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Abstract

We consider online analysis of systems of stochastic differential equations (SDEs),
from high-frequency data. The class of SDEs we focus on have constant volatility and
a drift function that is of gradient form. For these models we present a particle filter
that is able to analyse the full data, but whose computational cost does not increase
as the frequency of the data increases. The method is based on novel extensions
of the exact algorithm for simulation and inference of diffusions, and the filters do
not need to introduce any approximations through time-discretisation of the process.
The new methods have important practical and theoretical advantages over existing
filtering methods for this problem. We demonstrate our method on a number of
simulated examples, including two motivated by molecular dynamics.

Keywords : Diffusions, Gaussian process, Kalman filter, change of measure, Poisson esti-
mator, Auziliary particle filter, negative weights

1 Motivation

We study large stochastic systems modelled via coupled Stochastic Differential Equations
(SDEs). In particular, let Z be a d-dimensional process containing all states of the system.
We model Z as a strong Markov process defined via the solution of an SDE of the form

dZ, = —SVA(Z)ds+V25dB,, s€[0,T], Zo==z, (1)
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where A : R — R is a potential function, VA denotes the vector of d partial derivatives of
A, B is a d-dimensional standard Brownian motion and ¥ is a symmetric positive-definite
matrix; v/3 is the square root of the matrix given by the Cholesky decomposition. (Refer to
Appendix A for a brief summary of the fairly standard linear algebra notation we will use in
this paper). The first expression in the equation is known as the drift and the second as the
diffusion coefficient. We assume standard conditions on A which ensure the existence and
uniqueness of a solution of (1); these are summarised in Appendix B for completeness. We
have chosen a parametrisation according to which ¥ determines the speed of the process;
if the function p(u) o< exp{—A(u)} is integrable, then Z is a reversible Markov process
with invariant density proportional to p, for any non-zero >. Generalizations of this model
structure are discussed in Section 5.

Models such as that appearing in equation (1) are standard in the analysis of many
physical systems. For example, in the context of molecular dynamics A is a potential
energy, describing interactions amongst components of the system, and the noise term
models thermal activation. In this context the model is often referred to as Brownian
dynamics or as the Smolochouski equation; it arises as the high friction limit of the second
order Langevin equation; see for example Gardiner (1985) for a book-length treatment of
this modelling approach and several references.

Typically, the SDE specified in (1) cannot be solved analytically, and its transition
density is intractable. Nevertheless, the class of SDEs in (1) is very appealing from a
computational point of view since it permits the exploration of its finite dimensional dis-
tributions via exact and efficient Monte Carlo methods, which do not rely on approximate
time-discretisations of the SDE. In particular, Beskos et al. (2005) introduced a rejection
sampling algorithm for simulating Z; conditionally on Z; = 2. More recently Fearnhead
et al. (2006) introduced a general importance sampling scheme for this conditional distri-
bution, where values Z; are proposed from some tractable distribution (e.g. a linearisation
of the SDE) and are appropriately weighted. Beskos et al. (2006b) introduced a collec-
tion of techniques for likelihood inference for the parameters of (1) based on discrete time
observations of pairs of (Y, X).

In this paper, we are interested in the case where Z is decomposed as Z = (Y, X),
Y € Rh, X € R®2, d,+dy, = d, Y being the observable and X the unobservable part of the
process. We correspondingly block ¥ in terms of 31, 35 and ¥15. In the context of molecular
dynamics we might think of observing some subset of the configuration of the system (one
atom in a crystal, or a side chain in a biomolecule for example) and attempting to make
inference about the remainder of the system. We address the problem of on-line inference
for the unobserved process X given observations of Y at times 0 =ty <t; < ... <t,=1T.
The posterior density of X at an observation time given all data observed up to that time
is known as the filtering density. We are particularly interested in solving the filtering
problem when Y is observed at high frequency.

One possible solution to the filtering problem for diffusions is provided by the method-
ology proposed in Fearnhead et al. (2006). That approach can be used to estimate the
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filtering distributions at each observation time ¢;, i.e. the distributions of X; given all
available data up to time t;. Specifically, this filtering problem falls into the “Observation
regime B” according to the terminology of that paper. In this paper we generalise substan-
tially the particle filtering methodology of Fearnhead et al. (2006), and we provide methods
which are well-suited for high frequency data. A byproduct of our work is an important
extension of the simulation methodology of Beskos et al. (2006a, 2005) and Fearnhead et al.
(2006), appropriate for simulating partially observed processes.

It is known (see for example Del Moral and Miclo, 2000a) that traditional methods for
continuous time filtering typically suffer from two particular problems. Firstly, they often
require a time-discretised approximation to the continuous-time model to be considered.
Furthermore, since they are constructed using one step look-ahead filtering rules, their
computational cost inevitably depends on the length of that “step”. Since the step size is
usually dictated by the time interval between consecutive data points, this leads to methods
which are particularly sensitive to the data frequency, and which often become infeasible
for high-frequency data.

Whilst Fearnhead et al. (2006) provides a filter which is unbiased with respect to dis-
cretisation error, the solution proposed is not ideally suited to high frequency data. The
key contribution of this paper is to provide a truly continuous-time filter which is robust
to the data frequency, and which is ideally suited to on-line use.

The main idea behind our approach is as follows. We consider a sequence of filtering
times 0 = 59 < 81 < ... < S, = T, which is a subset of the observation times. We design
particle filters which at each time s; estimate the filtering distribution of X, and the fixed-
lag smoothing distribution (see for example Doucet et al., 2000, for this terminology) of the
path, i.e. the distribution of (X§, s € [s;_1, s;]) conditionally on all available data up to time
s;, for each 1 = 1,...,m; see Figure 1 for an illustration. Our methods involve simulation
of (Y, X) at Poisson-distributed times on [s;_1, s;] according to a Kalman smoother and
associating each such skeleton with appropriate importance weights. A key feature of the
method is that the number of points at which we simulate (Y, X)) does not increase as the
frequency of data increases.

This generalises Fearnhead et al. (2006) since we can take m = n and s; = t; for all i.
However, the generalization we propose allows inference about X conditionally on batches
of data. There are major computational advantages of this new approach. In particular, if
you ignore the computational cost of accessing the data, or of calculating simple summaries
such as the minimum and maximum of the data, then the cost of our proposed filter does
not increase with the frequency of the observations. By comparison the cost of applying
the filter of Fearnhead et al. (2006), or filters that use time-discretisation of the SDE (see
for example Crisan and Lyons, 1999; Crisan et al., 1999; Del Moral et al., 2001) to the full
data would increase linearly with the number of observations.

In practice, current filtering methods for such high-frequency methods would have to
analyse only a subset of the data (obtained by sub-sampling for example), to avoid such
an increasing computational cost. We emphasise that our filter obtains a computational
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Figure 1: Observations from Y (denoted by circles) at times, 0,1, ...,ts, T; with dashed
lines we denote the unobserved values of Y, and with solid line the X process, which is
unobserved at all times. In this example there are ten observation four filtering times.

cost that is independent of the frequency of observations without any approximation or
throwing away data. We simply exploit the structure of the model and recent advances in
simulation of diffusion processes.

