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Abstract

Particle Filters are now regularly used to obtain the

filter distributions associated with state space financial

time series. Most commonly used nowadays is the aux-

iliary particle filter method in conjunction with a first

order Taylor expansion of the log-likelihood. We argue

in this paper that for series such as stock returns, which

exhibit fairly frequent and extreme outliers, filters based

on this first order approximation can easily break down.

However, an auxiliary particle filter based on the much

more rarely used second order approximation appears to

perform well in these circumstances. To detach the issue

of algorithm design from problems related to model mis-

specification and parameter estimation, we demonstrate

the lack of robustness of the first order approximation

and the feasibility of a specific second order approxima-

tion using simulated data.

Key words: Bayesian inference; Importance sampling;

Particle filter; State space model; Stochastic volatility.
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1. INTRODUCTION

One of the two most often reported characteristics associated

with financial returns time series is the fat tails in the uncondi-

tional distribution of returns. More observations appear in the

tails than for Gaussian processes, giving rise to high kurtosis.

The second is volatility clustering, indicating the need to model

the variance evolution of the series. Empirical and theoretical

investigations have both clearly established that for short term

financial time series, variances as measures of volatility are time

varying but present some degree of predictability (Bollerslev,

Engle and Nelson 1994; Taylor 1994; Diebold and Lopez 1995;

Engle 1995; Campbell, Lo and MacKinlay 1997; Diebold, Hick-

man, Inoue and Schuermann 1998; Ait-Sahalia 1998; Andersen,

Bollerslev and Lange 1999; Christoffersen and Diebold 2000).

Variance is used as a measure of risk in a variety of situations:

Value-at-Risk (VaR) calculations, portfolio allocation and pric-

ing options.

To model variance dynamics, nonlinear models have to be

used (Gallant, Rossi and Tauchen 1993; Hsieh 1993; Bollerslev

et al. 1994; Campbell et al. 1997), which, in turn requires

numerical algorithms for estimation and prediction. The two

most common classes of models used in financial time series are
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the AutoRegressive Conditional Heteroskedastic (ARCH) and

Stochastic Volatility (SV) models. Understanding and predict-

ing the evolution of volatility has been a key issue faced by

people who have to take decisions in financial markets. These

two classes of models have been widely used by academics and

practitioners. However, new challenges have appeared and more

sophisticated algorithms allowing them to deal with real time

decisions are needed. Nowadays, data have become more and

more abundant, and one mainstream of research uses intraday

data, which enable us to take other characteristics of financial

time series into account and enables us to measure and esti-

mate other quantities such as realized volatility and integrated

volatility, respectively. Examples of this kind of research can

be found in Andersen Diebold and Ebens (2001), Andersen,

Diebold and Labys (2001, 2003) and Andersen, Bollerslev and

Meddahi (2004). Certainly, taking these new characteristics and

measures into account will pose new challenges to the models

mentioned above, and the development of well-adapted algo-

rithms, which is the main object of this paper, is important to

the development of models used to characterize financial time

series.

For the reasons given above, any state space model of finan-

cial returns needs to be nonlinear. The SV model (Taylor 1986)
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is the simplest nonlinear state space model. Financial returns

yt are related to unobserved states which are serially correlated.

Thus, we may write

yt = β exp

(
αt

2

)
εt, εt ∼ N(0, 1), (1)

αt = φαt−1 + σηηt, ηt ∼ N(0, 1), (2)

where αt are the states of the process for t = 1, . . . , n. Note

that the model is characterized by the vector of parameters

θ = (β, φ, ση). Generalizations of this model can be consid-

ered. In this paper we consider that the innovation process in

the measurement equation follows a Student-t distribution.

In this paper, we assume that the parameters are known

or have been previously estimated, for example, using Markov

chain Monte Carlo (MCMC) techniques (Jacquier, Polson and

Rossi 1994). Our aim is to present modifications to certain re-

cent particle filter methods to improve predictions in the process

defining variance evolution. We have adopted a Bayesian state

space approach where predictions are expressed through the pos-

terior density of states, f(αt|θ,Dt), and the predictive density

of returns, f(yt+1|θ,Dt), rather than through point predictions,

where Dt = {y1, . . . , yt} represents the available information at

time t. All densities considered in this paper are conditioned by

the set of parameters θ, although later to simplify the notation,
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we do not make this conditioning explicit. The modifications of

the more conventional algorithms proposed here are easy to im-

plement, but they nevertheless appear to improve the predictive

performance of particle filter methods dramatically.

