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Summary. Using individual patient data from five independent surveys, we evaluate regional
variations in survival in cerebral palsy. The influence of four important variables measuring dis-
ability, which are only partially observed for many cases, are analysed. Results are compared
between a naive complete case analysis; a full likelihood model in which the covariates are
assumed to be missing at random and in which each of the binary predictor variables are mod-
elled as independent Bernoulli random variables; a model in which the covariates are modelled
by a conditional wise sequence, accommodating dependencies between the likelihoods of hav-
ing various mixtures of disabilities; and a model in which the likelihood of a predictor variable
being observed is allowed to depend on the value of the covariate itself (NMAR). Fully para-
metric survival regression models are used and analysis carried out in BUGS. Results suggest
that proportions recorded as having severe visual or cognitive impairments are substantially
lower than the actual proportions severely impaired. Associations between the likelihood of a
particular covariate being recorded and the likelihood of a more severe disability imply that life
expectancies for those who are very severely impaired may be up to 20% less than inferences
based on complete case analyses.

Introduction

Cerebral palsy is a common cause of childhood disability, affecting both physical and men-
tal abilities. Survival is known to be affected by severity of impairment, measured by such
factors as severity of manual and ambulatory functions, severity of cognitive, visual and
hearing abilities (Evans et al. (1990); Hutton et al. (2000); Hutton and Pharoah (2002);
Hemming et al. (2006)). Estimates of life expectancies in cerebral palsy are important for
effective planning of resources and knowledge of levels of care which will be required in the
future. Life expectancies also play an important role in medico-legal settlements. Indirect
comparisons between different regions and countries, from published survival studies, ap-
peared to suggest that there may be some variation between life expectancies for those with
cerebral palsy (Hutton et al., 2000). For example, of those with a severe manual disability,
47% were reported to survive to age 30 years for the Mersey Cerebral Palsy Register, com-
pared to 60% for the North of England Collaborative Cerebral Palsy survey (Hutton et al.,
2000).

The United Kingdom Cerebral Palsy collaboration (UKCP) brings together individual
anonymised data from the five UK cerebral palsy registers into one database, harmonising
definitions of potential predictor variables (Surman et al., 2006). Using this individual
patient data, in those with observed information on all four categories of severe impairments,
no regional variation was observed after adjusting for manual, ambulatory, cognitive and
visual disabilities (Hemming et al., 2006). That analysis however, being a complete case
analysis, was based on a subset (71%) of the initial dataset, and excluded one of the five
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regions due to a particularly high proportion of missing data (63% for one covariate). It
is a real concern that those who are very severely impaired may die before assessments of
severity have been carried out, and they may therefore not be representative of the sample
as a whole, thereby not meeting the underlying assumption of a complete case analysis,
that of the data being missing completely at random. It is our aim here to consider how
sensitive questions of regional variation in survival and estimates of life expectancies are to
various patterns and assumptions of the missing covariate data.

Inferences for life expectancies in cerebral palsy from multiple data sources
In the UK there are five cerebral palsy registers, each covering a separate (although non
exhaustive), region of the UK, comprising the Mersey region, the North of England, the Ox-
ford region, Northern Ireland and Scotland. Each of these five registers have independently
carried out retrospective surveys or have prospectively collected information on those born
with cerebral palsy to mothers resident within defined geographical regions over various time
periods. Furthermore, each register also flags all cases with the national births and deaths
registers (the National Health Service Central Register for England, the Northern Ireland
Central Services Agency or the General Register Office for Scotland). All individuals having
been identified as having cerebral palsy from each of these five regions are represented using
anonymised data on the collaborative UKCP database. The database therefore comprises
a well defined cohort of people with cerebral palsy, for virtually all of whom vital status
information is known.

Survival predictions as a function of severity of impairment are dependent on knowledge
of the severity of the impairment. The severity of impairments is usually evaluated between
the ages of two and five years. For children who die before an evaluation is made, information
on severity of impairment may be missing. This covariate data can also be missing for those
children who are still alive, perhaps because the child moved out of the region or was lost to
follow-up (for covariate information and not death information, which are distinct processes)
for some other reason. The proportions of cases with missing information on severity vary
between the five regions, with some having high levels of recorded data, whilst others having
high proportions of missing data.

Missing covariate data in survival analysis
Following standard notation, we use capital letters to denote random variables, lower case
letters to denote realisations of random variables and distinguishing vectors using bold type
face for realisations of random variables and for parameters. Let Y = (Y1, . . . , YP ), with
realisation y, be a P dimensional vector representing complete data on P variables. Let Rp

(p = 1, . . . , P ) be an indicator for whether variable Yp is observed, so that R = (R1, . . . , RP )
is a vector of observed data indicators, with realisation r and with density function fR(r;ψ).
Without loss of generality, let Y , with density function fY (y;θ), be partitioned into an
observed and missing part, Y = (Yo, Ym) where Yo is the observed component of Y and Ym

the missing component of Y .

Following Rubin’s terminology (Rubin, 2002), the data are said to be Missing Completely
At Random (MCAR) if:

fR|Yo,Ym
(r|yo,ym;ψ) = fR(r;ψ) (1)
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that is the missing data mechanism does not depend on either the observed (Yo) or missing
data (Ym). A Complete Case Analysis (CCA), that is deleting or ignoring, any observations
with incomplete or missing data, will only result in unbiased estimates where the data
are MCAR. Even when data are MCAR estimates may be inefficient if large numbers of
observations are excluded. Where the data are not MCAR, a CCA leads both to reduced
efficiency and possible biased estimates of covariate effects.

Data are said to be Missing At Random (MAR) if:

fR|Yo,Ym
(r|yo,ym;ψ) = fR|Yo

(r|yo;ψ) (2)

that is, the data are missing in a way that is MCAR after conditioning on other observed
data. MAR is therefore a less restrictive assumption than to MCAR.

Under likelihood based inferences, the observed data are (Yo, R) and the likelihood of
interest for this observed data is L(θ|Yo, R), such that:

L(θ|Yo, R) ∝ fYo,R(yo, r;θ,ψ)

=

∫
Ym

f(Yo,Ym,R)(yo,ym, r;θ,ψ)dYm

=

∫
Ym

fR|Yo,Ym
(r|yo,ym;ψ)fYo,Ym

(yo,ym;θ)dYm. (3)

This likelihood is intractable unless either a full specification of the missing data mechanism,
fR|Yo,Ym

(r|yo,ym;ψ), is given, or if fR|Yo,Ym
(r|yo,ym;ψ) = fR|Yo

(r|yo;ψ). Under this
simplification the likelihood reduces to:

L(θ|Yo, R) ∝

∫
Ym

fR|Yo,Ym
(r|yo,ym;ψ)fYo,Ym

(yo,ym;θ)dYm

= fR|Yo
(r|yo;ψ)

∫
Ym

fYo,Ym
(yo,ym;θ)dYm

∝

∫
Ym

fYo,Ym
(yo,ym;θ)dYm

= fYo
(yo;θ)

∝ L(θ|Yo). (4)

This simplification holds when the data are MAR, and θ and ψ are distinct, or for Bayesian
inferences are a priori independent. The missing data mechanism is then said to be “ignor-
able”, since inferences can be made from the likelihood of the observed data, L(θ|Yo).