As an application of our methodology we consider inference for systems which evolve at
different scales. A simple instance of such system arises when ¥y = Iy,, 31 = (1/€)14, and
Y19 = 0, where € < 1. In this case the Y variable evolves faster than X (see for example
Figure 2 for a simulation from such model, which is considered later in the paper). Models
which involve this scale separation are very intensively studied in a wide range of scientific
fields where such dynamics have been observed, including atmospheric sciences, cell biology,
molecular dynamics, material science and econometrics. The theory of averaging and
homogenization is about the asymptotic (as € — 0) analysis of such systems; indicative
references of this field include the classic book by Bensoussan et al. (1978) and more recent
expositions in Cioranescu and Donato (1999) and Pavliotis and Stuart (2008). Filtering for
two-scale models has been considered for example in Papavasiliou and Kevrekidis (2007),
Givon et al. (2006) and Vanden-Eijnden (2003), although from a perspective different from
the one considered here.

The paper is organised as follows. In Section 2 we formulate the filtering problem,
and present some key results that characterise the filtering distributions as a change of
measure with respect to an appropriately defined Kalman smoother measure. We then
present a range of particle filtering algorithms, including methods based on both rejection
sampling and importance sampling. The latter builds on ideas in Fearnhead et al. (2006):
we simulate weights that are assigned to each particle. These weights need to satisfy two
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properties, that they are unbiased estimates of the true (but intractable) weight, and that
they are positive. We present a new approach to ensuring positive weights, which use
stopping times. This idea can be applied more widely than just to the filters considered
here. In Section 4 we apply our filter to 3 simulated examples. These examples demonstrate
the advantages that can be attained over existing filters. Furthermore, we see a robustness
property of our filter to the choice of filtering times. The filter naturally adapts to the
choice of filtering times by simulating more points between successive times as the filtering
times become less frequent. This property compares with filters that discretise the SDE:
where the choice of discretisation interval, which is equivalent to the interval between
successive filtering times, can have a large impact on the accuracy of the filter and can be
difficult to choose. Our paper concludes with a discussion about various extensions of our
work.

2 Formulation of the filtering problem

Let Z = (Y, X) be the stochastic process defined in (1), where Y is the observable and
X the unobservable component of the process. In particular, we assume that n + 1 data
points have been observed on [0, 7] at times 0 =ty < t; < ... < t, =T. We denote the set
of available data between any two observation times t; < tx by ¥s..0, = (Ui, Yt,1r- -+ Yty,)-

Since X is unobserved the initial condition in the SDE (1) will be partially unknown.
Hence, to complete the model specification we will have to elicit a prior distribution for
Xo. We will allow the prior to depend on yy and we will denote it by my. When (1) is
ergodic, a natural choice is its invariant distribution: g, (z¢) o exp{—A(yo,z0)}. Our
aim is to obtain a particle approximation of each filtering density of X at the collection
of times 0 = sp < 51 < ... < S, = T which is a subset of the observation times. The ith
filtering density, i.e. the density of X, given yo.,,, evaluated at X, = z;, will be denoted by
s, (x;). It will be convenient to denote the joint density of (X, ,, X,) given yq.s,, evaluated
at X, , = x;-1, X5, = x;, by 7, (x;_1,2;), and the corresponding conditional density by
s, (x; | ©i—1). When we write 7y, without arguments then by default we refer to the filtering
density 75, (z;). The term particle approximation is standard (see for example Doucet et al.,
2001) and it refers to a collection of N weighted “particles” which approximate the filtering
distribution. Such samples are typically created by sequential application of importance
or rejection sampling methods.

In general terms, if 7, (x; | x;_1) is available (up to normalising constant) then the
standard particle filter machinery can be called upon to carry out the filtering estimation.
However, there are two major challenges in the filtering problem we are considering in this
paper. Firstly, it is typically impossible to derive in closed form these conditional densities
due to the unavailability of the transition density for most diffusion processes. Secondly, we
are conditioning on a collection of observed data between the successive states X, |, X,
which is not standard. Additionally, the fact that we allow for general covariance ¥ in (1)
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adds some complications.

Hence, in order to address the filtering problem we will need first to find useful rep-
resentations of 7y (x;_1,x;). Our methodology is motivated from the fact that the law of
(1) can be obtained as a change of measure from the law of the Gaussian process obtained
by omitting the non-linear drift term from (1) (see also Del Moral and Miclo, 2000b, for a
similarly motivated filtering approach). This will allow us to express the filtering distribu-
tion at s; as a change of measure from the Gaussian process conditioned on yg.,, i.e. from
the Kalman smoother on [0, s;]. We do this as described below.

Let Q(ys;_y:s:, Ts,_,) denote the law of Z = (Y, X) with dynamics according to (1),
conditionally on Y;, = y;, for all s; 1 < ¢; < s;, and with initial measure at time s; 1,
Xs, , ~ ms, ,. We emphasise that this is a probability measure on the space of paths of
Z on [s;_1, s;] which are consistent with the data. Then, it follows easily from the Markov
property of (1) that the joint distribution of (X, ,, X;,) conditionally upon yo.,, is a
marginal of Q(ys,_,.s;, Ts;_,). On the same path space and for a probability measure v, |,
we define a new stochastic process W = (Y, X), with Y € R" X € R as: X, | ~ v, _,,
Yi,_, = ¥s,_,, and conditionally on X, ,, we set Wy, = W, , + V2XB,_,,_, for s > s; 1,
where B is a standard d-dimensional Brownian motion. Therefore, conditionally on X, |,
W is a Gaussian process. Let W(ys, .., vs,_,) be the law of W = (Y, X) conditionally
upon Yy, =y, for all s;; <t; < s;. Then, we have the following theorem, which forms
the basis of our methodology. Its proof is given in Appendix C (see also Appendix A for
notational conventions). In the theorem, and hereon throughout the paper, we assume
that 7, | is absolutely continuous with respect to v, .

Theorem 1. Let w,,_,,vs, , be probability measures on R%, with 7, , absolutely contin-
uous with respect to vs, . Then, under mild technical and standard conditions (stated
in Appendiz C) Q(ys,_,:s;, Ts;_,) s absolutely continuous with respect to W(ys, .5, Vs, 1 )-
Additionally, under the following weak assumptions on the potential A,

(A1) VA is continuously differentiable in all its arguments

(A2) there exists | > —oo such that

(VA(u)*'SVA(u) —28: VVA[u) —1>0, ¢:R*"—R (2)

AN,

¢(u) :=

the density between the two measures is proportional to

=0 %o {5 (A0 )~ Al X)) - [ st Xasf L @)

2

where Y =y for each observation time t; on [s;_1,s;]. The constant of proportionality
s a function of Yo.s, -
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Note that (Al) and (A2) are rather weak. For instance the first term in (A2) is a
perfect square (since X is positive definite) and is quadratic in A, so this term very typically
dominates the second term.

Therefore, a key representation of the filtering density =, (x;_1, ;) is as a marginal of
the density specified in (3). Our plan is to construct Monte Carlo approximations of (3)
which would then generate immediately approximations of the filtering densities.