In general, a Bayesian analysis will deliver the posterior den-

sity of the state f(αt|θ,Dt), on the unobservable state random

variable αt, t = 1, . . . n. This summarizes all information avail-

able at time t relevant for predicting future values of the series.

As new information arrives, for example yt+1, the density of

the state is updated to f(αt+1|θ,Dt+1). This forms the basis

of a recursion where, as new information arrives, at each given

time point the state probability densities are sufficient for all

predictive statements to be updated.

This paper focuses on predicting variance evolution in SV

models. The method used here is the Particle Filter as devel-

oped in Gordon, Salmond and Smith (1993), Kong, Liu and

Wong (1994), Fearnhead (1998), Liu and Chen (1998), Carpen-

ter, Clifford and Fearnhead (1999), de Freitas (1999), Doucet,

Godsill, and Andrieu (2000), Doucet, de Freitas and Gordon

(2001), Liu (2001) and Godsill, Doucet, and West (2004). In

it, a distribution that is difficult to analyze algebraically is ap-

proximated by a discrete set of points (particles), each with an

associated weight. The particles and their associated weights
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are updated at each time step according to the state dynam-

ics and to take account of the information in the observation.

The standard methods for updating the particles are based on

importance sampling.

In this paper, we demonstrate that particle filter algorithms

based on a first order approximation of the log-likelihood, when

used with the SV model (1)–(2), can give very unsatisfactory

results. We then propose a set of simple extensions to these

algorithms that can improve the performance of such filters dra-

matically. As well as making the filters more robust, our pro-

posed method greatly simplifies the construction of the filter in

comparison with competing algorithms. Our focus here is on the

performance of the filter rather than on the estimation of the

model. The algorithms we propose are robust to models that

present likelihoods that are not log-concave. This characteristic

is missing from the algorithm that serves as a benchmark for

this paper: the one based on the first order approximation of

the log-likelihood proposed by Pitt and Shephard (1999, 2001).

To attempt to isolate the issue of algorithm performance so

that it is not confounded with issues related to model misspec-

ification and methods used to estimate the parameters, in the

empirical section of this paper, we use two simulated series from

two models. The first is the simplest SV model (1)-(2), and
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the second is its analogue, which uses Student-t innovations,

with parameters taken from a well-known source (Jacquier et

al. 1994). This enables us to demonstrate that the filter per-

formance issue discussed here is largely independent of model

misspecification and parameter estimation techniques. We can

therefore demonstrate that the main issue here is determining

the relative efficacy of different filters, not primarily because

the model is misspecified, but because of the lack of robust-

ness of more basic particle filter algorithms to extreme outliers.

Throughout this paper we use the term extreme outlier, asso-

ciated with a given series and a run of a particle filter, for any

observation yt in that series which lies outside the range of par-

ticles used to approximate its predictive distribution.

2. FIRST VS SECOND ORDER

APPROXIMATIONS IN A PARTICLE FILTER

IMPLEMENTATION

Bayes’ rule allows us to assert that the posterior density

f(αt|Dt) of states is related to the density f(αt|Dt−1) prior to

yt and the density f(yt|αt) of yt given αt by

f(αt|Dt) ∝ f(yt|αt)f(αt|Dt−1). (3)

6
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The predictive density of yt+1 given Dt is

f(yt+1|Dt) =

∫
f(yt+1|αt+1)f(αt+1|Dt) dαt+1. (4)

Instead of estimating these integrals numerically, particle filter

methods approximate these densities using a simulated sample.