In survival analysis, let Y = (T, ∆, Z), where T represents survival times, ∆ censor-
ing indicators and a Z vector of covariates. It is assumed throughout that the censoring
mechanism does not depend on the missing failure time, a realistic assumption in the ap-
plication considered. This assumption, in addition to the assumption that the probability
of censoring does not depend on the missing value of the covariate, leads to ignorability
of the censoring mechanism (Baker, 1994). We consider relaxing this assumption in part,
by allowing the probability of a covariate being missing to depend on the censoring sta-
tus, but retain the assumption of the censoring mechanism not depending on the missing
failure time throughout. The covariates, Z = (Z1, . . . , ZK), are only partially observed.
We use the subscript k = 1, . . . , K, as opposed to p above to distinguish between a set of
partially observed covariates (Z), different from partially observed data (Y ). The complete
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case analysis method is the routine and in many cases only survival method available in
statistical packages. Likelihood based inferences for MAR covariates require the model is
parameterised in terms of the conditional density function for T , fT |Z(t|z;θT |Z), and the
marginal density for Z, fZ(z|θZ) where θ = (θT ,θZ) represents the parameters for the
survival distribution and covariate distribution functions respectively (Lipsitz and Ibrahim,
1996a). Writing Z = (Zo, Zm), so that Yo = (T, δ, Zo), for the case in which Z is MAR,
likelihood based inferences reduce to:

L(θ|Yo) ∝ fYo
(yo;θ)

= fT,δ,Zo
(t, δ, zo;θ)

= fT,δ|Zo
(t, δ|zo;θT )fZo

(zo;θZ) (5)

(6)

that is, specification of both fT |Z(t|z,θT ), of main interest, and fZ(z;θz), often of lesser
interest, are required.

For the Cox proportional hazards survival model methods have been developed to accom-
modate missing at random categorical or continuous covariate data (Herring and Ibrahim
(2001); Herring et al. (2002); Chen et al. (2002)), as have methods for parametric survival
models (Lipsitz and Ibrahim (1996a); Schluchter and Jackson (1989); Lipsitz and Ibrahim
(1996b); Meng and Schenker (1999); Cho and Schenker (1999)). Of these, two have consisted
of Bayesian approaches: a piecewise constant proportional hazards cure rate model (Chen
et al., 2002); and a log-F accelerated failure time model for missing at random categorical
and continuous covariates (Cho and Schenker, 1999).

Where the MAR assumption does not hold, the data are said to be Not Missing At
Random (NMAR) and the missing data mechanism said to be “non-ignorable”. In this
situation the mechanism for the missing data, that is fR|Yo,Ym

(r|yo,ym;ψ), must also
be specified and included in likelihood inferences (equation 3). Since (Yo, Ym, R) is not
observed in full, this may lead to issues of identifiability for fR|Yo,Ym

(r|yo,ym;ψ) (Baker
and Laird, 1988). Within the remit of generalised linear models, non-ignorable missing data
mechanisms have been modeled (Ibrahim et al., 1999; Stubbendick and Ibrahim, 2003),
and Bayesian approaches have used informative priors to identify model parameters with
NMAR covariates (Huang et al., 2005). In survival analysis, within a proportional hazards
cure rate model, non-ignorable models have been proposed using maximum likelihood based
techniques (Herring and Ibrahim, 2002).

Existing methods for dealing with missing covariate data in survival analysis, both
Bayesian and frequentist, are often not easy useable by others and so have limited practical
applicability due to computational programming required. Furthermore, to our knowledge
there have been no Bayesian developments of survival regression models for non-ignorable
missing data mechanisms. The accelerated failure time models are a wide class of log-linear
models which provide an alternative to the Cox model when assumptions of proportionality
are not met, and being fully parametric they can also be more powerful. The accelerated
failure time models have also been shown to fit the UKCP data well (Kwong and Hutton,
2003) and may be more robust in cases of model mispecification (Hutton and Monoghan,
2002).

Here we develop a log-normal failure time model, which accommodates binary missing
at random categorical covariates. We focus on the log-normal model and on categorical
covariates as this allows us to provide a practical solution within BUGS (Spiegelhalter
et al., 1999) and which is therefore accessible in practical applications. We further consider
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extensions to covariate data not missing at random, and consider how robust estimates
are to various non-ignorable missing data mechanisms supported by the data. Although
specified in terms of impairment variables and regional effects, the model is more generally a
log-normal survival model for multiple and partially observed binary covariates with extra
variation due to center, region, or other familial variable (or some other fully observed
categorical covariate). Extensions included allow for interactions between the covariates
and the inclusion of fully observed continuous covariates.

This paper is organised as follows. In the next section the fully parametric Bayesian
survival model is outlined and models for the covariate data proposed. Likelihood based
methods using Markov Chain Monte Carlo (MCMC) simulations are used to draw param-
eter inferences under the less restrictive assumption of MAR. A parametric distribution is
specified for the missing data mechanism, that is the likelihood of a covariate being ob-
served, with dependencies on censoring status, survival time, and the covariate itself. Using
weakly informative priors, we obtain posterior parameter estimates and consider how sen-
sitive model inferences are to possible non-missing at random missing data mechanisms.
In the final section, the model is applied to the UKCP data and inferences drawn. We
compare inferences from a naive CCA to the better fitting models under a MAR analysis,
and consider how robust parameter inferences are under possible NMAR mechanisms. The
BUGS code for this model is available from the first author on request.

Proposed model
Survival distribution Let T have density function fT |Z(t|z;θT ) conditional on binary
covariates z = (z1, . . . , zk). Full data, for individuals i = 1, . . . , nj , out of j = 1, . . . , J
regions, are observed for event times tij and censoring indicators δij . The binary covariate
data on zij = (z1ij , . . . , zKij) are only partially observed. Let yij = ln tij . Let ST |Z(t|z;θT )
and hT |Z(t|z;θT ) represent the corresponding survival and hazard functions respectively.

We initially assume that there is an underlying effect of severity of impairment on
survival across all five regions. We allow the survival to differ between the regions, in
addition to that which might be explained by random variation. We therefore propose a
model which allows for extra regional variation:

ln tij = α0 +αzij + b(s)j + ση where η ∼ N [0, 1] (7)

and where b(s)j is a fixed effect due to region. We use the notation b(s)j (for j = 1, . . . , J−1)
to refer to a regional effect (j) on survival (s) - as opposed to regional effects on proportions
impaired (to be introduced later). We focus on the log-normal survival model and consider
generalisablity to other distributions in the discussion. The resulting model is the log-normal
survival model, with α0 the intercept parameter, α representing the set of covariate effects,
b(s) = (b(s)1, . . . , b(s)J−1) a set of regional effects on survival and σ the scale parameter,
with θT = (α0,α, σ,b(s)).