Our first concern is that (3) is analytically intractable since the filtering distribution
7s,_,, and its derivative with respect to vs,_,, will be analytically intractable (except triv-
ially when ¢ = 1). This is an issue in most non-linear /non-Gaussian filtering applications,
not just the particular one we consider here (notable exceptions of tractable non-linear fil-
ters include Benes, 1981; Ferrante and Vidoni, 1998; Genon-Catalot, 2003). The standard

solution to this problem is to replace 7, , by a particle approximation nﬁfﬂ, i.e. aset of N

weighed particles, {J:E{)l,w,ﬁ)l}jyzl, where xgj_)l € R, and wz@l > 0, for all j. Effectively,
this set forms an importance sampling approximation to 7, ,. Accordingly, we define l/s(f\f)l

to be a discrete probability measure with the same support as wéﬂ, admitting a repre-

sentation as {%@17 61(1 )1};\[:1. Theorem 1 can be readily modified to give the density (up
to proportionality) between Q(ys,_,.s,, ng\z)l) and W(ys, s, Véf\_[)l), let (Y, X)) denote a

path started from X, , =z, j=1,..., N, then (3) evaluated at (Y@, X@) becomes

i—1
() .
w;” 1 . . i . .
ﬁ(j)l X €xp {_5(‘4(?/51'7 Xs(f)) o A(y5i71,$§1)1)) - / ¢(Y:9(])7 XS(]))dS} : (4)
i—1 Si—1

This density yields ﬂgfv)(xi,l,xi) as a marginal, and it defines a transportation of the
particle approximation from time s;_; to time s;. On the other hand, (4) is a density on
the space of paths and its simulation involves in principle simulation of infinite dimensional
objects. However, recent work (see in particular Beskos et al., 2006a, 2005; Fearnhead et al.,
2006) has shown how to implement rejection and importance sampling for densities on the
space of diffusion paths, using finite computational effort. The existing methods apply
only to the simpler case where > = I, and crucially where there is no conditioning on
intermediate observations. We now extend this simulation methodology to the partially
observed case, thus providing rejection and importance sampling methods for (4). These
Monte Carlo schemes are used to design two types of particle filters for approximating the
sequence of the filtering densities. In Section 5 we comment on a further possibility for
sampling from (4) which involves an interacting particle system.

3 Particle approximation of the filtering densities

We introduce two particle filtering schemes for solving the problem we described in Section
2. Throughout the section, we will assume that ﬂgf\i)l is an existing particle approximation
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of 7, , obtained using importance or rejection sampling. At the core of the schemes lies a
rejection and importance sampling methodology for partially observed diffusion processes,
where a mixture of Kalman smoothers is used to generate proposals. We reiterate that a
Monte Carlo approximation of the path density (4) immediately implies an approximation
of any marginal of (4), in particular of 7' (z;_1,;) and (v (x;). Although we will
concentrate on those, we note that the methods we will present in this section also give a
particle representation for the (fixed lag smoothing) distribution of the unobserved paths
of (Y, X) between the observation times.

To simplify exposition we initially consider the case where ¢ in (2) is bounded. That
is we assume that there exists some r < oo, such that

0<¢(y,z)<r, forall ye R" xec R®. (5)

The methods generalise easily when ¢ is only lower bounded, as is shown in Sections 3.3
and 3.4.

The following properties of the law W(ys, .5, Vs,_,) are requisite for our methodology.
The proof, which we omit, can be derived using Kalman filter recursions, properties of
Brownian motion and conditional properties of the multivariate Gaussian distribution.

Proposition 1. Consider the process W = (Y, X) defined in Section 2, and an arbitrary
collection of times to < t; < ...,t,. Then, we have:

(W1) The joint distribution of (Yy,,...Ys,) conditionally on Yy, = vy, is independent of X3,
and it is given by the Markov transitions Y;, | Yz, , ~ N(Yy,_,, (ti — ti—1)%1).

(W2) For any l = 1,....n, the distribution of Xy, conditionally on Xy, = xo and Yy, =
yr,, 0 <1i <, is independent of Yy for any s > t;, and it has a Gaussian distribution,

N (w0 + 157 (U, — Ury), 2(82 — 21 2aa) (t — 1)) -

We will denote the density of this Gaussian distribution evaluated at a point x, € R%,
by Gri—to (21 | T0).

(W3) For anyl=1,...,n—1, the conditional distribution of Xy, given X, = xo, Xy, = Tn
and Yy, =y, 0 <1 < n, is Gaussian, with mean and variance respectively
t, — 1 t — o

—to (330 + ETQZfl(ytz - yto)) + t —to (an + 2?221_1(%1 - ytn))

t, — )t — 1 .
( tl)_(;o 0)(22_212211212)-

(mean)

(variance) 2

(W4) Assume that Y, = y,., 0 < i < n, and that X has also been observed at two time
points, Xo = xg, and X;, = xy, for some k < n. Consider a time t;_1 < s < t;, for
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some 1 <1 < k. Then, conditionally on all observed values, the law of (Y, Xs) can
be decomposed as follows. Yy is distributed according to a Gaussian distribution,

N (S—tll tl — S (S—tlfl)(tl —8)21) ’

t — tl—lytl th—tiq Y b — 11

and, conditionally on Yy, X, has the Gaussian law specified in (W3).

Moreover, we will require the following extension of W(ys, ,.s,, Vs, ,). Let v, |5 be a
probability measure on R% x R%. Then we let W(y, ,.s,, Vs, , ) denote the law of W
conditionally on Y;, =y, for all 5,_; <t; <'s;, where (X,,_, Xy,) ~ vs,_,s,- When v,
is a point mass on a pair (z;_1,;), we simply write W(ys, ,.s;, Ti—1, Zi).

3.1 Fully adapted particle filter based on rejection sampling

We can produce a particle filter by sequential rejection sampling from (4). The output

of each step of the algorithm is a set of equally weighted particles {ng) ,1/N };V:p for

1 > 1, which defines a particle approximation ngv) and it is used to define the next target
density according to (4). In the particle filtering jargon, this is known as a fully adapted
particle filter (Pitt and Shephard, 1999), since the particles are propagated according to
the posterior distribution of the signal (i.e. the information in the data has been taken fully
into account).

We can perform such a rejection sampling by a careful extension of the Exact Algorithm
of Beskos et al. (2006a, 2005). We design a rejection sampling algorithm for simulating
from Q(ys,; s, wgf\i)l) using proposals from a modification of the Kalman smoother measure
on [0,s;]. To this end, we require a further assumption on the potential function.

(A3) We assume that the function

1

i) = G| 50 { =5 (Al ) = Al )} ()

is integrable in x;_1, z;, with respect to ng\f)l Q L, for all values of ys, ,,ys,, where L
denotes the Lebesgue measure (on R%), and G, , , (z; | ;1) is defined in (W2) of
Proposition 1.

This assumytion is very weak and it will be met in all our examples.