A particle filter method approximates the posterior density of

interest, f(αt|Dt), through a set of m “particles” {αt,1, . . . , αt,m}
and their respective weights {πt,1, . . . , πt,m} where πt,j ≥ 0 and

∑m
j=1 πt,j = 1. To implement these filters, we must be able to

sample from possibly nonstandard densities. It is possible to de-

velop simulation procedures to approximate the distribution of

interest and to calculate certain statistics that characterize the

distribution. We must be able to implement these procedures

sequentially, as states evolve over time and new information be-

comes available. This implementation needs to be efficient and

the approximations need to remain good as we move through

the sequence of states.

From a sequential perspective, the main aim is to update the

particles at t−1, and their respective weights, {αt−1,1, . . . , αt−1,m}
and {πt−1,1, . . . , πt−1,m}. These are the particles and respective

weights that approximate a given density, usually a continuous

density function. In this context, the target density is often

hard to sample from, so we must use an approximating density.
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We can sample using this density and then resample as a way of

approximating better the target density. This is the procedure

associated with the sampling importance resampling (SIR) al-

gorithm. However, Pitt and Shephard (1999, 2001) point out

that using f(αt|αt−1) as a density approximating f(αt|Dt) is

not generally efficient because it constitutes a blind proposal

that does not take into account the information contained in

yt. To improve efficiency, we include this information in the ap-

proximating density. The nonlinear/non-Gaussian component

of the measurement equation then starts to play an important

role, and certain algebraic manipulations need to be carried out

in order to use standard approximations. This can be accom-

plished by sampling from a higher dimensional density. First an

index k is sampled, which defines the particles at t− 1 that are

propagated to t, thus defining what the authors call an auxiliary

particle filter. This corresponds to sampling from

f(αt, k|Dt) ∝ f(yt|αt)f(αt|αt−1)πk, k = 1, . . . , m, (5)

where πk represents the weight given to each particle. We can

sample first from f(k|Dt), and then from f(αt|k, Dt), obtain-

ing the sample {(αt,j, kj); j = 1, . . . , m}. The marginal density

f(αt|Dt) is obtained by dropping the index k. If information

contained in yt is included, this resolves the problem of too many
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states with negligible weight being carried forward, thereby im-

proving numerical approximations. Now the target distribution

becomes f(αt, k|Dt) and the information in yt is carried for-

ward by πk. The next step is to define a density approximating

f(αt, k|Dt). One of the simplest approaches, described in Pitt

and Shephard (1999, 2001), is to define

f(αt, k|Dt) ' g(αt, k|Dt) ∝ f(yt|µt,k)f(αt|αt−1)πk, (6)

where µt,k is the mean, mode or a highly probable value associ-

ated with f(αt|αt−1).

Outliers are commonly observed in financial series and for

such datum the information in the prior is very different from

that contained in the likelihood. This means that only very

few particles used to approximate the filter density at t− 1 are

propagated to approximate the filter density at t. This gives

rise to sample impoverishment.

Let g(·|·) represent any density approximating the target

density f(·|·). If the likelihood is log-concave, with a first order

approximation, it can be easily ascertained that g(yt|αt, µt,k) ≥
f(yt|αt) for all values of αt, where g(yt|αt, µt,k) constitutes the

first order approximation of f(yt|αt) around µt,k. This means

that with the approximating density, in this context we can de-

fine a perfect envelope for the target density and a rejection sam-
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pler can be implemented (see, Pitt and Shephard 1999, 2001).

But we can demonstrate here that this algorithm is not robust

to extreme observations when the aim is to update the filter den-

sity within the model (1)–(2). We need a better approximation

of the likelihood function to define the required approximating

density.

The main modification considered is the definition of a sec-

ond order, instead of a first order approximation, that is taken

around a different point α∗t from that proposed by Pitt and

Shephard (1999, 2001). The details of the algebra applied to

the model used in this paper are given later, but in general we

are defining a second order approximation around α∗t for the

log-likelihood, log f(yt|αt) = l(αt), and we designate it as

log g(yt|αt, α
∗
t ) = l(α∗t )+l′(α∗t )(αt−α∗t )+

1

2
l′′(α∗t )(αt−α∗t )

2. (7)

Because we propose using a second order approximation, we

cannot guarantee that the approximating density constitutes

an envelope to the target density, as we can with the first order

approximation, and we need to specify the algebra to implement

the sampling importance resampling algorithm. This algebra

depends on the point used to perform the Taylor expansion of

the log-likelihood. Pitt and Shephard (1999, 2001) used α∗t =

φαt−1, and suggested other possible points such as the mode
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of the posterior distribution or a point between posterior and

prior mode. Here, our main concern is to choose an expansion

point to, as far as possible, avoid a given filter degenerating,

as happens, for example, when a distribution with a continuous

support is approximated by a single point.