Regional variation in the survival of both the severely impaired and non severely im-
paired is incorporated by including an interaction between regions and the binary covariates:

ln tij = α0 +αzij + cjzij + b(s)j + ση (8)

where cj = (c1j , . . . , cKj) represents an interaction between covariate k and region j. Hence
θT = (α0,α, σ,b(s), c) where c = (c1, . . . , cJ−1).
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Incorporating additional fully observed covariates (z̃) is straightforward:

ln tij = α0 +αzij + dz̃ + b(s)j + ση (9)

where d represents the effect of a fully observed vector of continuous covariates (z̃), and
θT = (α0,α, σ,b(s),d).

Covariate distribution Let z = (z1, . . . , zK), the indicators of severity of impairment
for K binary covariates (where 1 represents a severe impairment) have probability distri-
bution fZ(z;θZ).

Since inferences for the covariates are not a prime interest of the analysis, one approach
is to base inferences on a simple Bernoulli distribution of the form:

zk ∼ Bern(pk) (10)

where pk represents the probability of a severe impairment for each of the K covariates and
where each of the variables zk are independently distributed binary variables:

fZ(z; θZ) =
K∏

k=1

fZk
(zk; pk) (11)

where θZ = (p1, . . . , pK). This implies that the probability of having a particular severe
impairment is independent of any other severe impairments. This is not necessarily a valid
assumption, but one which is investigated since it greatly reduces the computational time,
as there are only K nuisance parameters.

An alternative is to specify the joint distribution for fZ(z;θZ) by a series of conditional
distributions (Lipsitz and Ibrahim (1996b); Ibrahim et al. (1999)):

fZ(z;θZ) =

1∏
k=K

fZk|Z1:Zk−1
(zk|z1 : zk−1;βk) (12)

where θZ = (β1, . . . ,βK). In this way, correlations are induced between likelihoods of
each severe impairment, in contrast to the independent specification of probabilities in
equation 11. For example, in the case of four covariates:

fZ(z;θZ) = fZ4|Z1:Z3
(z4|z1 : z3;β4)fZ3|Z1:Z2

(z3|z1 : z2;β3)fZ2|Z1
(z2|z1;β2)fZ1|(z1;β1).(13)

Each conditional distribution may be represented by a logistic relationship. That is, the
conditional probability of having a particular severe impairment, given a subset of other
impairments, is modeled as a linear combination of this subset on the logit scale:

logit p̃k = βk0 + βk1z1 + . . . + βkk−1zk−1 (14)

where p̃k denotes a conditional probability (of variable zk being 1 (severe)) as opposed
to the marginal probability of pk, and where βk = (βk0, . . . , βkk−1). The number of nui-

sance parameters to be estimated under such a parameterisation is
∑K

k=1 k = (K + 1)K/2.
Inferences for GLMs and PH models have been shown to be robust to the order of the spec-
ification of this conditional wise model (Ibrahim et al. (1999); Stubbendick and Ibrahim
(2003)).
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To allow the conditional proportion (p̃k) of those severely impaired to be similar between
the regions, with some variability due to extra variation between the regions, a fixed regional
effect can be incorporated:

logit p̃k = βk0 + βk1z1 + . . . + βkk−1zk−1 + b(p̃)kj (15)

where b(p̃)kj represents a fixed regional effect in (conditional) proportions (p̃k) severely
impaired. Under this conditional wise specification with regional variations in proportions
severely impaired, θz = (β1, . . . ,βK ,b(p̃)1, . . . ,b(p̃)K), where b(p̃)k = (b(p̃)k1, . . . , b(p̃)kJ−1).

Sensitivity analysis (NMAR extension) The covariate data are not fully observed,
and this is represented using a missing data indicator, rkij , such that:

rkij = 1 if covariate k is observed for individual i in region j (16)

= 0 otherwise.

Where the covariate data are not missing at random, likelihood based inferences require full
specification of the missing data mechanism fR(r;ψ), which is here modeled as a logstic
function:

logit p(r)kij = γk0 + γk1zijk (17)

where p(r)kij represents the probability of covariate k being observed for individual i from
region j. Here the probability that a covariate is observed depends only on the covariate
value itself, with ψ = (ψ1, . . . ,ψK) and where ψk = (γk0, γk1).

The probability of observing a particular covariate may depend on event time and, or
censoring status. Where the missing data mechanism is allowed to depend on the cen-
soring status, the independent censoring assumption is replaced by independent censoring
conditional on R (Rathouz, 2007).

logit p(r)kij = γk0 + γk1zijk + γk2tij + γk3δij . (18)

So that fRk
(rk;ψk) follows a logistic distribution with parameter ψk = (γk0, γk1, γk2, γk3)

and ψ = (ψ1, . . . ,ψK). Regional effects on the missing data mechanism are not considered
as this would require a large number of additonal parameters.

Likelihood Inferences
All inferences are carried out in BUGs using Markov Chain Monte Carlo methods, and
models compared using DIC (Spiegelhalter et al., 2002). For completeness the likelihood is
presented.

Inferences ignoring the missing data mechanism lead to L(θ|t, δ, z, r) ∝ L(θ|t, δ, z),
where t = (t1, . . . , tn), δ = (δ1, . . . , δn), r = (r1, . . . , rn) and the parameter of interest is θT

and nuisance parameter θZ . The full likelihood is based on the factorisation of the joint
distribution for fT,δ,Z(t, δ, z;θ) = fT,δ|Z(t, δ|z;θT )fZ(z;θZ) so that:

 L(θ|t, δ, z) ∝

N∏
j=1

nj∏
i=1

lij . (19)



CRiSM Paper No. 07-12, www.warwick.ac.uk/go/crism

8 J. L. Hutton

Where zij is fully observed:

lij = ST |Z(tij |zij;θT )hT |Z(tij |zij; θT )δij fZ(zij;θZ). (20)

Where zij is only partially observed, let G = 2K represent the number of possible combina-
tions of covariates (from now on called groups), with associated covariate zg (g = 1, . . . , G),
being one realisation of the G possible combinations of z. Let Wgij be an indicator for
whether the partial observed covariate information on individual i from region j is compat-
ible with the realisation zg, then:

lij =

G∑
g=1

WgijST |Z(tij |zg;θT )hT |Z(tij |zg; θT )δij fZ(zg;θZ). (21)

For non-ignorable missing data mechanisms:

 L(θ,ψ|t, δ,Z, r) =

N∏
j=1

nj∏
i=1

lij , (22)

where for zij only partially observed:

lij =
G∑

g=1

WgijST |Z(tij |zg;θT )hT |Z(tij |zg; θT )δij fZ(zg;θZ)fR|T,Z(rij|tij , δij , zg;ψ).(23)

As the data (T, δ, Z, R) are not fully observed (since Z is only partially observed), it may not
be possible to identify the parameters ψ in fR(r;ψ). No algebraic check of identifiablity
has been established, but in other similar models, using weakly informative priors, the
parameter ψ has been identifiable (Huang et al., 2005). Non-identifiability in practical
applications generally manifests as divergence or slow mixing of chains. Furthermore, even
for an identifiable model, there is clearly no means of evaluating distributional assumptions
for the missing data mechanism. Following others we therefore propose to use posterior
inferences for (θT ,θZ) based on weakly informative priors for ψ, in the role of a sensitivity
analysis, to investigate how robust and sensitive inferences are to departures from the
assumption of MAR.