Let Vs(f\ihsi be the probability measure on R% x R% with density with respect to

ng\i)l & L proportional to (7). Then, it is easy to show (see Appendix D) that Q(ys,_,:s,, ng\i)l)
is absolutely continuous with respect to W(ys, .., us(]\i)ls) with density proportional to
N
d@(ysifltsi 9 W§i7)1 )

(Y, X) o exp {—/ l (;S(YS,XS)dS} <1, since ¢ >0, (8)
dW(ySi—1ZSi7 Vgplﬁi) Si—1

9
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with Y3, =y, for all s; ; <t; <'s; in the above expression. Therefore, we can sample from
@(ysiflzsi,wﬁﬂ) by proposing paths (Y, X) from W(ysiflzsi,uﬁﬂ,&) and accepting them
with the probability given in (8). The retrospective simulation methodology introduced in
Beskos et al. (2006a) provides an exact method for deciding on the acceptance of proposed
paths (Y, X) with probability according to (8), by only simulating the process at s;_; and
s;, and at a set of Poisson-distributed times on (s;_1, s;). Hence, using finite computational
effort we can draw samples from (" (20, 1), provided simulation from f in (7) is feasible
(see the Remark below). However, the results of Beskos et al. (2006a) are restricted to
the case where ¥ = I, and crucially, when there are no intermediate observations of Y,
therefore they have to be carefully extended. Below, we give the simulation algorithm
which is appropriate for the situation we present here. We skip the proof of the validity of
the algorithm, since this can be achieved by an argument similar to the one used in Section

2 of Beskos et al. (2006a), in conjunction with Theorem 1 and Proposition 1 of our paper.

Rejection sampling from ﬂgfv) (xi_1,x;)

1. Simulate z; 1,7; according to the density in (7). Set
X =xi1, Xs; = T

Si—1

2. Let r be the upper bound of ¢ in (5). Simulate an integer
Kk ~ Poisson(r(s;—1 — s;)).

3. Simulate k points (%;,v,;) uniformly distributed on (s;_i,s;) x (0,1), for
Jj=1,...,k, where the ;s are time-ordered. Conventionally, set
Yo := Si-1-

4. Simulate iteratively pairs (Yy,,Xy,) given (Yy,_,, Xy ) and X,
according to the Gaussian distribution specified in (W4).

5. If v; > ¢(Yy,,Xy,) for all j=1,...,x, then (X,,_,,X,,) is an exact draw

from ngv)(xi,l,xi). Otherwise, return to 1.

Remark: Direct simulation from (7) might not be possible, but a rejection sampling
scheme will typically be feasible, though great care is required to ensure that the compu-
tational costs of this scheme are not too large. Fortunately, the Lipschitz conditions on A
can be utilised to construct an efficient adaptive rejection sampling, see Peluchetti (2007).

The advantage of the rejection sampling methodology is that it yields independent
samples according to the filtering distributions. However, it has two potential drawbacks.
The first relates with the computational effort required by the algorithm, since a certain
proportion of the simulated samples will be rejected. This is magnified when further
rejection sampling is used for simulating from (7). Secondly it avoids the use of Monte
Carlo variance reduction techniques: such as the use of stratified (or no) resampling of

10
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particles at time s — 1. The rejection sampling algorithm always performs multinomial
resampling of these particles, albeit from their correct conditional distribution given the
new data.

3.2 Random weight particle filter by importance sampling

An alternative particle filter is obtained by sequential importance sampling from (4). In
this scheme we have flexibility in the choice of proposal distribution. For the moment we
concentrate on proposing from mixtures of Kalman smoothers, i.e. we propose paths from
W(ys,_,:s:» Ti_1,x;), where the end-points (z;_1, x;) are distributed according to Vs(]\f)ls We
specify l/s(]\_f)ls in terms of its density with respect to ngv) Q) L, which we will denote by

(N) (4)

Vs; 1,8 (Zi—1, ;). This density evaluated at a pair (x;”;, z;) takes the generic form

v @D ) o (B Jwl)as (s | ) yous,) -

This proposal is equivalent to that used in the ASIR filter of Pitt and Shephard (1999).
(7)

Note that simulating from this is achieved by simulating a particle z;”; with probability
ﬁfj_ )1, and then simulate x; from g, (; | ml@l, Yo:s; )-

In practice we wish to choose this density so that it is easy to simulate from and it pro-
vides an approximation to ngv) (x;—1,2;). A simple approach is to approximate the SDE via
the Euler discretisation. The Euler discretisation defines an approximate transition density
over time interval s; — s;_1, which can be factorised as p(ys, |Ti—1, s, )P(%ilYs;, Ti1, Ys,_,)-

We then define ﬁi(z)l = p(ysi 'Tz('];)h y5i71) and ds; ('TZ ’ 371(1)1, yO:Si) = p(.ﬁEi Ysis -ng,)l, ysifl)' For al-
ternative approaches for designing this proposal distribution for general state-space models
see Pitt and Shephard (1999).

In order to carry out importance sampling we need to derive the likelihood ratio between
the target and proposal measures. Let (xfi)l,xl) be a proposal from l/s(f\i)hsi, and (Y, X) a
path proposed from W(ys, ..., xl@l, z;). Note that it would be more consistent with the
notation to write (Y ), X)), however this will be avoided to keep the formulae manageable.
Appealing to a similar argument as the one we used in Section 3.1 (see Appendix D), we

can easily show that the likelihood ratio evaluated at the proposed path is proportional to

() () si
w, si—s; 1 (Ti | ;7 1 ; ¢
S G B L) oy [ A g) = Al o) pesp { = [ ot xas}
67;—1 qsi (ml ‘ xi—17y0237;) Si—1 ( )
9
where the constant of proportionality is a function of ¥.;,. Therefore, each pair (azz@l, ;)

proposed from Véf\_])lsz will have to be weighted according to (9) in order to provide a sample

from ngv) (x;_1,x;). However, the weight cannot be explicitly computed due to the last term

in the product, _
ew{~ [ o x)s (10
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which involves an integral over the unobserved path.

Fearnhead et al. (2006) introduced a generic methodology for filtering in the presence
of intractable densities, according to which the intractable importance weights are replaced
by positive unbiased estimators. This methodology is termed random weight importance
sampling. They establish that this approach is equivalent to ordinary importance sampling
on an expanded space which includes appropriately defined auxiliary variables.

We will adopt this paradigm and we will replace (10) by an unbiased estimator. A
generic methodology exists for generating unbiased estimators of exponential functionals
of stochastic processes, in particular of the type that appear in (9). This methodology is
summarised in Appendix E; recent advances in this methodology were presented in Beskos
et al. (2006b); Fearnhead et al. (2006); Jourdain and Sbai (2007). Notice that we are
interested in simulating the weight under the assumption that (Y, X)) are generated from
W(ys, 515 xl@l, x;). Then, the construction of Appendix E in conjunction with Proposition

1, yields the following unbiased estimator (10):

e()\fr)(sifsi—l))\*” H(r — ¢(Y¢j7X¢j)> , (11)

J=1

where x ~ Poisson(A(s; — s;-1), A > 0 is a user-specified constant which controls the
variance of the estimator, the ;s are an ordered uniform sample on (s;_1,s;), and the
pairs (Yy,, Xy,;) are simulated sequentially conditionally on X,, = z; and X, = 351@17
according to (W4). See Fearnhead et al. (2006) for discussion on the choice of A\, which
typically will depend on the proposed pair (xl(j_)l,xz) Replacing (10) with (11) in (9) gives
an unbiased estimate of the weight assigned to each proposed pair (%@17 x;); we will denote

this weight by ng ), Hence, we have the following generic particle filter.