A second order approximation defines a Gaussian approxi-

mating density and the variance of the approximating density

is defined through the second derivative of the log-likelihood.

When the likelihood is not log-concave, it is not always possible

to define meaningful Gaussian approximations for all possible

points considered. To overcome this problem, and also to ob-

tain a less complicated algebra, we consider a second order ap-

proximation around the point that maximizes the log-likelihood.

Assuming the regularity conditions that guarantee that the like-

lihood has a maximum, we designate by α∗t the point that max-

imizes the log-likelihood, and we have l′(α∗t ) = 0. In this case,

the equation (7) becomes

log g(yt|αt, α
∗
t ) = l(α∗t ) +

1

2
l′′(α∗t )(αt − α∗t )

2, (8)

which resembles the log-kernel of a Gaussian density with mean

α∗t and variance −1/l′′(α∗t ). When applied to the model in (1)–

(2), we find that it simplifies the algebra considerably and, as we

are assuming that the log-likelihood has a maximum, we have
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l′′(α∗t ) < 0, thus defining a meaningful Gaussian approximation.

The component l(α∗t ) is absorbed into the normalizing constant,

and the remainder is the log-kernel of a Gaussian density, and

then we need l′′(α∗t ) < 0 because −1/l′′(α∗t ) defines the variance

of the corresponding distribution.

In this paper, we claim that the particle filter algorithm im-

plemented by Pitt and Shephard (1999, 2001), based on a first

order approximation of the likelihood function, is not robust

to extreme outliers. We demonstrate, however, that a second

order approximation (suggested but not implemented by these

authors), used in conjunction with an appropriate expansion

point, gives meaningful results supported by straightforward al-

gebra. The calculation of appropriate formulae is presented in

the next section. The algebra for specifying the first order filter

has already been calculated by Pitt and Shephard (1999, 2001),

and the algebra for the second order filter using a generic point

µt,k is given in the Appendix.

3. APPROXIMATIONS BASED ON MAXIMUM

LIKELIHOOD POINTS

For likelihoods associated with extreme outliers and the usual

classes of SV models, it can be shown theoretically that the ex-
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pansion point µt,k = φαt−1,k, suggested by Pitt and Shephard

(1999, 2001) is not where we should expect the posterior den-

sity to centre its weight (Dawid 1973). For the class of stochas-

tic volatility models the weight should be more closely centred

around the maximum of the likelihood function. In a standard

SV model, the calculation of this quantity is straightforward,

and we find that

α∗t = log

(
y2

t

β2

)
. (9)

Therefore, we propose using the Taylor series approximation de-

fined in (7) with α∗t above. There are two main advantages to

using this approximation. First, the algebra needed to imple-

ment the algorithm is greatly simplified. Second, this procedure

can be extended to include the cases where the likelihood is no

longer strictly log-concave. We will focus here on the first ad-

vantage. The algebra is simpler because we are combining the

log-kernel of two Gaussian densities, one given by the transi-

tion density, and the other given by 1
2
l′′(α∗t )(αt − α∗t )

2, which is

the log-kernel of a Gaussian density with mean α∗t and variance

−1/l′′(α∗t ) = 2.