Application
The data set consists of 3946 cases with early impairment cerebral palsy, born during
the 1980s and 1990s, flagged with the relevant births and deaths register and followed-
up until March 2004. All survival times are recorded to the nearest week. We condition
throughout on survival to age two years (to allow for delays in initial notifications). Vital
status information is complete for the entire cohort. Severity of any associated disability
is measured by four known important binary predictor variables (z=1 for severe; and z=0
for not severe): z1: severe ambulatory impairment (unable to walk); z2: severe manual
impairment (unable to self feed); z3: severe cognitive impairment (IQ < 50); z4: and severe
visual impairment (<6/60 in the better eye). All four binary predictor variables are only
partially observed. A further fully observed continuous covariate, a standardised birthweight
for gestational age (z-score) is also considered. Standard birthweights for gestational age
values are taken from the Scottish population (Hemming et al., 2006). Large negative
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z-score values (around -3) indicate that the child was born with a very low birthweight
for gestation, and values around zero suggest an average birthweight. Birthweight and
gestational age are routinely recorded neonatal variables and are fully observed for this
data set and so z-scores are derivable for the entire data set. This variable is of particular
interest in current epidemiological research in cerebral palsy (Jarvis et al. (2003); Hemming
et al. (2007)).

Proportions of cases with a particular severe impairment vary quite considerably between
the regions (Table 1). Scotland stands out as the most noticeable extreme. Proportions of
cases for which information on severity of impairment is missing, varies both between the
regions and between the variables (Table 1). For manual and ambulatory severity indicators,
the proportions of cases for which the severity indictor is missing, is low (less than 10%). For
the other associate impairments, proportions of missing data are higher, for both Northern
Ireland and Oxford, and very high for Scotland (63% with missing IQ information). The
vast majority of cases have covariate information on at least one variable, with many having
information on two or three covariates: 2980 (76%) have full covariate information on four
covariates; 661 have data on three covariates; 226 have data on two covariates; 26 have data
on one covariate only; 53 cases have no information on any of the four covariates.

Some association between severity of disability and missing information may be due to
the child having died before the assessment could be made or through lack of follow-up (for
covariate data rather than death information). The Kaplan-Meier estimates of the survival
by region and severity or missingness of impairment variables indicate there are many likely
causes of missing covariate information (Figure 1). For example, for both manual and
ambulatory variables for Mersey, missing data show a strong association with early deaths,
although the absolute number of cases with missing information on these two variables for
the Mersey region is small. In the North of England, Oxford and Scotland those with missing
covariate information on ambulatory and manual variables constitute a mixture of early
deaths and late censored observations, contrasting with Northern Ireland in which almost
all those with missing information on these two variables are late censored observations. For
those with missing cognitive impairment, again Mersey constitutes mainly deaths, and the
North of England a mixture of early deaths and late censored observations, for Northern
Ireland and Oxford, the missing covariate observations consist of mainly censored survival
times. In Scotland, where the proportion of cases with missing information on severity of
cognitive impairment is high, a significant proportion of those with missing cognitive data
have died. For those with missing visual impairment, a large number of early deaths give a
survival pattern which is not too dissimilar to those who are severely impaired for all five
regions.

Implementation
We compare inferences from a complete case analysis where it is assumed the covariate
data are MCAR, to inferences obtained under the less restrictive assumption of MAR and
where to enable likelihood based inferences, not only fT |Z(t, z;θT ) is modeled (for which
we consider models 7-9), but so too is fZ(z;θZ) (for which we consider models 10-11 and
12-15). We further consider how robust parameter estimates are to non-missing at random
missing data mechanisms (models 17-18).

The parameters partition into those which are robust to prior specifications and those
which are less so. For those which are robust we provide results based on a single set of in-
dependent non-informative priors (although a range of priors was used to obtain conclusions
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that this set of parameters are robust to prior specification). These parameters consist of
the regression coefficients (α0,α,c,d), for which we used diffuse independent normal priors
N(0,0.001) - (parameterised by center and precision parameters); the scale parameter, σ a
Gamma prior G(1,0.001) (approaching a uniform prior over the range (0,100) on the preci-
sion scale); for the covariates (Bernoulli specification), non-informative Beta priors B(1,1)
for pk and for the conditional wise specification, independent normal priors N(0,0.001) for
βkk.

Inferences might be less robust to priors for the parameters of the missing data mech-
anism fR(r;ψ). For these parameters we considered various weakly informative priors:
N(0,0.1), a fairly tight prior centered around zero; N(0,0.01) a more uniform prior again
centered at zero; N(0,0.001) towards a vague prior again centered at zero.

All inferences were carried out in BUGS (Spiegelhalter et al., 1999) with convergence
checked using CODA (Best et al., 1997). All inferences were compared over 100,000 iter-
ations after an initial burn in of 10,000 iterations. A diffuse range of starting values were
explored. For missing binary covariate data, zero and one values were randomly imputed
to generate a set of initial covariate values. Model fits were compared using deviances with
complexity penalised by twice the number of parameters, along the lines of DIC. The or-
der of the conditional specification for fZ(z) was chosen by the order providing the lowest
DIC value, although the main parameters of interest were not sensitive to choice of order.
The order used was z1=ambulatory impairment; z2=manual impairment; z3=cognitive im-
pairment; z4=visual impairment. No interactions were found to be significant and are not
presented.

Sample run times for this fairly large data set (n=3946) were for the CCA 107 seconds;
for the MAR analysis with independent Bernoulli model for fZ(z|θz) 206 seconds; for the
MAR analysis with conditional model for fZ(z|θz) 1076 seconds; and for the NMAR model
21708 seconds.

Results
Inferences from a CCA
As expected, in a CCA the distribution assigned to fZ(z;θz) has no impact on any survival
analysis inferences (as is demonstrated in Table 2). Inferences for fT |Z(t, z;θT ) allowing
dependencies on the four binary predictor variables and with extra variation due to region
(modeled as in equation 7), suggests that out of the four predictive covariates, a severe
ambulatory impairment reduces the median life time by the most (Table 2). Furthermore,
a regional variation in survival is significant, with Scotland seemingly having a much more
favorable outlook compared to the other four regions (coefficient 26(11.98)). Clearly since
Scotland has such high proportions of missing sensory data, such a conclusion is questionable
under anything but a completely naive CCA.

Inferences from a MAR analysis
Using a MAR likelihood based approach it is necessary to model fZ(z;θZ). Although attrac-
tive, a simple independent parameterisation for fZ(z;θZ) through independent Bernoulli
random variables (equations 10-11), results in considerable loss of information on the rela-
tionship between the four impairment variables compared to the model in which likelihoods
of severe impairments are modeled as functions of other severe impairments (equations 12
and 14). For models in which a regional variation in survival is included, the deviance is
20580 (14 parameters) for the Bernoulli specification compared to 15790 (20 parameters)
for the conditional wise specification. Using the conditional wise specification for fZ(z;θZ)
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also results in smaller standard errors on parameter estimates compared to the model in
which the Bernoulli specification is used (Table 2).