Random weight particle filter
PFO: Simulate m((]j), j=1,...,N, from v,,, weight each value by
w(()j) = (dﬂso/duso)(x(])). For i=1,...,m, for j=1,...,N:

PF1 Calculate the effective sample size of the {ﬁz(ﬁ)l N
ESS = (25:1(@@1)2)71- If ESS <C, for some fixed constant C,
simulate k;_q; from p(k) ﬂi(f)l, k=1,...,N and set 5§j) =1; otherwise
set ki_1; =7 and 51-@ = ﬂ(j)l.

71—

PF2 Simulate z) from qsi(xi|x§ﬁif),y0:si).

%

PF3 Generate an unbiased estimator wU) of (9).

%

()

PF4 Assign particle xij (4)

)

a weight w;”’ equal to 5§j)w§j>.
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Notice that our specification of the particle filter allows for the choice of whether to resample
at each time step. This choice is based on the ESS of the particle weights (see e.g. Liu and
Chen, 1998). Also note that to implement the random weight particle filter, calculation of
the lower bound [ in the definition of ¢ is (2) is not needed.

3.3 Generalizing the methods using layered Gaussian processes

We now assume that the function ¢ is unbounded from above. First see how this affects
each of the methods we have proposed. The rejection sampling is still valid, in the sense
that the likelihood ratio between the proposal and target measure is given by (8) and it
is bounded by 1; this only requires that ¢ > 0. However, the possibility to decide on the
acceptance of a proposed path given only a finite skeleton of it, is no longer possible: the
construction involves generating a Poisson process of rate equal to the upper bound of ¢.
On the other hand, the unbiased estimator of the importance sampling weights of Section
3.2 is valid regardless of the bound on ¢. However, we can no longer guarantee that the
weights will be positive; this is clear from (11). This is a serious problem, since we treat
these weights as probabilities and use them to define the particle approximations of the
filtering distributions.

A recent simulation construction, the layered Brownian bridge of Beskos et al. (2005),
can be utilised to generalise the rejection and importance sampling methods of Sections
3.1 and 3.2, at extra computational cost. Let B be a Brownian motion conditioned on
By = by, B; = by; this is known as the Brownian bridge. The construction of Beskos et al.
(2005) allows the simulation of finite stochastic bounds, b < B, < b for all s € [0,¢]. These
bounds depend on the time increment and by, b;. Moreover, the construction allows the
simulation of B at any collection of intermediate times, according to the Brownian bridge
dynamics conditionally on the stochastic bounds.

We can use this approach to generate bounds for Y and X separately, on each time
interval [s;_1,s;]. In particular, let (z;_1,z;) be an arbitrary pair of proposed values in
either the importance or rejection sampling. The bounds for Y are constructed as follows.
For each pair of consecutive observation times ¢;_1,%;, we write Y, s € [t;_1,t;] as Y, =

V2% Bsy,_,, where B is a Brownian bridge on [0,¢; —t;_1] starting from \/22171%%1 and
finishing at +/ 221_1%],. Therefore, bounds on B imply bounds on Y. Notice that this has

to be repeated for each pair of observation times on [s;_1,s;]. For bounding X we write
for any s € [s;_1, si],

Si—1— S " _ S — S;— % _ % _
X = ﬁEHZI I(Y;_ysi—l)_l_s'_—s'tZIQZl 1(Ys—ysz-)+\/2(22 — 2150 2) B,

where B is a Brownian bridge on [0, s,_; — s;], starting from /2(Zq — 21221_1212)71%_1,
and finishing at 1/2(%y — 2{221_1212)_1@-. Therefore, bounds on B and Y imply bounds on
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X. Moreover, using the above representations we can simulate Y and X on [s;_1, s;], con-
ditionally on the bounds, by simulating the corresponding Brownian bridges and applying
the appropriate transformation.

Hence, it is now possible to find a bound, r(x;_1, ;) say, on ¢(Ys, X;) for s € [s;_1, 84,
and reduce the problem to the bounded case. In practice, bounding ¢ given bounds on
(Y, X)) can be nontrivial: see Appendix F.

3.4 Particle filtering with negative weights

We now consider an alternative implementation of the filter for unbounded ¢ which avoids
using the layered Gaussian process. It has the advantage of simplicity and often speed,
but at the expense of a slight reduction in the rate of convergence of the particle filter.

The basic idea is to construct probabilistic bounds on ¢, conditional on the start and
end of the state process and the observations. For calculating the weight of one particle at
s;, which corresponds to a state path from x;_; at time s;_; to x; at time s;, denote the
bound by r(x;_1,2;). The idea is to choose this such that

P(max(p(Y:, Xi)) > r(xi_1, ;) < en,

where the probability is calculated under W(y,, .., z;1,x;). We let the probability bound
depend on the number of particles for reasons described below; thus r(z;_, z;) will also
depend on N, but we suppress this in our notation. Bounds of this form can be constructed
from probabilistic bounds on the (Y, X) path. As the law of these paths is given by a simple
Gaussian process, good bounds on the (Y, X) path are simple to obtain. Furthermore, if
¢(y,z) is a polynomial of order d in y and z, the bound r(x;_1,z;) will only increase
according to some power of —log(ey)%?.

Using this bound we then simulate a weight for the particle. Denote by W the weight
assigned to the particle. We will have that P(W < 0) < €y, as negative weights can only
occur for paths for which the maximum value of ¢ exceed r(z;_1, x;). Note that be choosing
ey sufficiently small we can control the probability with which we observe negative weights.

If we implement the RWPF using such probabilistic bounds, we still need to consider
how to deal with negative weights when they occur. We suggest two possibilities. The
first is to replace negative weights with zero weights, or equivalently remove particles with
negative weights. This approach will introduce a bias into the method, but by choosing
ey sufficiently small we can control the bias. An informal argument suggests that is we
choose ey = (N~?) then the bias will be O(N~%). So for a > 1/2 this bias will be
asymptotially negligible as compared to the Monte Carlo error of the filter. Assuming
¢(y, z) is polynomial of order d in y and x then such a choice will lead to a CPU cost of
the filter that is O(N log(N)%?), and thus the convergence rate in terms of CPU cost, C,
will be O(log(C)¥2C~%/2). This is an order log(C)%? worse than in the bounded ¢ case,
but still substantially better than the O(C~/3) or O(C~/*) rates of convergence obtained
using particle filters with discretisation (see the discussion in Fearnhead et al., 2006).
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The second approach is use extra simulation to remove negative weights. This can be
done whilst ensuring the weights remain unbiased (up to a common constant of propor-
tionality) using the following result.

Theorem 2. Consider an infinite array of independent random variables W,gj) for 5 =

1,....,N and k=1,2,.... We assume that for fized j, W,gj) are identically distributed for
all k, with the same distribution as WY . Now define

!
Sl(y) _ ZWIEJ)’

k=1

and define the stopping time K = min{l : Sl(j) >0 forallj=1,...,N}. If BE(K) < 0,
then '
E(SY) = B(K)EWW).

Proof: This is essentially Wald’s identity (see for example Proposition 2.18 of Siegmund
(1985)).
Thus we can implement an algorithm as follows.