In this setting, we have to take into account the first stage

weights, which are the ones that define which particles approxi-

mating the filter density at t−1 will be carried forward to define

the filter density at t. Using the notation of the equation (5)
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these are denoted by πk, and carry the information contained in

yt. The second order approximation of the log-likelihood com-

bined with the log-prior gives an approximating density

g(αt, k|Dt) ∝ g(yt|α∗t )g(αt|αt−1,k, α
∗
t ), (10)

where

g(yt|α∗t ) = exp

(
−α∗t

2

(
1 +

α∗t
2

)
+

µ∗2t,k

4
+

µ∗2t,k − µ2
t,k

2σ2
η

)
(11)

and

g(αt|αt−1,k, α
∗
t ) = N(µ∗t,k, σ

2
t,k), (12)

where

µ∗t,k =
2µt,k + σ2

ηα
∗
t

2 + σ2
η

(13)

and

σ2
t,k =

2σ2
η

2 + σ2
η

. (14)

The particles at t − 1 that are used to define the approximat-

ing density are sampled using first stage weights, now defined

through equation (11), which depend on the information in

yt as α∗t depends on yt. When sampling the index k from a

distribution proportional to (11), the particle αt−1,k is chosen,

and the density, assuming the role of prior density, assumes a

Gaussian form with mean µt,k = φαt−1,k and variance σ2
η. This

is combined with a Gaussian density with mean α∗t and vari-

ance −1/l′′(α∗t ) = 2. After the particles have been sampled,
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they must be resampled in order to take into account the target

density. They are resampled using the second stage weights

log wj = −αt,j

2
− y2

t

2β2 exp(αt,j)
+

(αt,j − α∗t )
2

4
(15)

πt,j =
wj∑m
j=1 wj

, j = 1, . . . , m. (16)

Following the resampling stage, an approximation of the target

posterior distribution of the states at t is available, which is

used as a prior distribution to update the states at t + 1, and

the process continues recursively as new information arrives.

To summarize, the particles at t − 1 propagated to update

the distribution of the states at t are chosen randomly according

to the weights defined by (11). These weights are influenced by

the information contained in yt. By conditioning on each par-

ticle chosen through the first stage weights, new particles are

sampled. As these come from an approximating distribution, a

second step is needed. The particles are resampled using the

weights defined by (15)-(16). Our modification, outlined above,

makes this second order auxiliary particle filter (APF) straight-

forward and quick to implement.

4. A MODEL EXTENSION

It has long been known that there are better models than the

15

CRiSM Paper No. 05-13, www.warwick.ac.uk/go/crism



standard SV model for financial returns series. Two of the best

known modifications of the SV model use Student-t instead of

Gaussian innovations and allow for the possibility of leverage

effects. Consider then that the innovation process in (1) follows

a scaled Student-t distribution with υ degrees of freedom,

εt ∼
√

υ − 2

υ
tυ. (17)

Second order approximations around the proposed point in the

last section allow us to produce results analogous to (9)–(16)

above, and the choice of the expansion point greatly simpli-

fies calculations in this case. Now, the point used to perform

the approximation is different and the second derivative of the

log-likelihood function, used to define the variance of the ap-

proximating distribution, is also different.

The algorithms described above can be extended quite straight-

forwardly by defining the new approximation for the log-likelihood

function. In this case, the log-likelihood can be written as

l(αt) ∝ −υ + 1

2
log

(
1 +

y2
t

β2(υ − 2) exp(αt)

)
− αt

2
. (18)

The first derivative is given by

l′(αt) =
υy2

t − (υ − 2)β2 exp(αt)

2(υ − 2)β2 exp(αt) + 2y2
t

(19)

and the second derivative is

l′′(αt) = − (υ2 − υ − 2)β2 exp(αt)y
2
t

2((υ − 2)β2 exp(αt) + y2
t )

2
< 0. (20)

16
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Using these results, we can easily define the value of αt that

maximizes the likelihood function. If we solve the equation

l′(αt) = 0, we obtain

α∗t = log

(
υy2

t

β2(υ − 2)

)
, (21)

which is a maximum, because, for υ > 2, we have l′′(αt) < 0

for all values of αt. The other component that needs to be cal-

culated is the value of the second derivative on the point which

maximizes the log-likelihood. It is straightforward to show that

s2
t = − 1

l′′(α∗t )
= 2 +

2

υ
. (22)

In this context, the equation (11) is reformulated and we obtain

g(yt|α∗t ) = exp

(
−α∗t

2
− α∗t

2s2
t

+
µ∗2t,k

2σ2
t,k

− µ2
t,k

2σ2
η

)
, (23)

where α∗t is given by (21) and µ∗t,k and σ2
t,k are defined below.

