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Abstract
Consider the canonical regression setup where one wants to model the relationship

between y, a variable of interest, and x1, . . . , xp, p potential predictor variables. For
this general problem we propose BART (Bayesian Additive Regression Trees), a new
approach to discover the form of f(x1, . . . , xp) ≡ E(Y | x1, . . . , xp) and draw inference
about it. BART approximates f by a Bayesian “sum-of-trees” model where each tree
is constrained by a prior to be a weak learner as in boosting. Fitting and inference
are accomplished via an iterative backfitting MCMC algorithm. By using a large
number of trees, which yields an overcomplete basis for f , we have found BART to
be remarkably effective at finding highly nonlinear relationships hidden within a large
number of irrelevant potential predictors.

BART is motivated by ensemble methods in general, and boosting algorithms in
particular. Like boosting, each weak learner (i.e., each weak tree) contributes a small
amount to the overall model, and the training of a weak learner is conditional on the
estimates for the other weak learners. The differences from boosting algorithms are
just as striking as the similarities: BART is defined by a statistical model: a prior and
a likelihood, while boosting is defined by an algorithm. MCMC is used both to fit the
model and to quantify inferential uncertainty through the variation of the posterior
draws.

The BART modelling strategy can also be viewed in the context of Bayesian non-
parametrics. The key idea is to use a model which is rich enough to respond to a
variety of signal types, but constrained by the prior from overreacting to weak signals.
The ensemble approach provides for a rich base model form which can expand as
needed via the MCMC mechanism. The priors are formulated so as to be interpretable,
relatively easy to specify, and provide results that are stable across a wide range of
prior hyperparameter values. The MCMC algorithm, which exhibits fast burn-in and
good mixing, can be readily used for model averaging and for uncertainty assessment.

After introducing BART, we proceed to illustrate how it opens up a new approach
to variable selection when one wants to model the relationship between y and a subset
of x1, . . . , xp, but there is uncertainty about which subset to use. This selection problem
is typically treated by assuming that the relationship between y and x1, . . . , xp belongs
to a parametric family such as the normal linear models. If incorrect, however, such
an assumption can at the outset defeat the ultimate goal; subsets of x1, . . . , xp may be
excluded simply because their relationship to y is far outside the assumed parametric
family. To avoid this limitation, we show how BART may be used to discover the
nature of the relationship between y and x1, . . . , xp before attempting to find relevant
variables and a suitable parametric form.
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To begin with, BART automatically screens for relevant predictors. As the BART
algorithm moves through the model space, different potential predictors enter the model
with different frequencies. Those that enter rarely or not at all are candidates for
elimination, and those that enter frequently are candidates for inclusion. Based on
such information, we consider various strategies for rerunning BART on subsets of
x1, . . . , xp which lead to a stable subset for selection. Note that BART also provides
an omnibus test: the absence of any relationship between y and any subset of x1, . . . , xp

is suggested when BART posterior intervals for f reveal no signal.
Going further, let f̂ be a BART estimate of f based on the selected subset of

x1, . . . , xp. Intuitively, f̂ may be regarded as a sufficient statistical summary of the
systematic relationship between y and x1, . . . , xp. Thus f̂ and the selected subset can
be used, instead of the raw data, to find a parametric model for this relationship. For
example, letM1, . . . ,MM be M different parametric model classes under consideration
such as the normal linear models or other exponential family models. Partial depen-
dence plots applied to f̂ may be useful for suggesting the form of such model classes as
well as useful transformations of the predictors. Basically, the goal is to find the model
within any of these model classes that is “best supported” by f̂ . For this purpose, we
consider the strategy of selecting the model corresponding to the projection of f̂ onto
the nearest model class with respect to a utility criterion such as the Kullback-Leibler
discrepancy. Yet another strategy is to construct a likelihood over the model space
based on the probability distribution of f̂ for each model. This opens the door to f̂
based Bayesian approaches for model selection and averaging over M1, . . . ,MM .
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