Stopping-rule Simulation of Weights

1. Simulate a set of particles (xz(];)l,xl(-j)), for j=1,...,N, and calculate
the bounds r(z?, z9).

2. Using these bounds, simulate weights w? for j=1,...,N.

[

(

3. While minj{ng)} <0, simulate new weights w;k 7 for each particle, and

let w? = w? 4wV,

Now providing the weights simulated in step (2) have finite sixth moments (which will hold
for the generalised Poisson estimator of Fearnhead et al. (2006) using similar arguments to
those used in that paper) then the weights simulated by this algorithm will have expectation
proportional to the true weights, as required. The fact that the existence of sixth moments
is sufficient follows by demonstrating that K* = inf{l; S,(g ) >0 for all k >, for all j} has
finite expectation (since clearly K < K*). However the finiteness of E(K™*) follows from a
standard argument using Markov inequality and a Borel-Cantelli Lemma.

The advantage of this approach over truncating is that it can be applied even when it
is difficult to calculate P(max (¢ (Y, X)) > (-1, x;)) accurately, for your preferred choice
of r(x;_1,x;). In this case, the effect of choosing a poor bound is purely to increase the
computational cost of the filter, rather than introducing (potentially) large biases into the
algorithm.
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4 Illustration of the methodology

We illustrate our methods on the following 3 examples. The first one is a linear SDE; for
which the exact filtering densities can be calculated using the Kalman Filter Kalman and
Bucy (1961). We use this example to evaluate the performance of our method and compare
it to filters that require discretisation. We then consider two model problems taken from
molecular dynamics based on a double-well potential (see e.g. Metzner et al., 2006) and
the Fixman potential (originally presented in Fixman, 1978).

In all cases we implemented the random weight particle filter (henceforth RWPF) using

the stopping time idea of Theorem 2 to correct for negative weights. (Similar results are
obtained using the layered Gaussian process but results are omitted for brevity.) Details of
how approximate bounds on ¢(z,y) were calculated is given in Appendix F. In all cases we
used 1,000 particles and used an Euler approximation for p(z;, ys, |ri_1,ys,_,) to calculate
the B;_1s and the gs,(x;|z;—1,Yo.s,) used in the filter. In simulating the random weight,
we chose the mean number of points to be simulated using the suggestions in Fearnhead
et al. (2006). Resampling for the particle filters was via the stratified sampling approach
of Carpenter et al. (1999), and resampling was used when the ESS of the particle weights
dropped below N/2. For simplicity we have considered two-dimensional systems, with
¥ = 1/(2¢), ¥y = 1/2 and X5 = 0. In this setting the value of € governs the relative
speed of the observed and unobserved processes, and we investigate the performance of our
method for different values of e.
Example 1: Ornstein-Uhlenbeck process. Taking A(u) = (u— p)*Q(u — p)/2, u, pu €
R? gives rise to a subset of the family of Ornstein-Uhlenbeck processes. If Q) is symmetric
positive-definite matrix, Z is ergodic with Gaussian invariant law with mean g and inverse
covariance matrix ). We take d = 2, set Q11 = Q22 = 1 and Q12 = Q21 = —0.9, and
without loss of generality u = (0,0). This produces a process with a symmetric stationary
distribution, with correlation of 0.9 between the two components. An example realisation
of the process is given in Figure 2 with e = 1/100. We then applied the RWPF to analyse
this data, using 10° observations. We chose 100 equally spaced filtering times. The filtered
mean and regions of plus/minus two standard deviations are shown in Figure 2 together
with the exact quantities as calculated by the Kalman filter. By eye, there is no noticeable
difference between the Kalman filter and RWPF results.

We also compared the performance of the RWPF with a filter based on discretising time.
For this latter filter, given a set of filtering times inference is performed based just on the
observations at those times. The state dynamics between filtering times is approximated
through an Euler approximation to the SDE. A standard particle filter can then be applied
to the resulting discrete-time problem; in practice we implemented a fully adapted version
of the ASIR filter Pitt and Shephard (1999). We implemented such a particle filter with
1000 particles, which we call a discrete-time particle filter (DPF). For this problem, after
discretising time we have a simple linear-Gaussian state-space model, for which we can
calculate the exact filtering distributions using the Kalman filter. We also looked at this
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Figure 2: (Top) Simulated realisation of the OU process. The black line shows the (slow)
unobserved state, and the red line shows the (fast) observed state. (Bottom) Unobserved
state (black); true posterior means (red); RWPF estimates at 20 time points (blue circles).
Uncertainty in the estimates are shown by regions of plus/minus two standard deviations:
exact (green) and based on the RWPF (blue). The RWPF results were based on 100

filtering times.
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approach, which we denote the discrete-time Kalman filter (DKF). The DKF is equivalent
to the performance of DPF with an infinite number of particles.

A comparison of the three methods is shown in Figure 3, for different numbers of
filtering times and different values of e. We plot the mean square error (MSE) between
each filter’s estimate of the mean of the filtering distribution, and the exact filtering mean.
Note that the effect of € on the results is small, except in terms of the best choice of the
frequency of filtering times, with this reducing as € increases.

The RWPF gives a substantial reduction in MSE over the other two filters. Furthermore
we see that the Monte Carlo error within the particle filter is small, as both DPF and DKF
give almost identical results. The RWPF’s performance is also robust to the number of
filtering times, as it uses all the information in the data regardless, unlike DPF or DKF.
Its performance is slightly worse for smaller number of filtering times, due to the increased
Monte Carlo variation in simulating the weights in these cases. The computational cost of
the RWPF is reasonably robust to the choice of the number of filtering times. For example,
for e = 1/100 the total number of simulations per particle (equal to the number of filtering
steps plus the number of points simulated in calculating the weights) ranges from 800 (300
filtering times) to 1,250 (1,000 filtering times) over the different choices; though would
start to increase linearly as the number of filtering times increases beyond 1,000.

Note that a direct comparison of RWPF and DPF for the same number of filtering
times is unfair — as the amount of simulation per particle for the DPF is just equal to the
number of filtering times. However, even taking this into account (for e = 1/100 compare
RWPF with 300 times versus PDF with 800 filtering times) the RWPF is substantially
more accurate.

Example 2: Double well potential. A more challenging example, is specified by the
following potential function, where we take dy = dy =1

Alz,y) = q(y® — )’ + @y — ), ¢, >0,u,q05 R, (12)

For our simulations we took ¢ =1, ¢o =8, g3 =1, p = 1 and € = 1/100. The potential
produces a stationary distribution with two modes, at (z,y) = (1,1) and (—1,—1).

Here we focus solely on the performance of the RWPF. We simulated data over two
units of time, with 2 x 10° observations. Our simulated data was chosen to include a
transition of the process between the two modes. We analysed the data using 500 filtering
times. The results are shown in Figure 4. In this example we simulated the process at
an average of 8 Poisson time points between each time-point; which suggests having more
frequent filtering times would be preferable. However even in this case, resampling was
only required at every other time-step.

Example 3: Fixman potential. The context here is the effect of constraining molecular
dynamics by fixing bond lengths between atoms. Our model in this section is a mathemat-
ical idealization of this original set-up. The Fixman potential arises in the limit as ¢ — 0.
In this case, the method of averaging shows that X converges weakly to the solution of the
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Figure 3: Comparison of RWPF (black), DPF (red dashed) and DKF (green dotted) at
approximating the filtered mean. Results are for the mean square error relative to the
truth, and for (a) e = 1/10; (b) € = 1/25; (c¢) e = 1/100; and (d) e = 1/400.
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Figure 4: Results for the double well model. True state (black), observed process (red),
filtered means (green circles) and regions plus/minus two standard errors (blue). The
RWPF was run for 500 filtering times; but for clarity results at only 50 are shown.
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SDE
dX, = —=VU(X,)ds +V2dB,, se[0,T],

where B is a standard dy-dimensional Brownian motion (independent of the one in (1))
and W is the so-called Fizman potential. This is defined by

exp(—@(x)) :/yexp(—A(y,x)>dy.