The analogue for the density defined in (12) is still a Gaussian

density function, but now, µ∗t,k and σ2
t,k are defined as

µ∗t,k =
(2υ + 2)µ2

t,k + υσ2
ηα

∗
t

2υ + 2 + υσ2
η

(24)

and

σ2
t,k =

(2υ + 2)σ2
η

2υ + 2 + υσ2
η

. (25)

After the approximating draws are obtained, αt,j, for j = 1, . . . , m,
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the resampling step is performed using the weights

log wj = −αt,j

2
− υ + 1

2
log

(
1 +

y2
t

(υ − 2)β2 exp(αt,j)

)
(26)

+
υ (αt,j − α∗t )

2

4υ + 4
(27)

πt,j =
wj∑m
i=1 wi

, j = 1, . . . , m. (28)

With the Student-t extension, the implementation of the algo-

rithm is still uncomplicated, because, as in the previous case,

we have a likelihood that is log-concave and a maximum that

can be calculated analytically.

5. AN EMPIRICAL DEMONSTRATION

To demonstrate the efficiency of our second order filter over

its first order competitors, independent of estimation consider-

ations, we will first analyze a set of simulated series using the

correct filter, then compare filters when we know that they have

been misspecified.

[TABLE 1: about here]

We simulated series from two different models, the standard

SV model and the SV model with Student-t innovations. We

used the parameters obtained by Jaquier et al. (1994) as the

18
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estimates of the parameters associated with IBM and TEXACO

stocks. The parameters, translated to the parametrization used

in this paper, are given in Table 1. We chose these two stocks be-

cause one seems to exhibit a lower degree of persistence (IBM)

and the other a higher degree of persistence (TEXACO). We

simulated 1000 observations for each stock using the standard

SV model, and also performed simulations for the same parame-

ters, but assuming that the innovations follow a scaled Student-t

distribution with 5 degrees of freedom. We then applied the fil-

ters to the four series using the correct model specification. We

also ran simulations where the filter design for the Gaussian dis-

tribution is applied to the Student-t and vice-versa. Of course,

in this case, we obtained poor approximations when compared

with the ones obtained using the correct filter although the main

point is still relevant, using the first order approximation, we can

get extreme sample impoverishment.

[FIGURE 1: about here]

[FIGURE 2: about here]

The series are depicted in Figure 1, and we can see that they

present two of the essential characteristics commonly found in
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any real data financial time series, i.e., volatility clustering and

extreme observations, which can be modeled by a process that

allow time varying variances with persistence and unconditional

distribution with fat tails. The information contained in the

extreme observations seen in these series and models cannot be

dealt with effectively using standard first order approximations

within an APF.

[FIGURE 3: about here]

We ran the filters, using first and second order approxima-

tions, for the two simulated series obtained through a standard

SV model, and we found that for TEXACO, there was one filter

distribution that could not be approximated properly, and 9 in

the case of the IBM stock. This is due to the fact that these ob-

servations assume extreme values for which the first order filter

cannot accommodate the information contained in them.

In Figures 2 and 3, we have depicted smoothing and then fil-

tered state density approximations around two potentially prob-

lematic observations for the filters, the first to appear in each

series, the 919th for TEXACO and the 24th for IBM. In the first

row we present the smoothing densities of the states. These pro-

vide a rough benchmark for the true distribution of the state,
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although they are obtained by conditioning in a different in-

formation set, so they simply give an indication of the type of

distribution we might expect to see, albeit with some shift in

the mean and variance. The approximating smoothing densi-

ties were obtained using Markov chain Monte Carlo simulation

techniques. It is clear that when we apply the first order filter

to update the information contained in the problematic obser-

vations, we obtain meaningless results. The density function in

a given range, which we know from theoretical considerations

must be continuous, is approximated by a small number of dis-

tinct particles, and in extreme cases, by a single particle. On

the other hand, this problem clearly does not emerge when we

apply a second order filter to approximate the densities. In the

second row of Figures 2 and 3, using the first order approxi-

mation, the filter densities associated with the information in

the problematic observations are obtained. To make the com-

parisons clearer, we also present the respective densities for the

preceding and succeeding observations of those considered prob-

lematic. The densities based on the second order approximation

can be compared with these and the smoothing densities, and

in this case they exhibit a more sensible configuration.

