from one tree to another. Because each

move makes only small incremental changes to the fit, we can imagine the al-

gorithm as sculpting a complex figure by adding and subtracting small dabs of

clay.

Compared to the single tree model MCMC approach of CGM98, the BART

MCMC algorithm mixes dramatically better. When only single tree models are
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considered, the MCMC algorithm tends to quickly gravitate towards a single large

tree and then get stuck in a local neighborhood of that tree. In sharp contrast,

we have found that restarts of the BART MCMC algorithm give remarkably

similar results even in difficult problems. Consequently, we run one long chain

with BART rather than multiple starts. Although mixing does not appear to

be an issue, recently proposed modifications of Wu, Tjelmeland & West (2005)

might provide additional benefits.

In some ways BART MCMC is a stochastic alternative to boosting algorithms

for fitting linear combinations of trees. It is distinguished by the ability to sample

from a posterior distribution. At each iteration, we get a new draw of

f ∗ = g(x, T1,M1) + g(x, T2,M2) + . . . + g(x, Tm,Mm) (19)

corresponding to the draw of Tj and Mj. These draws are a (dependent) sample

from the posterior distribution on the “true” f . Rather than pick the “best”

f ∗ from these draws, the set of multiple draws can be used to further enhance

inference. In particular, a less variable estimator of f or predictor of Y , namely

the posterior mean of f , is approximated by averaging the f ∗ over the multiple

draws. Further, we can gauge our uncertainty about the actual underlying f

by the variation across the draws. For example, we can use the 5% and 95%

quantiles of f ∗(x) to obtain 90% posterior intervals for f(x).

Finally, the BART MCMC algorithm easily allows for the extensions of the

sum-of-trees model discussed at the end of Section 1. Implementation of linear

terms or random effects in a BART model would only require a simple additional

MCMC step to draw the associated parameters. The multivariate version of

BART (3) is easily fit by drawing each f ∗i given {f ∗j }j 6=i and Σ, and then drawing

Σ given all the f ∗i .
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5 Examples

In this section we illustrate the potential of BART on three distinct types of data.

The first is simulated data where the mean is the five dimensional test function

used by Friedman (1991). The second is the well-known Boston Housing data

which has been used to compare a wide variety of competing methods in the

literature, and which is part of the machine learning benchmark package in R

(mlbench). Finally, we report some results from Abreveya & McCulloch (2004)

who use BART extensively in the analysis of data on penalty calls in the National

Hockey League.

5.1 Friedman’s Five Dimensional Test Function

To illustrate the potential of multivariate adaptive regression splines (MARS),

Friedman (1991) constructed data by simulating values of x = (x1, x2, . . . , xp)

where

x1, x2, . . . , xp iid ∼ Uniform(0, 1), (20)

and y given x where

y = f(x) + ε = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + ε (21)

where ε ∼ N(0, 1). Because y only depends on x1, . . . , x5, the predictors x6, . . . , xp

are irrelevant. These added variables together with the interactions and nonlin-

earities make it especially difficult to find f(x) by standard parametric methods.

Friedman (1991) simulated such data for the case p = 10.

We now proceed to illustrate the potential of BART with this simulation

setup. In Section 5.1.1, we show that on such data, BART outperforms compet-

ing methods including gradient boosting. In Section 5.1.2, we illustrate various

features of BART in more detail. There, we illustrate how BART is robust with

respect to hyperparameter settings, how it can be used for in-sample and out-of-
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sample inference and how it remains remarkably effective when p is very large.

We also see that the BART MCMC burns in fast, and mixes well.

5.1.1 Out-of-Sample Predictive Comparisons

In this section, we compare BART with competing methods using the Friedman

simulation scenario above with p = 10. As plausible competitors to BART in

this setting, we consider boosting (Freund & Schapire (1997), Friedman (2001)),

implemented as gbm by Ridgeway (2004), random forests (Breiman 2001), MARS

(Friedman 1991) (implemented as polymars by Kooperberg, Bose & Stone (1997),

and neural networks, implemented as nnet by Venables & Ripley (2002). Least

squares linear regression was also included as a reference point. All implemen-

tations are part of the R statistical software (R Development Core Team 2004).

These competitors were chosen because, like BART, they are black box predic-

tors. Trees, Bayesian CART, and Bayesian treed regression (Chipman, George

& McCulloch 2002) models were not considered, since they tend to sacrifice pre-

dictive performance for interpretability.