The primary mechanism inherent in the averaging procedure is that the projection of the
drift in the x—coordinate is averaged against the invariant measure of the ¥ process, with
X viewed as a fixed parameter. As such, the increments of Y are irrelevant, it is simply
the "local” empirical measure for Y (found on time-scales long compared to e and short
compared to 1) which matters. In such a situation it is natural to study how well the
proposed filter performs in the reconstruction of X given high frequency data in Y. Our
filter can give a probabilistic reconstruction of the unobserved process for arbitrary values
of € and it is well-designed to handle high-frequency observations from Y.

A interesting family of problems when d = 2 motivated from molecular dynamics comes
from taking

Ay, z) =

where ¢(z) is strictly positive. Then

(y — m(x)) q(x) + p(x)

| —

W(r) = pla) + 5 ().

We chose m(z) = z, q(z) = 1/2 and p(z) = sin(2x) + 2sin(3z). In this setting = would
represent an angle between atoms. The Fixman potential produces a model for x which
has three local modes in [0, 27], which in order of size are at 5.7, 1.7 and 3.6 respectively.
We simulated data with e = 1/400 for 2.5 time units, and we chose a simulation which
include a transition between two modes.

In total 10° observations were simulated, and we analysed the data using 500 filtering
times. Both the simulated data and the results of the RWPF are shown in Figure 5. Note
that at some time points (such as the third time point where the filtered mean is shown in
Figure 5), the filtering density is bimodal — each mode corresponding to the state being in
a different mode of the stationary distribution of the model. For these settings the RWPF
on average simulated the path at 0.7 points between successive filtering times. Resampling
was used on average at every 10th filtering time point.

For comparison we ran the DPF with 1,000 particles and 1,000 filtering times. To
compare the results of the two filters we obtained an accurate estimate of the filtering
means using a DPF with 10,000 particles and 5, 000 filtering steps. We then calculate the
MSE of the two filter estimates with this “truth”. The MSE was 0.0009 for the RWPF and
0.017 for the DPF, again showing a substantial increase in accuracy of the RWPF over a
particle filter applied to the discretised system.
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Figure 5: Results for the Fixman potential model. True state (black), observed process
(red), filtered means (green circles) and regions plus/minus two standard errors (green
lines). The RWPF was run for 500 filtering times; but for clarity results at only 50 are
shown.

5 Extensions and future work

We have introduced importance and rejection sampling methods for solving the filtering
problem for diffusions of the type in (1). As with any method based on importance or
rejection sampling, the efficiency of our particle filters depends on how similar the proposal
process is to the target. There are two approaches to improving the proposal process in our
case. The first is by choosing an appropriate distribution from which to sample the pairs
of particles (xgj_)l, x;); and there is much work looking at this for standard particle filters
(see Liu and Chen, 1998; Pitt and Shephard, 1999; Doucet et al., 2000). The second is by
choosing an appropriate law for the proposal of the path from time s; _; to s;, and is novel
to the specific particle filter application we consider here. The work we have presented
uses the law of the driftless version of the SDE (conditional on the start and end point,
and the data); however a natural extension would be to consider the law of an SDE with
linear drift (e.g. Shoji and Ozaki, 1998). This would have given an exact proposal in the
OU example; and we would expect it to improve the efficiency of the methods for the other
two examples we considered.

The importance sampling methodology we have presented can immediately be extended
to the substantially larger family of models which arise by adding to (1) a linear term, i.e.
models of the type

dZ, = DZ — SV A(Z,)ds +V22dB, , se[0,T], Zy==z, (13)

where D is a d X d matrix. A careful examination of our arguments reveal that in such a
case we can modify the dominating process to be an Ornstein-Uhlenbeck process. Then
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we obtain similar expressions as in Theorem 1; the Kalman smoother measure can still be
easily simulated. Notice that this extension includes as a special case the problem where
Y is not observed directly, but with linear additive error. Thus, the state of the system is
(V,Y, X)), where (Y, X)) are evolving according to (1) and dVy = FVids + dW;, where W
is a Brownian motion (possibly dependent on the one that drives (Y, X)); we can easily
include X in a linear fashion in the drift of V' and include a constant diffusion coefficient.
A simple calculation shows that the dynamics of (V,Y, X) are according to (13). In such
a case we wish to reconstruct (Y, X) on the basis of discrete-time observations of V.

Another aspect of the simulation methodology of this paper is a connection with the
representations of Del Moral and Miclo (2000b) which approximate the filtering distribution
by means of certain interacting particle systems which evolve in continuous time. In such
schemes particles die when a hazard function (similar to minus the exponent in (10))
exceeds an exponentially distributed time. Then, a randomly chosen existing particle
duplicates. The rejection sampling methodology of Section 3.1 allows the exact simulation
of the genealogy of such particle system.

An important future direction considers the case of multivariate diffusions without
gradiant form drifts. Here the Ito6 formula argument to remove the stochastic integral in
Girsanov’s theorem (as in Theorem 1) does not apply. Instead, we require a methodology
for estimating exponentials of stochastic integrals. Whilst this is far more challenging
than the case considered in this paper, we are currently developing a theory of iterated
forward and backward It6 integrals which provides a framework for stable estimation of
these terms. A current goal of this programme of research therefore, is to translate this
estimation theory into the general diffusion filtering problem context thus generalising
substantially our contribution in this paper. This generalisation will allow our method to
be applied to a wide range of applications other than the ones we consider here, such as
signal processing and data assimilation.

Another interesting direction is to investigate the robustness of the proposed approach
to the so-called micro-structure noise. Whilst diffusion models arise naturally when try-
ing to find simple models which predict phenomena such as volatility, meta-stability and
smooth empirical measures, the data are often incompatible with the diffusion assumption
at small scales. For this reason, any inference procedure which uses high frequency data
at small scales should be treated with caution. In the context of parameter estimation
this issue is starting to be understood and examples of the issues arising, and strategies
for dealing with them, see for example Ait-Sahalia et al. (2005b,a) in econometrics and
Pavliotis and Stuart (2007); Pokern et al. (2008) in the physical sciences. In the context
of filtering the issue is less well-understood.
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Appendix

Appendix A: Notation

Let A : R? — R denote a scalar field and V : RY — R"™ a vector field. The gradient
operator V applied to A yields a column vector with ¢th element 0A/0z;, i =1,...,d, and
applied to V' yields a n x d matrix with (4, j)th entry 0V;;/0z;, i =1,...,n, 7 =1,...,d.
Thus, VV A is the Hessian matrix of A. For matrices L and K (of appropriate dimension)
we will use the notation L : K = tr(L*K), where “tr” denotes the trace of a matrix and L*
the transpose of L. Then “:” is the inner-product on matrices which induces the Frobenius
norm and [ : VV A is the Laplacian of A. We use (-,-) to denote the standard Euclidean
inner-product on R?,

Appendix B: Conditions on A

A natural way to get existence of solutions for (1), without imposing unnatural (for ap-
plication) global Lipshitz conditions, is to work with a Lyapunov function. One set of
conditions is:

(A0.1) A > 0 and level sets of A compact;
(A0.2) Ja, >0

—|VEVA(z)]? + 2 : VVA(2) <a— BA(z) VzeR”

Another possible condition is

(A0.1)
Ja, 3> 0: (EVA(2),2) > —a+6|z]* Vze R

Theorem 3. Under either Assumptions (A0.1), (A0.2) or Assumption (A0.1°) equation
(1) has a unique solution for all s € [0,00).