When a model is misspecified, the forecasts obviously be-

come worse. We ran the filter based on a standard SV model
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for a data set obtained from a model with Student-t innova-

tions. As might be expected, the Student-t distribution pro-

duces series with more extreme observations. If we use the filter

assuming Gaussian innovations, due to model misspecification,

we therefore obtain significantly worse results compared with

the situation where we use the true model for all filters and

their associated approximations.

However, the first order approximation gave far more degen-

eracy when the filter based on a model with Gaussian innova-

tions was applied to a model in which the true innovations are

Student-t. When using the first order filter without the mis-

specification of the model, we had one and nine problematic

observations for TEXACO and IBM respectively, when we ap-

ply the filter to the series with Student-t innovations, we found

5 observations for TEXACO and 16 observations for IBM in

which the filter could not update the information. In contrast,

although the second order filter assuming Gaussian innovations

gave worse results then one assuming the true Student-t predic-

tions, we did not experience the degenerate breakdown apparent

for the first order filter.

Figure 4 compares the performance of the filters empirically

by showing first and second order filter Gaussian approxima-

tions, and second order filter Student-t approximations for two
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typical extreme observations. Note that the errors associated

with model misspecification are of a smaller order than those

associated with the failure of the filter approximation. These

results are entirely representative of other comparisons we made.

[FIGURE 4: about here]

To demonstrate even further the lack of robustness of a par-

ticle filter based on a first order approximation, we again used

the series of IBM based on the standard SV model, and for

the first extreme observation, the 24th, we approximated the

distribution of the estimate to the mean of the state in the

corresponding observation. The estimated mean is sometimes

obtained using only a small number of particles, and as has been

demonstrated, for example in Liu and Chen (1998) and Pitt and

Shephard (1999), as we use less even weights the variance of our

estimates tends to increase.

[TABLE 2: about here]

[FIGURE 5: about here]
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The second order particle filter performs considerably better

than the first order filter. In the simulation the filters were run

1000 times and the estimated mean of the filter distribution

at observation 24 was recorded. Table 2 gives the descriptive

statistics associated with the two approximating distributions,

which are also depicted in Figure 5. The estimated means of

the state mean do not differ much. However, there is a much

greater uncertainty associated with the estimate yielded by the

first order filter. Because of parameter and model uncertainty,

we are usually more interested in the approximation of an entire

density than just a simple statistic. Then, although we can

sometimes obtain a sensible value for the estimated mean for the

filter distribution of the state, most of the time, this estimate is

based on a very small number of distinct values. For example,

in the extreme case of sample impoverishment, the mean can

be obtained using just a single particle. The estimate based on

the first order filter can give very imprecise results. Using the

results in Table 2, we can see that the coefficient of variation, in

this simulation, is reduced by more than 90% when we use the

second order instead of the first order filter, as we might have

expected.
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6. CONCLUSION

We have demonstrated that it is possible to develop APFs

based on a second order Taylor series approximation, which,

unlike their first order analogues, perform well for series with

extreme observations, which are fairly common in financial time

series. We are now developing analogous procedures for time se-

ries whose likelihood is not log-concave. Our preliminary results

are encouraging and will be presented in a future paper.
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APPENDIX: SECOND ORDER

APPROXIMATION BASED ON THE PRIOR

MEAN

Using the points used by Pitt and Shephard (1999,2001) to

define the first order filter, µt,k = φαt−1,k, we present the algebra

associated with the second order filter. In this case, apart from
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the formulas, the main difference is that only the SIR can be

used. The approximation g(yt|αt, µt,k) is defined through the

second order Taylor approximation of log f(yt|αt) around µt,k,

log g(yt|αt, µt,k) ∝ l(µt,k) + l′(µt,k)(αt − µt,k)

+
1

2
l′′(µt,k)(αt − µt,k)

2

= const− αt

2
− y2

t At,k

2β2 exp(µt,k)
,

where

At,k = (αt − µt,k) +
(αt − µt,k)

2

2
− 1.