With the exception of linear regression, all the methods above are controlled

by the operational parameters listed in Table 1. In the simulation experiment

described below, we used 10-fold cross-validation for each of these methods to

choose the best parameter values from the range of values also listed in Table 1.

To be as fair as possible in our comparisons, we were careful to make this range

broad enough so that the most frequently chosen values were not at the minimum

or maximum of the ranges listed. Table 1 also indicates that some parameters

were simply set to fixed values.

We considered two versions of BART in the simulation experiment. In one

version, called BART-cv, the hyperparameters (ν, q, k) of the priors were treated

as operational parameters to be tuned. For the σ prior hyperparameters (ν, q),

the three settings (3,0.90) (default), (3,0.99)(aggressive) and (10,0.75)(conserva-

17



Method Parameter Values considered

Boosting # boosting iterations n.trees= 1, 2, . . . , 2000
Shrinkage (multiplier of each tree added) shrinkage= 0.01, 0.05, 0.10, 0.25
Max depth permitted for each tree interaction.depth= 1,2,3,4

Neural # hidden units size= 10, 15, 20, 25, 30
Nets Decay (penalty coef on sum-squared weights) decay= 0.50, 1, 1.5, 2, 2.5

(Max # optimizer iterations, # restarts) fixed at maxit= 1000 and 5

Random # of trees ntree= 200, 500, 1000
Forests # variables sampled to grow each node mtry= 3, 5, 7, 10

MARS GCV penalty coefficient gcv= 1, 2, ..., 8

BART Sigma prior: (ν, q) combinations (3,0.90), (3,0.99), (10,0.75)
-cv µ Prior: k value for σµ 1, 1.5, 2, 2.5, 3

(# trees m, iterations used, burn-in iterations) fixed at (200, 1000,500)

BART Sigma prior: (ν, q) combinations fixed at (3,0.90)
-default µ Prior: k value for σµ fixed at 2

(# trees m, iterations used, burn-in iterations) fixed at (200, 1000,500)

Table 1: Operational parameters for the various competing models. Names in last column
indicate parameter names in R.

tive) as shown in Figure 1 were considered. For the µ prior hyperparameter k,

five values between 1 (little shrinkage) and 3 (heavy shrinkage) were considered.

Thus, 3*5 = 15 potential values of (ν, q, k) were considered. In the second ver-

sion of BART, called BART-default, the operational parameters (ν, q, k) were

simply fixed at the default (3, 0.90, 2). For both BART-cv and BART-default, all

specifications of the quantile q were made relative to the least squares regression

estimate σ̂. Although tuning m in BART-cv might have yielded some moderate

improvement, we opted for the simpler choice of a large number of trees.

In additional to its specification simplicity, BART-default offers huge compu-

tational savings over BART-cv. Selecting among the 15 possible hyperparameter

values with 10 fold cross-validation, followed by fitting the best model, requires

15*10 + 1 = 151 applications of BART. This is vastly more computationally

intensive than BART-default which requires but a single fit.
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Method average RMSE se(RMSE)
Random Forests 2.655 0.025
Linear Regression 2.618 0.016
Neural Nets 2.156 0.025
Boosting 2.013 0.024
MARS 2.003 0.060
BART-cv 1.787 0.021
BART-default 1.759 0.019

Table 2: Out-of-sample performance on 50 replicates of the Friedman data.

The models were compared with 50 replications of the following experiment.

For each replication, we set p = 10 and simulated 100 independent values of (x, y)

from (20) and (21). Each method was then trained on these 100 in-sample values

to estimate f(x). Where relevant, this entailed using 10-fold cross-validation to

select from the operational parameter values listed in Table 1. We next simu-

lated 1000 out-of-sample x values from (20). The predictive performance of each

method was then evaluated by the root mean squared error

RMSE =

√√√√ 1

n

n∑

i=1

(f̂(xi)− f(xi))2 (22)

over the n = 1000 out-of-sample values.

Average RMSEs over 50 replicates and standard errors of averages are given

in Table 2. All the methods explained substantial variation, since the average

RMSE for the constant model (ŷ ≡ ȳ) is 4.87. Both BART-cv and BART-

default substantially outperformed all the other methods by a significant amount.