Using an independent Bernoulli model for fZ(z;θZ), a MAR analysis finds only a
marginally significant difference between the five regions in survival: deviance of 20590
(no region effect - 10 parameters) vs 20580 (with region effect - 14 parameters) (Table 2).
Contrasting this, under the conditional specification for fZ(z;θZ), a significant difference
between Scotland and the other four regions persists under the MAR fit, with Scotland
again standing out as having the most favorable outlook ( deviance of 15820 (no region
effect - 16 parameters) vs 15790 (with region effect 20 parameters)). Standard errors on
fixed effect region parameters are smaller under the MAR fit compared to the CCA (this
holds for both the conditional and Bernoulli models).

For models in which a regional effect on survival is included, under the Bernoulli
specification for fZ(z;θZ), the effect of a severe ambulatory impairment decreases from
−0.86(0.19) in a CCA to −1.08(0.28) in a MAR analysis (Table 2). This suggests a much
greater reduction in life expectancies for those with a severe ambulatory impairment than
previously thought (i.e. from inferences based on a CCA). However, using a conditional wise
specification for fZ(z;θZ), the effect of a severe ambulatory impairment is −0.87(0.18),
very similar to that of the CCA, and with a much smaller standard error compared to
the Bernoulli model for fZ(z;θZ). Using the conditional wise specification for fZ(z;θZ),
the reduction in life expectancy associated with the three severe impairments, ambulation,
manual and cognitive disabilities are fairly similar, as opposed to the CCA where a se-
vere ambulatory impairment appears to have the greatest impact on a reduction in life
expectancy.

Parameter estimates for the parameters of less interest (those of fZk|Z1:Zk−1
(zk|z1 :

zk−1;βk)) are given in Table 3, and an interpretation of these parameter estimates in Ta-
ble 4. There is a strong correlation between a severe ambulatory impairment and the other
three impairment variables: someone who has a severe ambulatory impairment has a very
high likelihood of having a severe manual, visual or cognitive impairment (Table 4), with
probabilities ranging from 0.81 to 0.98. A severe cognitive impairment is also highly corre-
lated with a severe visual impairment, and having both a cognitive and visual impairment
is highly correlated with a severe manual impairment.

There is some regional variation in proportions severely impaired (Table 1). In a fur-
ther attempt to improve model fit under MAR inferences, we consider a fixed regional
effect on the proportion severely impaired, using a conditional specification for fZ(z;θz)
(equation 15). This model gives a lower deviance value compared to models in which no
regional variation between proportions severely impaired are included (deviances 15760 (24
parameters) vs 15790 (20 parameters)). Posterior parameters indicate that there is no-
ticeable regional variation in proportions of cases with each of the four severe impairments
(Table 5). For instance, in Scotland, 37% are estimated to have a severe ambulatory impair-
ment, compared to the 31% average over regions; only 6% in the North East are estimated
to have a severe visual impairment (compared to the average of 12%, with as many as 18%
in Scotland). Cognitive information has particularly high proportions of missing data in
Scotland, with just 3% of those with known data on this variable having a severe impair-
ment. MAR inferences estimates 15% of cases in Scotland as having a severe intellectual
impairment, lower than the average (26%), but a vast improvement on 3%. Main parameter
estimates for fT |Z(t|z;θT ) do not differ greatly to those of previous MAR fits, except that
the coefficient for extra variation in Scotland decreases from 0.51 (0.15) to 0.34 (0.16).

We further consider including as an additional explanatory variable, a childs birthweight
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measured in terms of a deviation from expected birthweight for a given gestational age,
called “z-scores”. This is a fully observed continuous covariate. Both linear and quadratic
effects are investigated as this variable is thought to have an inverse J relationship with the
incidence of cerebral palsy and so might be expected to affect survival outcome in a similar
way. Neither models provided a significant improvement in model fit (Table 5). This is
in contrast to the CCA (previously published (Hemming et al., 2005) and not shown here)
where it was found to have a significant influence.

NMAR sensitivity analysis
We consider allowing the missing data mechanism to be non-ignorable, parameterised by a
logistic function with dependencies on the event time, censoring status and covariate (equa-
tions 17 and 18). We consider only the better fitting model for the covariate distribution,
and all results presented on based on the full conditional wise specification (equation 14).
Main parameter estimates were not sensitive to choice of prior and results presented are
based on the prior N(0, 0.01).

NMAR and MAR models are compared (Table 6) by fitting full NMAR models in which
dependencies on time, censoring and covariate are included; with NMAR models in which
only an intercept term is included in the distribution for the missing data mechanism (and
so therefore reduces to a MAR model). The NMAR models provide a better fit, in terms
of smaller deviances, than the NMAR models in which only the intercept term is included.
This suggests the covariate data may be NMAR. As with MAR fits, a model in which
region is included as a survival regression model appears to give a better fit. However,
the extent to which the model is improved by including an effect due to region, both in
terms of deviance and parameter estimates, is greater under the NMAR models. Under
the better fitting NMAR model with variation due to region included, posterior estimates
for α suggest that the coefficients for the effects of both manual and ambulatory functions
are similar (around -0.86); and coefficients for both cognitive and visual disabilities are also
similar (around -0.7). Scotland again appears to have significantly better survival outcomes
compared to the other four regions, and variation between the other four regions is similar
to that of the MAR models.

Parameter estimates for the missing data mechanism are presented in Table 7. The coef-
ficients for the effect of failure time on the missing data mechanisms for motor functions are
positive, suggesting that as age increases there is an increase in the likelihood of observing
the covariate. In contrast, the coefficients for the effect of the failure time on the likelihood
of observing the covariates for cognitive and visual disabilities are negative, suggesting that
as the failure time increases there is a decrease in the likelihood of observing the covari-
ate values. For both motor impairments and cognitive disabilities, the negative estimates
of the effect of censoring status on the likelihood of observing covariate values imply an
increased likelihood of observing covariates for deaths compared to censored observations.
The corresponding negative coefficient for visual disability, suggests an increased likelihood
of observing the visual covariate value for those who are censored compared to those who
have died, although this effect is not significant. The effects of the covariates themselves
on the likelihood of observing the covariate, all being negative, suggest a reduced likelihood
of observation for those who are severely impaired compared to those who are not severely
impaired.
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Clinical conclusions

A naive CCA leads to conclusions of a regional variation in survival outcome, with estimated
proportions severely impaired (26%, 20%, 24%, 9%), with order of magnitude on survival
influence: ambulation, intelligence, manual dexterity, and vision; and order of influence
of region on survival: the North of England (worst), Mersey, Oxford, Northern Ireland,
Scotland (best). Scotland having the best survival outcome, is however dubious under such
a complete case analysis as Scotland has such high proportions of missing data.

A full and in depth analysis of this data involves fitting a more complex model to the like-
lihood of a severe impairment, in which correlations between the four variables are induced
(through a conditional wise specification), and this results in a better fitting model. Under
such a MAR model fit, proportions severely impaired are higher (31%, 23%, 28%, 12%), the
effect of the covariates on survival similar between models in which an effect of region is
included and one which is not, and interestingly, Scotland again comes out as having the
best survival outcome. All three of ambulation, manual dexterity and intelligence, are es-
timated to have similar affects on median life expectancies. This model leads to greater
precision in main parameter inferences compared to the CCA, a reflection of the larger
sample size and how the extra uncertainty introduced by the partial covariate information
has been reduced by modeling correlations between each of the four impairments. A model
in which the proportions of cases with each of the severe impairments are allowed to vary
between the regions produces a slightly better fit. Under such a model the proportion of
cases with a severe intellectual impairment in Scotland is estimated to be around 15%,
which is much lower than the average over the regions, but substantially higher than the
raw data for Scotland leads us to believe at just 3%. A sensitivity analysis, allowing for
the covariate data to be missing in a non-random way, suggests a further increase in the
proportions severely impaired, especially those with severe visual or cognitive impairments
((32%, 24%, 33%, 16%)).