Using this second order approximation, the density g(αt, k|Dt)

is factorized in

g(αt|αt−1,k, yt, µt,k) = N(µ∗t,k, σ
2
t,k)

and

g(yt|µt,k) = exp

(
1

2
(

1

σ2
η

+
y2

t

2β2 exp(µt,k)
)(µ∗

2

t,k − µ2
t,k)

)

× exp

(
− y2

t (1 + µt,k)

2β2 exp(µt,k)

)

where

µ∗t,k =

(
1

σ2
η

+
y2

t

2β2 exp(µt,k)

)−1(
y2

t (1 + µt,k)

2β2 exp(µt,k)
+

µt,k

σ2
η

− 1

2

)

and

σ2
t,k =

2β2σ2
η

2β2 + exp(−µt,k)σ2
ηy

2
t

.
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As we sample from g(αt, k|Dt), an approximating sample,

the elements in it must be resampled in order to obtain a sample

that gives a better approximation of the target density f(αt, k|Dt).

The weights used in this resampling step are

log wj = − y2
t

2β2 exp(αt,j)
+

y2
t Bt,j,k

2β2 exp(µt,k)

πj =
wj∑m
i=1 wi

, j = 1, . . . , m

where

Bt,j,k =

(
1− αt,j(1− αt,j

2
+ µt,k) + (µt,k +

µ2
t,k

2
)

)
.

These are the so-called second stage weights that allow the mod-

ification of the approximating distribution towards the target

distribution. Obviously, these weights must be more evenly dis-

tributed than those from the first order approximation, because

the second order approximation allows a better approximation

of the target distribution.
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Table 1: Simulation parameters

Parameters IBM TEXACO

β 2.9322 2.2371

φ 0.83 0.95

σ 0.4 0.23

NOTE: This table gives the values of the

parameters used to simulate the four series

used in this section. These parameters are

translated from Jaquier et al. (1994) as

the authors used another parametrization.
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Table 2: First vs second order filter comparison

Statistic Ê(α24|D24)f Ê(α24|D24)s

mean 0.7651 0.8077

stand. dev. 0.2477 0.0172

coef. var. 0.3238 0.0213

min -0.6649 0.7626

max 1.9847 0.8908

NOTE: This table presents the summary of sta-

tistics from a simulation where the distribution

of the mean estimates of the states associated

with the 24th observations in the IBM stock are

calculated. The estimates of the first order fil-

ter that is designated by the subscript f and

the second order filter with the subscript s are

compared.
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Figure 1: Simulated data using the parameters of Table 1. The left-

hand side series are obtained assuming the model in (1)-(2). When

we consider Student-t innovations another parameter is added, the

parameter υ, which represents the degrees of freedom. Here we use

υ = 5, and in this way we simulated the series on the right-hand

side.
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Figure 2: Density estimation comparison for TEXACO for reference

observation 919. The first row shows the approximating smooth den-

sities for this observation, as well for its predecessor and its succes-

sor. The second row gives the approximating filter densities obtained

through a first order particle filter, and the third row gives the ap-

proximating filter densities using the second order particle filter.
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Figure 3: Density estimation comparison for IBM for reference ob-

servation 24. The first row are shows the approximating smooth

densities for this observation, as well its predecessor and its suc-

cessor. The second row presents the approximating filter densities

obtained through a first order particle filter, and the third row gives

the approximating filter densities using the second order particle fil-

ter.
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Figure 4: Filter densities associated with the distribution of the

states at observation 79 for the IBM stock and 128 for TEXACO,

simulated through an SV model with Student-t innovations. The

first row represents the filter applied without model misspecifica-

tion, whereas the second and third rows are from a filter assuming

Gaussian innovations, the second row using a second order filter and

the third a first order filter.
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Figure 5: This Figure presents the approximating densities associ-

ated with the mean estimate of the states at observation 24 for the

IBM stock, using the standard SV model. The first was obtained

using the first order filter, while the second used the second order

filter.
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