The strong performance of BART-default is noteworthy, and suggests that rea-

sonably informed choices of prior hyperparameters may render cross-validation

unnecessary. BART-default’s simplicity and speed make it an ideal tool for auto-

matic exploratory investigation. Finally, we note that BART-cv chose the default

(ν, q, k) = (3, 0.90, 2.0) most frequently (20% of the replicates).
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Figure 2: BART’s robust RMSE performance as (ν, q, k, m) is varied

5.1.2 Further Illustration of BART’s Features

We now use the simulation to further illustrate various features of BART.

We first demonstrate the robustness of BART’s performance as hyperparam-

eters are varied. In addition to varying hyperparameters ν, q and k, we varied

the number of trees, m. One realization of data from Section 5.1.1 is used. We

used 5000 MCMC draws to estimate f(x) after skipping 1000 burn-in iterations.

More draws are used than in Section 5.1.1 since we desire posterior intervals

rather than just a simple point prediction.

Figures 2 (a) and (b) display the in-sample and out-of-sample RMSE (22)

obtained by BART as (ν, q, k, m) are varied. The estimates f̂(x) used here are

averages over the 5000 BART MCMC draws. In each plot, m is on the horizontal

axis and RMSE is on the vertical axis. The plotted text indicates the values of

(ν, q, k): k = 1, 2 or 3 and (ν, q) = d, a or c (default/agressive/conservative).

Three striking features of the plot are apparent: (i) a small number of trees (m

small) gives poor results, (ii) as long as k > 1, very similar results are obtained
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from different prior settings, and (iii) increasing the number of trees well beyond

the number needed to capture the fit, results in only a slight degradation of the

performance.

As Figure 2 suggests, the BART fitted values are remarkably stable as the set-

tings are varied. Indeed, in this example, the correlations between out-of-sample

fits turn out to be very high, almost always greater than .99. For example, the

correlation between the fits from the (ν, q, k, m)=(3,.9,2,100) setting (a reason-

able default choice) and the (10,.75,3,100) setting (a very conservative choice)

is .9948. Replicate runs with different seeds are also stable: The correlation

between fits from two runs with the (3,.9,2,200) setting is .9994. Such stability

enables the use of one long MCMC run. In contrast, some models such as neural

networks require multiple starts to ensure a good optimum has been found.

We next illustrate inference on the data above given by BART with the de-

fault setting (ν, q, k) = (3, 0.90, 2) and m = 100. Figure 3(a) plots f(x) against

posterior mean f̂(x) for the 100 in-sample values of x. Vertical lines join the

5% and 95% quantiles of the f draws. Figure 3(b) is the analogous plot at 100

randomly selected out-of-sample x values. We see that the means f̂(x) correlate

very well with the true f(x) values and the intervals tend to cover the true values.

The wider out-of-sample intervals intuitively indicate greater uncertainty about

f(x) at new x values.

In Figures 3(a) and (b), 89% and 96% of the intervals cover the true value,

respectively. Over 200 replicates of the data in this figure, the mean coverage

rates were 87% (in-sample) and 93% (out-of-sample). Strong prior input is a key

to our approach so there is no logical necessity for exact frequency coverage. For

example, at extreme x vectors our uncertainty is large and thus the prior may

exert more shrinkage. In such situations we do not expect to be as successful at

covering the true value as for an x in the interior. Nonetheless, if the frequen-

tist coverage rate was way off, we would conclude that our prior was “poorly
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Figure 3: Inference about Friedman’s function in p = 10 dimensions.

calibrated”. The coverage rates in our simulation and the intervals depicted in

Figure 3 seem very reasonable.

The lower sequence in Figure 3(c) is the sequence of σ draws over the entire

1000 burn-in plus 5000 iterations (plotted with *). The horizontal line is drawn at

the true value σ = 1. The Markov chain here appears to reach equilibrium quickly,

and although there is autocorrelation, the draws of σ nicely wander around the

true value σ = 1 suggesting that we have fit but not overfit. To further highlight

the deficiencies of a single tree model, the upper sequence (plotted with ·) in

Figure 3(c) is a sequence of σ draws when m = 1 is used. The sequence seems to

take longer to reach equilibrium and remains substantially above the true value

σ = 1, suggesting that a single tree may be inadequate to fit this data.