One of the primary questions of interest in the analysis of this data, is whether there
exists a regional variation in survival. Such regional variations may possibly be due to
such factors, as variations in neonatal care, variations in racial, ethnic or socio-economic
mixes of the background populations of the regions, which may indirectly affect rates of
cerebral palsy, rates of the severely impaired and survival outcomes. A CCA, conditioning
on severity of impairment, suggests no regional variation between four (Mersey, North
of England, Northern Ireland, Scotland) of the regions, but suggests an improvement in
survival in Scotland. Our in depth MAR analysis, again suggests no regional variation
between these four regions, but finds that survival in Scotland is significantly improved.
This apparent favorable outlook in Scotland may reflect a true increase in life expectancy
or may be an artifact of the data, since even an analysis with complete covariate data
may be compromised by differing ascertainment proportions between the regions. Scotland
has higher proportions severely impaired for all impairment variables except for cognitive
impairment, which could suggest an under-ascertainment of the less severely impaired cases.
Further analysis have shown estimated prevalence rates of cerebral palsy in Scotland to be
significantly lower than those of the other four regions, a further indication of reduced
ascertainment (personal communication, Jane Hutton).

The other focus of this analysis is that of life expectancies for individuals with particular
sets of impairments, used both in legal settlements and planning of resources. The CCA, es-
timates the median life expectancy for someone with four severe impairment variables, born
in the Mersey region, is 18.7 years (exp(6.88)/52); compared to the MAR analysis, using the
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conditional wise specification for the covariates, as 15.5 years (exp(6.69)/52); interestingly
under the NMAR analysis this median life expectancy is similar (exp(6.70)/52), a reflection
of those with missing covariate information being both deaths (providing a reduction in
life expectancies) and censored observation (providing an increase in life expectancies). A
CCA leads to the conclusion that ambulation provides the most predictive information for a
reduction in life expectancy. Results here however suggest that the four severe impairment
variables have similar predictive powers, a conclusion that has some clinical feasibility due
to all four variables acting as surrogate markers for a degree of cerebral damage which is
difficult to quantify.

The estimated proportion of cases with a severe visual impairment is high (around 16%)
compared to less than 10% from the CCA. However, this pattern of informed missingness
detected by the NMAR model, and the MAR model in which correlations between each
of the impairments were included, would seem to be consistent with clinical expectations.
Although in the UKCP no distinction is given to various types of missingness, in the Mersey
region information is recorded on those with a possible visual impairment but one which
is difficult to test (either because the child is too young or too severely impaired to test).
For the Mersey region, 8% have “unknown” severity of visual impairment and an additional
12% fall into the group with a possible impairment, thereby suggesting that many more
than the 8% have a severe visual impairment (Hutton and Pharoah, 2002). The NMAR
analysis for the visual covariate, suggests a stronger association between the covariate being
missing and the individual having died, than for the other three covariates.

Discussion

Missing covariate data often do not meet the assumption of being MCAR. The lesser re-
strictive assumption of MAR is attractive, although when using likelihood based inferences
requires additional assumptions for variables often of secondary interest, that of the covari-
ate distributions in survival analysis. For a conceptually simple problem of relating survival
outcome to four binary predictor variables with extra variation due to region or center and
allowing for interactions and a fully observed continuous covariate, we have shown that
careful consideration to the joint distribution for the covariates is a minimal requirement in
meeting the MAR assumption. In our application the simple independent Bernoulli model
for these four binary variables resulted in a poorer and misleading fit, than did a conditional
wise specification for this joint density. This addresses in part the common concern of using
independent prior distributions.

We have presented a Bayesian model which allows sensitivity of parameter estimates
to be evaluated, either to the MCAR or MAR assumptions. Almost all medical survival
applications, being complete case analyses, assume that the data are MCAR. One of the
advantages of the model presented here, is that being written in BUGS, it can potentially
be used by others. Its short falling may be that being a fully parametric survival model, it
is limited to use for data which meet the parametric assumptions. However, even the semi-
parametric Cox proportional hazards model makes an underlying assumption of hazards
being proportional, which of course will not always be feasible. We have focused on the
log-normal survival model, belonging to the class of accelerated failure time (AFT) models.
The BUGs code is adaptable to the Weibull model (also belonging to the class of AFT
models). For other models within the AFT class, it is not immediately clear that they too
would be programmable within BUGS, but could be implemented using Gibbs sampling
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with an adaptive rejection sample. Our focus has been on binary covariates, which were of
clinical interest in this example, though we have illustrated an extension to include a fully
observed continuous covariate. Extensions to missing at random continuous covariates are
a natural next extension, with incorporation into the conditional wise specifications, as too
are informative Bayesian priors.

We recommend that applied statisticians consider not only MAR models, but also
NMAR modesl informed by the substantive scientific knowledge. Such knowledge can in-
form the structure of the model and prior distributions. Both marginal and conditional
interpretations of parameters should be considered, as well as the meaning of sensitivity
parameters. Although some might regard sensitivity parameters as nuisance parameters, it
is sensible to consider whether the implied mechanisms are consistent with clinical under-
standing and knowledge of data collection.
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Table 1. Cerebral palsy cases by region, severity of impairment and survival status
ME NE NI OX SC

A D T A D T A D T A D T A D T

Cases 671 89 760 688 54 742 683 67 850 889 63 952 593 49 642

LLF severe 125 82 207 161 36 197 166 62 228 256 54 310 192 34 226
LLF not severe 546 6 552 510 4 514 584 3 587 614 3 617 390 3 393
LLF missing 0 1 1 17 14 31 33 2 35 19 6 25 11 12 23

ULF severe 89 77 166 145 35 180 109 55 164 144 49 193 122 34 156
ULF not severe 582 11 593 528 7 535 622 5 627 729 7 736 457 3 460
ULF missing 0 1 1 15 12 27 52 7 59 16 7 23 14 12 26

IQ severe 147 81 228 131 37 168 171 58 229 159 49 208 8 0 8
IQ not severe 522 5 527 541 8 549 536 5 541 600 6 606 228 1 229
IQ missing 2 3 5 16 9 25 76 4 80 130 8 138 357 48 405

Vision severe 31 43 74 26 12 38 51 29 80 74 30 104 50 18 68
Vision not severe 597 20 617 636 27 663 680 26 706 758 23 781 308 8 316
Vision missing 43 26 69 26 15 41 52 12 64 57 10 67 235 23 258

Key

LLF: Lower Limb Function (ambulation); ULF: Upper Limb Function (manual); IQ: Intelligence quotient