Proof. Under Assumptions (A0.1), (A0.2) define V(z) = A(z) and under Assumptions

(A0.1) define V/(z) = |z|%. Notice that level sets of V are compact in both cases. By the

Ito formula we have, in both cases,
V(Z) < V(Z) + / (a = BV(Z0))dr + M,
0
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where M, is an [t6 stochastic integral, and hence a Martingale. Taking expectations gives
EV(Z,) < E(V(Z,)) + / (a - BBV(Z,) )dr.
0

Applying the Gronwall lemma shows that V(Z,) is bounded in terms of V(Zj). Since
level sets of V' are bounded this prevents blow-ups and hence global existence of solutions
follows. O

Appendix C: Proof of Theorem 1

The mild regularity conditions refered to in the statement permit Girsanov’s formula to
hold. A particularly useful and weak set of conditions to ensure this are given in Rydberg
(1997).

Girsanov’s formula gives an expression for the density of the law of the diffusion sam-
ple path with respect to the appropriate Brownian dominating measure, on an interval
conditional on the left-hand end-points. The expression for this log-density is given by

__/ VA(Z) dZ, _1/* VA(Z)*SVA(Z,)ds . (14)

Due to (A1) we can apply It6’s formula to eliminate the stochastic integral. (A2) allows
us to define the positive function ¢ and re-write the log-density as in (3).

Appendix D: Densities of end-point biased measures

Let W = (Wy,s € [0,t]) and Z = (Zs, s € [0,t]), for some ¢ > 0, be two stochastic processes
on R? with corresponding measures W and Z. Let vy, and jio, be the joint densities of
their end-points (Wy, W;) and (Zy, Z;) respectively with identical support. If it is true that
the law of (W | Wy = o, Wy = 1) is the same as the law of (Z | Zy = x¢, Z; = x1), then
the Radon-Nikodym derivative of W with respect to Z evaluated on an arbitrary path w,
is given by v (wo, wt)/ ot (wo, we). The proof of this result is along the lines of the proof of
Proposition 1 of Beskos et al. (2006a) and it is omitted. In the context of Section 3.1 this
result is applied to W(yo.,, ng\i)l) and W (yo.s, , ng\i)ls) for Véév ) the density proportional to

(7).

Appendix E: Poisson expansion

Consider the following general problem. Let ® be an unknown quantity, and we wish to
obtain an estimator of e~®. Let ® be an unbiased estimator of ®, i. e. E[® \ ®] = @, and take
®; independent (condltlonally on ®) copies of ®. Notice that E[H (c=D;) | §] = (c—D)".
Then for any ¢ € R, 6 > 0 we have:

e ? = e_ci (C (I)>15i/i! = e_ci]E
i=0

=0

K

H C_(Si)j | D, c, 5]

j=1

5t /il = " E

% _éA
HC 5 L1®,c,6
j=1
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where k ~ Poisson(d), and the product H?:l is defined to be equal to 1. Thus, we have
an unbiased estimator of e~®. If we fix ¢, it can be easily shown that the value of § which
minimises the variance of the estimator is given by E[(c — ®)? | ®,¢]'/2. Note that by
taking ¢ = 0, and § — oo, the estimator converges almost surely to e~®.

In the context of Section 3.2, & = fss_l o(Ys, Xs)ds, where (Y, X) is a path proposed

according to W(ys, | s, $(j)1, ;). Then ® = (si—si—1)9(Yy, Xy), for ¢ uniformly distributed

71—
on (s;_1, ;). Therefore, in order to obtain an estimator we only need to simulate a finite-
dimensional distribution of W(ys, , s,, :UZ(-i)l, x;), at the Poisson times 1, ..., 1,, according
to (W3). We have taken ¢ = r(s; — s;_1), and chosen § proportional to the time increment,

as 0 = A(s; — s;_1), for some A > 0.

Appendix F: Implementation for Examples

We now give details of the approximate bounds we construct on ¢(z,y) for the three
simulated examples. Firstly we consider calculating approximate bounds on the X and Y
processes under the proposal distribution.

Given z;_; and z;, the proposal for X is a Brownian Bridge, with marginally X; have a
normal distribution with mean p(t) = ;1 + (z; — x;_1)(t — s;-1)/(s; — $;—1) and variance
02(t) = (t—s;_1)(si—t)/(s; — si_1). Thus our bound for the X process is given be the min-
imum and maximimum of {u(t) 4+ cxo(¢)}. This bound depends on cy, and the probability
that the X process goes outside the range given by this bound decays exponentially as
cx — o0. The value of cx was chosen to be 2 for the OU and Fixman potential examples,
and 3 for the double well potential examples.

As the Y process is observed at a finer scale, we use a simpler bound. Let § denote
the largest time-interval between successive observations, then we bound the Y process
by min(ys, ,.s;) — cy+/(6) and max(ys, ,...) + cy+/(0). For the high-frequency data we
simulated, we found ¢y = 0 to be sufficient.

Now we consider details of the three examples individually.

OU example
For this example

d(y, x) = (x —0.99)*/2 + (y — 0.92)?/(2¢).

The bound on ¢ was obtained from the bound on X and Y by substituting in the 4 corners
of the bounding rectangle for X,Y’; and choosing the largest resulting values of ¢.
Double-Well example

For this example

By, x) = 32(y — x)* +2(y® + 3y — 47)* /e — 3y*/e.

The bound on ¢ was obtained from the bound on X and Y by substituting in the 4 corners
of the bounding rectangle for X,Y’; and choosing the largest resulting values of ¢. Note
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that in this case, this may not be a bound on ¢ for the given region of X,Y. Note that
in this case the use of the stopping-time approach to dealing with negative weights is an
advantage over truncation — the result of a poor bound on ¢(x,y) at some time-steps will
lead only to an increase in computation at the time-step and not to an introduction of
large approximation error into the filter.
Fixman Potential example

For this example

oy, x) = %{[05@ — 1) +2cos(2z) +6 cos(3z)]2+[0.5(y — ))? /e + [8 sin(2x) + 36 sin(3z)] /¢ }

Bounding ¢ for a given bound on (X,Y) is particularly difficult here due to the periodic
behaviour of ¢(x,y) as a function of x. A simple procedure which worked well in practice
was to consider three values for x: the upper and lower bound on the X process, and the
mean of the two bounds; together with two values for y: the upper and lower bound on
the Y process. We evaluate ¢(z,y) at the 6 combinations of z and y values and choose our
bound to be the largest value of ¢(x,y). As for the Double-Well example, the use of the
stopping-time scheme to correct for negative weights increases the robustness of the filter
to occasions were this procedure produces a poor bound.
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