Lastly, we show that BART can remain effective in the Friedman simulation

setup with substantially larger p. For this purpose, we repeated the analysis

displayed in Figure 3 with p = 20, 100 and 1000. Note that we are trying to draw

inference about a five dimensional function f(x) embedded in a p dimensional

space with only n = 100 observations. We used BART with the same default

setting of (ν, q, k) = (3, 0.90, 2) and m = 100 with one exception; we used the

naive estimate σ̂ (the sample standard deviation of Y ) rather the least squares

estimate to anchor the qth prior quantile to allow for data with p ≥ n. Given

that we are using the naive σ̂, it might be reasonable to use the more aggressive
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prior setting for (ν, q).

Figure 4 displays the in-sample and out-of-sample BART inferences for the

larger values p = 20, 100 and 1000. The in-sample estimates and 90% posterior

intervals for f(x) are remarkably good for every p. However, the out-of-sample

plots show that extrapolation outside the data becomes less reliable as p increases.

Indeed the estimates stray further from the truth especially at the boundaries,

and the posterior intervals widen (as they should). Where there is less informa-

tion, it makes sense that BART pulls towards the center because the prior takes

over and the µ’s are shrunk towards the center of the y values. Nonetheless it

remarkable that the BART inferences are at all reliable, at least in the middle of

the data, when the dimension p is so large compared to the sample size n = 100.

In the third column of Figure 4, it is interesting to note what happens to

the MCMC sequence of σ draws. In each of these plots, the solid line at σ

= 1 is the true value and the dashed line at σ̂ = 4.87 is the naive estimate

used to anchor the prior. In each case, the σ sequence repeatedly crosses σ =

1. However as p gets larger, it increasingly tends to stray back towards larger

values, a reflection of increasing uncertainty. Finally, we note that the sequence

of σ draws in Figure 3(c) is systematically lower than the draws Figure 4. This

is mainly due to the fact that the regression σ̂ was used in Figure 3 to anchor the

prior. Indeed if the naive σ̂ was instead used the σ draws would similarly rise.

Finally, to gauge how BART would perform on pure noise, we simulated data

from (20) with f ≡ 0 for p = 10, 100, 1000 and ran BART with the same settings

as above. With p = 10 and p = 100 all intervals for f at both in-sample and

out- of-sample x values covered or were close to 0 clearly indicating the absence

of a relationship. At p = 1000 the data becomes so uninformative that our prior,

which suggests that there is some fit, takes over and some in-sample intervals

are far from 0. However, the out-of-sample intervals still tend to cover 0 and are

very large so that BART still indicates no evidence of a relationship.
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Figure 4: Inference about Friedman’s function in p dimensions.
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5.2 Boston Housing Data

We now proceed to illustrate the potential of BART on the Boston Housing

data. This data originally appeared in Harrison & Rubinfeld (1978), and have

since been used as a standard benchmark for comparing regression methods. The

original study modelled the relationship between median house price for a census

tract and 13 other tract characteristics, such as crime rate, transportation access,

pollution, etc. The data consist of 506 census tracts in the Boston area. Following

other studies, we take log median house price as the response.

5.2.1 Out-of-Sample Predictive Comparisons

We begin by comparing the performance of BART with various competitors on

the Boston Housing data in a manner similar to Section 5.1.1. Because this is

real rather than simulated data, a true underlying mean is unavailable, and so

here we assess performance with a train/test experiment. For this purpose, we

replicated 50 random 75%/25% train/test splits of the 506 observations. For

each split, each method was trained on the 75% portion, and performance was

assessed on the 25% portion by the RMSE between the predicted and observed

y values.

As in Section 5.1.1, all the methods in Table 1 were considered, with the ex-

ception of MARS because of its poor performance on this data (see, for example,

Chipman et al. (2002)). All ranges and settings for the operational parameters

in Table 1 were used with the exception of neural networks for which we instead

considered size = 3, 5, 10 and decay = 0.05, 0.10, 0.20, 0.50. Operational

parameters were again selected by cross-validation. Both BART-cv and BART-

default were considered, again with all specifications of the quantile q relative to

the least squares regression estimate σ̂.