A: Alive; D: Dead; T: Total

ME: Mersey; NE: North of England; NI: Northern Ireland; OX: Oxford; SC: Scotland
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Table 2. Model inferences for CCA and MAR models: posterior estimates and posterior standard deviations
fZ(·) modeled by independent Bernoulli variables fZ(·) modeled by a conditional wise specification

No region effect Region effect No region effect Region effect

CCA MAR CCA MAR CCA MAR CCA MAR

fZ(·)

p1 0.26 (0.01) 0.31 (0.01) 0.26 (0.01) 0.31 (0.01) 0.26 0.31 0.26 0.31
p2 0.20 (0.01) 0.23 (0.01) 0.20 (0.01) 0.23 (0.01) 0.20 0.23 0.20 0.23
p3 0.24 (0.01) 0.26 (0.01) 0.24 (0.01) 0.26 (0.01) 0.24 0.24 0.24 0.26
p4 0.09 (0.01) 0.11 (0.01) 0.09 (0.01) 0.11 (0.01) 0.09 0.09 0.09 0.12

fT |Z(·)

α0 9.85 (0.21) 9.97 (0.20) 9.80 (0.24) 9.93 (0.21) 9.86 (0.23) 9.94 (0.19) 9.77 (0.24) 9.81 (0.21)
α1 -0.86 (0.19) -0.97 (0.28) -0.88 (0.20) -1.08 (0.28) -0.87 (0.20) -0.83 (0.18) -0.87 (0.20) -0.87 (0.18)
α2 -0.72 (0.18) -0.76 (0.25) -0.70 (0.18) -0.66 (0.25) -0.72 (0.18) -0.85 (0.16) -0.70 (0.18) -0.81 (0.17)
α3 -0.81 (0.15) -0.95 (0.15) -0.81 (0.16) -0.96 (0.16) -0.81 (0.16) -0.85 (0.15) -0.81 (0.16) -0.84 (0.16)
α4 -0.58 (0.21) -0.45 (0.12) -0.60 (0.13) -0.49 (0.13) -0.58 (0.13) -0.54 (0.12) -0.60 (0.13) -0.60 (0.12)
1

σ2 0.72 (0.08) 0.61 (0.06) 0.71 (0.09) 0.61 (0.06) 0.72(0.09) 0.66 (0.06) 0.72 (0.09) 0.67 (0.06)

b(s)1 26.00 (11.98) 0.10 (0.16) 21.6 (9.93) 0.51 (0.15)
b(s)2 -0.09 (0.16) -0.12 (0.15) -0.08 (0.15) -0.09 (0.14)
b(s)3 0.14 (0.15) 0.19 (0.14) 0.14 (0.15) 0.19 (0.13)
b(s)4 0.18 (0.15) 0.24 (0.14) 0.19 (0.15) 0.25 (0.13)

Deviance 15110 (4.4) 20590 (17.9) 15100 (18.48) 20580 (33.75) 11580.00 (21.32) 15820 (45.05) 11580 (21.47) 15790 (52.23)
No.Parameters 10 10 14 14 16 16 20 20
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Table 2 Key
For the independent Bernoulli model, fZ(·) is modeled as in equation 10-11. For the condi-
tional wise specification,fZ(·) is modeled as in equation 12-15. pk for k = 1, · · · , 4 represent
marginal probabilities for the four severe impairment variables in the order Lower Limb
Function (ambulation); Upper Limb Function (manual); Intelligence Quotient; and Vision.

fT |Z(·) is modeled as in equation 7, with α0 is the intercept parameter; σ the scale pa-
rameter; and α = (α1, . . . , α4), where αk for k = 1, · · · , 4 are the covariate effect parame-
ters for the four severe impairment variables (order as above); For the survival model with
additional variation due to region, b(s)j for j = 1, · · · , 4 represent fixed region effects (or-
der: Scotland, the North of England, Northern Ireland, Oxford, and Mersey as the baseline).
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Table 3. Conditional wise specification for fZ(·): posterior esti-
mates and posterior standard deviations

No region effect Region effect

CCA MAR CCA MAR

β10 -2.57 (0.08) -2.33 (0.07) -2.57 (0.08) -2.33 (0.07)
β11 4.00 (0.19) 3.93 (0.17) 3.99 (0.19) 3.92 (0.17)
β12 1.45 (0.15) 1.41 (0.15) 1.45 (0.15) 1.41 (0.15)
β13 1.26 (0.28) 1.22 (0.24) 1.27 (0.28) 1.22 (0.24)

β20 -2.86 (0.09) -2.78 (0.09) -2.87 (0.09) -2.79 (0.09)
β21 2.98 (0.09) 3.03 (0.12) 2.99 (0.13) 3.04 (0.12)
β22 1.80 (0.20) 1.68 (0.17) 1.81 (0.20)) 1.67 (0.17)

β30 -1.53 (0.05) -1.43 (0.05) -1.53 (0.05)) -1.43 (0.05)
β31 3.83 (0.22) 3.72 (0.24) 3.83 (0.22) 3.73 (0.20)

β30 -2.31 (0.06) -2.03 (0.05) -2.31 (0.06) -2.03 (0.05)

The conditional wise specification for fZ(·) is given in equation 14. Note: other parameter

estimates for these four models are presented in Table 2 (columns 5 to 8). An interpretation of

these parameter estimates is given in Table 4.
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Table 4. Influence of conditional wise specification for fZ(z)

No region effect Region Effect

zk z1, . . . , zk−1 CCA MAR CCA MAR

ULF IQ Vision p(·|·) p(·) p(·|·) p(·) p(·|·) p(·) p(·|·) p(·)
LLF 1 1 1 1 0.98 0.26 0.99 0.28 0.98 0.28 0.99 0.31

1 1 1 0 0.95 0.95 0.95 0.95
1 1 0 1 0.94 0.94 0.94 0.94
1 0 1 1 0.54 0.57 0.54 0.57
1 1 0 0 0.81 0.83 0.81 0.83
1 0 1 0 0.25 0.28 0.25 0.29
1 0 0 1 0.21 0.25 0.21 0.25
1 0 0 0 0.07 0.09 0.07 0.09

ULF 1 1 1 0.87 0.20 0.87 0.31 0.87 0.20 0.87 0.23
1 1 0 0.53 0.56 0.53 0.56
1 0 1 0.26 0.25 0.26 0.25
1 0 0 0.05 0.06 0.05 0.06

IQ 1 1 0.91 0.24 0.91 0.23 0.91 0.24 0.91 0.28
1 0 0.18 0.19 0.18 0.19

Vision 1 0.09 0.09 0.12 0.12 0.09 0.09 0.12 0.12

Table 4 Key
LLF: Lower Limb Function (ambulation); ULF: Upper Limb Function (manual); IQ: Intel-
ligence quotient
p(·|·): conditional probablity of p(zk|zk+1 · · · zK)
p(·): marginal probablity of p(zk)
The conditional wise specification for fZ(z|β) is given in equation 14.
Note: other parameter estimates for these four models are presented in Table 2 (columns 5
to 8) and Table 3.
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Table 5. Influence of regional variations in proportions severely impaired (Model A)
and deviations from expected birthweight (Model B): posterior estimates and posterior
standard deviations