Table 3 summarizes RMSE values for the 50 train/test splits, with small-

est values being best. As in Table 2, both BART-cv and BART-default sig-
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Method average RMSE se(RMSE)
Linear Regression 0.1980 0.0021
Neural Nets 0.1657 0.0030
Boosting 0.1549 0.0020
Random Forests 0.1511 0.0024
BART-default 0.1475 0.0018
BART-cv 0.1470 0.0019

Table 3: Test set performance over 50 random train/test splits of the Boston Housing data.

nificantly outperform all other methods. Furthermore, BART-default, which

is trivial to specify and does not require cross-validation, performed essentially

as well as BART-cv. Indeed, except for the difference between BART-cv and

BART-default, all the differences in Table 3 are statistically significant (by paired

t-tests that pair on the splits, at significance level α = .05). The most com-

monly chosen hyperparameter combinations by BART-cv in this example were

(ν, q, k) = (3, 0.99, 2.5) in 20% of the splits, followed by the default choice

(3,0.90,2) in 14% of the splits.

5.2.2 Further Inference on the Full Data Set

For further illustration, we applied BART to all 506 observations of the Boston

Housing data using the default setting (ν, q, k) = (3, 0.90, 2), m = 200, and the

regression estimate σ̂ to anchor q. This problem turned out to be somewhat

challenging with respect to burn-in and mixing behavior: 100 iterations of the

algorithm were needed before σ draws stabilized, and the σ draws had autocor-

relations of 0.63, 0.54, 0.41 and 0.20 at lags 1, 2, 10, and 100, respectively. Thus,

we used 10000 MCMC draws after a burn-in of 500 iterations.

At each of the 506 predictor values x, we used 5% and 95% quantiles of the

MCMC draws to obtain 90% posterior intervals for f(x). Not knowing the true

mean f(x) here of course makes it difficult to assess their coverage frequency. An
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appealing feature of these posterior intervals is that they widen when there is less

information about f(x). To roughly illustrate this, we calculated Cook’s distance

diagnostic Dx for each x (Cook 1977) based on a linear least squares regression

of y on x. Larger Dx indicate more uncertainty about predicting y with a linear

regression at x. To see how the width of the 90% posterior intervals corresponded

to Dx, we plotted them together in Figure 5(a). Although the linear model may

not be strictly appropriate, the plot is suggestive: all points with large Dx values

have wider uncertainty bounds.

A very useful tool for gauging the actual effect of predictors using BART is

the partial dependence plot developed by Friedman (2001). Suppose the vector

of predictors x can be subdivided into two subgroups: the predictors of interest,

xs, and the complement xc = x \ xs. A prediction f(x) can then be written as

f(xs, xc). To estimate the effect of xs on the prediction, Friedman suggests the

partial dependence function

fs(xs) =
1

n

n∑

i=1

f(xs, xic), (23)

where xic is the ith observation of xc in the data. Note that (xs, xic) need not

be one of the observed data points. Using BART it is straightforward to then

estimate and even obtain uncertainty bounds for fs(xs). A draw of f ∗s (xs) from

the induced BART posterior on fs(xs) is obtained by simply computing f ∗s (xs)

as a byproduct of each MCMC draw f ∗. The average of these MCMC f ∗s (xs)

draws then yields an estimate of fs(xs), and the 5% and 95% quantiles can be

used to obtain 90% posterior intervals for fs(xs).

We illustrate this by using BART to estimate the partial dependence of log

median house value at 10 values of the single variable crime. At each distinct

crime value xs, fs(xs) in (23) is defined using all n = 506 values of the other

12 predictors xc in the Boston Housing data. To draw values f ∗s (xs) from the

induced BART posterior on fs(xs) at each crime value, we simply applied the

calculation in (23) using every tenth MCMC BART draw of f ∗ above. With these
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Figure 5: Plots from a single run of BART on the full Boston dataset. (a) Comparison of

uncertainty bound widths with Cook’s distance measure. (b) Partial dependence plot for

the effect of crime on the response (log median property value).

1000 draws, we obtained the partial dependence plot in Figure 5(b) which shows

the average estimates and 90% posterior intervals for fs(xs) at each of 10 values

of xs. Note that the vast majority of data values occur for crime < 5, causing the

intervals to widen as crime increases and the data become more sparse. At the

small crime values, the plot suggests that the variable does have the anticipated

affect on housing values.

Finally, we conclude with some remarks about the complexity of the fitted

functions that BART generated to describe this data. For the last iteration, we

recorded the distribution of tree sizes across the 200 trees. 7.5%, 61.5%, 26.5%

and 4.5% of the trees had 1, 2, 3 and ≥ 4 terminal nodes respectively. A two-

node tree indicates a main effect, since there is only a split on a single predictor.

Three-node trees involving two variables indicate two-way interactions, etc. The

prevalence of trees with three or fewer terminal nodes indicates that main effects

and low-level interactions dominate here.

28



5.3 NHL Penalty Data

In this section we present selected results from Abreveya & McCulloch (2004)

(AM) which uses BART extensively. AM collected information on every penalty

in the National Hockey League from the 95-96 season to the 01-02 season. There

are 57,883 observations with each observation corresponding to a penalty. The

goal of this study is not strictly predictive. AM propound a theory of referee

behavior and look for patterns which are consistent with this theory.

For all penalties except the first in a game, they define the response y to

be 1 if the current penalty is not on the same team as the last penalty and 0

otherwise. AM refer to the event y = 1 as a “reverse call”. Nineteen explanatory

variables were used. The key variables are (i) r: a binary variable where r = 1

indicates the last two penalties were on the same team, and r = 0 otherwise, (ii)

g: the lead, in goals of the last team to be penalized, (iii) t: the time since the

last penalty in the game, and (iv) n: the number of penalties called in the game

so far. AM’s basic theory is that hockey is extremely difficult to officiate and

referees end up “letting a lot of stuff go”. Referees that make “too many” calls

are severely criticized. Referees adopt a number of sensible strategies to avoid

blame in a hostile environment. For example, we shall see that if r = 1 (the last

two calls were on the same team) then it is more likely that y = 1 (the next

penalty will be on the other team). Suppose the last penalized team is behind

in the game. Would that make it more or less likely that the next penalty will

be on the other team?

In order to assess the ability of different modelling strategies to capture the

relationships in the data a simple “two-set” predictive exercise was carried out.

10,000 observations were randomly selected to be a hold-out data-set. Various

modelling strategies were trained on the remaining 47,883 observations and then

evaluated by their ability to predict the hold-out data. Predictive success was

measured by the commonly used deviance measure: −2
∑10,000

i=1 log(p̂i), where p̂i
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Figure 6: Hockey. (a) indicates out-of-sample deviance for neural nets (N), BART (B), and

boosting (G). (b) gives predictions at 16 high/low combinations of four important predictors.

is the probability of the observed y given by a certain strategy. Note that AM

are much more informal about prediction than in Sections 5.1 and 5.2 of this

paper. They simply tried different modelling approaches and various tunings for

each approach, fitting on one data-set and predicting on the other. This simple

approach was motivated by the goal of the study which was more exploratory

and interpretive than predictive.

Three models were considered for this data: neural nets, BART, and boosting.

The deviance losses on hold-out data for neural nets, BART, and boosting are

displayed in panel (a) of Figure 6. Various settings (described below) are consid-

ered for each model. BART with ν = 3 and λ = .52 has the lowest out-of-sample

predictive loss.

Details of the three model classes are given below:

Neural nets: One hidden layer with 10 units was used. After standardizing

the explanatory variables, N1 . . . N6 correspond to the use of the decay values

3,2,1,.8,.6, and .4. Some effort was needed to find a reasonable range for the
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decay. The next six neural net fits use the same settings as the first six and

are included to illustrate the variation in neural net fits due to random starting

values and the difficult nature of the likelihood for this model.

BART: While the BART approach discussed in this paper is easily extended

to a binary response (e.g. via a latent continuous response), AM fit BART as

in the previous examples. The model is y = p(x) + ε, where we now think

of p(x) as the probability of y = 1 given x. Since the fitted probabilities are

never extreme (you are never sure which team will get the next penalty) this is

a reasonable approximation. All of the BART fits use 200 trees. The various

BART fits correspond to different choices of the σ prior. In a departure from

previous examples, AM specified λ in σ2 ∼ ν λ
χ2

ν
. The first three BART fits use

degrees of freedom ν = 10, 5 and 3 and λ = .52. The second three BART fits

used the same choices of ν but set λ = σ̂2 where σ̂ is the estimate from a linear

model.

Boosting: The first four boosting models (R1 through R4) have 200 trees,

interaction depth of 3, and shrinkage factors of 0.05, 0.08, 0.10, and 0.15, respec-

tively. The next four (R5 through R8) have 300 trees with the same settings

repeated. AM also tried fitting gbm with 1000 trees but obtained worse results

than reported in Figure 6.

Random forests were fit here, but not in AM. Results using the same settings

as in Section 5.2 were comparable to those obtained with a single tree and very

much worse the other three models considered.

AM refit BART using this prior and the entire data set. The BART repre-

sentation of the function p is not directly interpretable. In order to interpret

the BART fit, AM obtained the posterior distribution of p(x) at a variety of x

configurations each of which corresponds to a game scenario. All variables other

than r, g, t, and n were fixed at a reasonable base level. A “low” and “high”

level was picked for each of these four variables. A lower case symbol is used to
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denote the low level and an upper case symbol is used to denote the high level.

For g, g denotes g = −1 and G denotes g = 1 (in goals). For r, r denotes r = 0

and R denotes r = 1. For t, t denotes t = 2 and T denotes t = 10 (in minutes).

For n, n denotes r = 3 and N denotes n = 12 (number of penalties in the game

so far). So, for example, GrtN denotes an x corresponding to a game scenario

where the last penalized team is ahead by a goal (G), the last two penalties have

been on a different team (r), it has only been two minutes since the last penalty

call (t), and several calls have already been made (N).

Choosing two levels for each of our four variables gives sixteen game scenarios.

The posterior distribution of the probability of a reverse call under each of these

scenarios is displayed in panel (b) of Figure 6. Each scenario is labelled on the

horizontal axis. On the vertical axis, the mean of the draws of p(x) is plotted

along with a 90% interval. So, using the first scenario, the 90% posterior interval

for the probability of a reverse call given the x = grtn is about .59± .04.

There is remarkable variation in the estimated probabilities and the intervals

indicate that there is enough information in the data to take the differences

seriously. When is a reverse call most likely? At gRtn the probability is estimated

to be about .72. When the referee just (t) gave a team two penalties in a row (R)

and they are behind (g) and it is early in the game (n) he will really catch heat

if he gives the same team another penalty. In contrast, at GrTn, the probability

is estimated to be .45. Again the story makes sense. If the last penalized team is

ahead, the last two penalties are on different teams, and the most recent penalty

happened long ago, it is not too hard to give the next penalty to the same team.

In Figure 6 (b) the posteriors are presented in an order which makes it easy

to see that changing from r to R always make a reverse call more likely. We

also see that size of the effect depends on the levels of the other variables so

that there are interactions. AM present plots which enable the reader to easily

see nonlinearities in the main effects and various interactions. For example, the
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effect of changing from r to R is bigger at n than N , and bigger at G than g given

n. BART is extremely effective in the analysis because it is able to uncover the

patterns in the data including nonlinear effects and high order interactions and

the posterior variation indicates which effects should be taken most seriously.

6 Discussion

CGM98 and Chipman et al. (2002) (CGM02) developed Bayesian methods for

tree based models. BART dominates this previous work in several key dimen-

sions.

BART gives better out-of-sample predictions. For example, CGM02 found

that although Bayesian treed regression models predicted well, they did not do as

well as neural nets on the Boston Housing data. In contrast, BART significantly

outperformed all competitors on the same data, and in simulations. Factors that

may contribute to BART’s predictive success include: the sum-of-tree model

shrinks towards additive models but adaptively fits interactions of various levels,

an effective MCMC stochastic search, model averaging, and regularization of

the fit via prior hyperparameter choice. In future work we will investigate the

contributions of these factors.

BART MCMC exhibits faster burn-in, vastly better mixing and is easy to use.

The CGM98 and CGM02 MCMC implementations require a number of restarts

of the chain and various associated ad hoc choices. In contrast, one long run

of BART MCMC works very well as evidenced by the stability of repeated runs

with different seeds and different settings. Thus, the BART posterior sample can

be used more reliably for estimation by the posterior mean or for construction of

posterior intervals. In addition, the results seem to be remarkably robust to the

prior specification. In particular, the BART default setting allows for excellent

performance with an automatic specification.
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The BART model may be used as a component in a larger Bayesian hierar-

chical model. In such scenarios (and other situations), the notion of a hold-out

sample may be difficult or impossible to define. For example we can use BART

to fit an autoregressive model or when sample size n is small. In particular, if

p denotes the number of explanatory variables, we can use BART in situations

where p À n. In such complex modelling situations, bootstrapping a boosted

model may be infeasible, and even if it can be done, it is unlikely to give a full

and realistic assessment of all uncertainty.
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