Model A Model B

fZ(·)

p1 (0.37,0.29,0.28,0.33,0.27) 0.31 0.31
p2 (0.26,0.26,0.21,0.21,0.22) 0.23 0.23
p3 (0.15,0.24,0.29,0.26,0.31) 0.28 0.28
p4 (0.18,0.06,0.10,0.12,0.13) 0.12 0.12

fT |Z(·)

α0 9.80 (0.21) 9.80 (0.21) 9.78 (0.23)
α1 -0.89 (0.18) -0.88 (0.29) -0.88 (0.19)
α2 -0.83 (0.17) -0.81 (0.17) -0.81 (0.17)
α3 -0.80 (0.15) -0.85 (0.16) -0.86 (0.16)
α4 -0.58 (0.12) -0.60 (0.12) -0.60 (0.13)
1

σ2 0.68 (0.07) 0.67 (0.07)

b(s)1 0.34 (0.16) 0.52 (0.15) 0.52 (0.15)
b(s)2 -0.11 (0.14) -0.09 (0.14) -0.09 (0.14)
b(s)3 0.18 (0.13) 0.21 (0.13) 0.20 (0.14)
b(s)4 0.24 (0.13) 0.25 (0.13) 0.26 (0.14)

z-score -0.08 (0.04) -0.08 (0.04)
z-score2 0.02 (0.02)

Deviance 15670 (51.42) 15790 (52.28) 15790 (53.40)
No.Parameters 24 21 22

Key
Using the conditional wise specification,fZ (·) is modeled as in equation 9 and where pk for k =
1, . . . , 4 represent marginal probabilities (by row) for the four severe impairment variables in
the order Lower Limb Function (ambulation); Upper Limb Function (manual); Intelligence Quo-
tient; and Vision. In each row, individual region estimates are presented for Model A (order:
SC,NE,NI,OX,ME). b(p)j for j = 1, . . . , 4 represent fixed regional effects on proportions severely
impaired(order: Scotland, the North of England, Northern Ireland, Oxford, and Mersey as the
baseline.)

fT |Z(·) is modeled as in equation 4, with α0 is the intercept parameter; σ the scale parameter;
and α = (α1, . . . , α4), where αk for k = 1, . . . , 4 are the covariate effect parameters for the four
severe impairment variables (order as above); For the survival model with additional variation due
to region, b(s)j for j = 1, . . . , 4 represent fixed region effects on survival(order: Scotland, the North
of England, Northern Ireland, Oxford, and Mersey as the baseline).
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Table 6. Sensitvity analysis: comparing different NMAR models (main parameters) : posterior estimates and
standard deviations

No region effect Region effect

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

fZ(·)

p1 0.31 0.32 0.32 0.31 0.32 0.32
p2 0.23 0.25 0.24 0.23 0.25 0.24
p3 0.28 0.33 0.33 0.28 0.33 0.33
p4 0.12 0.15 0.16 0.12 0.15 0.16

fT |Z(·)

α0 9.95 (0.21) 10.06 (0.22) 10.07 (0.21) 9.82 (0.22) 9.83 (0.22) 9.86 (0.23)
α1 -0.84 (0.19) -0.84 (0.17) -0.85 (0.17) -0.88 (0.19) -0.84 (0.18) -0.86 (0.18)
α2 -0.85 (0.16) -0.94 (0.16) -0.96 (0.15) -0.81 (0.17) -0.86 (0.15) -0.87 (0.16)
α3 -0.84 (0.16) -0.69 (0.15) -0.65 (0.15) -0.84 (0.16) -0.75 (0.15) -0.73 (0.15)
α4 -0.54 (0.12) -0.62 (0.11) -0.62 (0.11) -0.60 (0.13) -0.69 (0.11) -0.70 (0.11)
1

σ2 0.66 (0.06) 0.65 (0.06) 0.65 (0.06) 0.67 (0.06) 0.68 (0.06) 0.68 (0.07)

b(s)1 – 0.51 (0.15) 0.71 (0.15) 0.73 (0.15)
b(s)2 – -0.10 (0.14) -0.03 (0.14) -0.03 (0.14)
b(s)3 – 0.18 (0.13) 0.22 (0.13) 0.22 (0.13)
b(s)4 – 0.25 (0.14) 0.26 (0.13) 0.26 (0.14)

Deviance 24580 (51) 23470 (77) 23240 (105) 24560 (53) 23420 (78) 23160 (113)
No.Parameters 20 24 32 24 28 36

Key

fZ(·) is modeled as in equation 12-15 using the conditional wise specification. pk for k = 1, · · · , 4

represent marginal probabilities for the four severe impairment variables in the order Lower Limb

Function (ambulation); Upper Limb Function (manual); Intelligence Quotient; and Vision.

fT |Z(·) is modeled as in equation 7, with α0 is the intercept parameter; σ the scale parameter;

and α = (α1, . . . , α4), where αk for k = 1, · · · , 4 are the covariate effect parameters for the four

severe impairment variables (order as above); For the survival model with additional variation

due to region, b(s)j for j = 1, · · · , 4 represent fixed region effects (order: Scotland, the North of

England, Northern Ireland, Oxford, and Mersey as the baseline).

fR(r;ψ) is modelled by equations 17 and 18

Notes:

Model 1: Intercept only (MAR); Model 2: Intercept, covariate; Model 3: Intercept, covariate, time,

censoring status.

Estimates for NMAR parameters are given in Table 7.
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Table 7. Sensitvity analysis: comparing different NMAR models (NMAR parameters): poste-
rior estimates and standard deviations

No region effect Region effect

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

fR(·)

γ10 7.77 (1.32) 5.21 (1.40) 3.51 (0.10) 7.69 (1.36) 5.25 (1.39)
γ13 -5.43 (1.33) -4.87 (1.38) – -5.35 (1.37) -4.91 (1.38)
γ11 0.15 (0.02) – 0.15 (0.03)
γ12 0.60 (0.28) – 0.60 (0.28)

γ20 5.16 (0.36) 3.03 (0.44) 3.33 (0.09) -3.19 (0.40) 3.01 (0.44)
γ23 -3.17 (0.39) -2.92 (0.38) – -2.51 (0.13) -2.96 (0.38)
γ21 0.14 (0.02) – 0.14 (0.02)
γ22 0.73 (0.26) – 0.74 (0.26)

γ30 2.48 (0.13) 2.88 (0.27) 1.62 (0.04) 2.51 (0.13) 2.96 (0.31)
γ33 -1.84 (0.18) -2.40 (0.28) – -1.89 (0.19) -2.51 (0.33)
γ31 -0.01 (0.01) – -0.01 (0.01)
γ32 0.74 (0.18) – 0.76 (0.18)

γ40 2.47 (0.08) 3.26 (0.22) 1.93 (0.08) 2.45 (0.09) 3.30 (0.22)
γ43 -2.03 (0.16) -2.22 (0.21) – -2.07 (0.16) -2.30 (0.20)
γ41 -0.04 (0.01) – -0.05 (0.01)
γ42 -0.12 (0.21) – -0.09 (0.21)

Key
fR(·) is modeled as in equation 17.

γ1 refers to the distribution of the missing data mechanism for the covariate lower limb func-
tion;
γ2 refers to the distribution of the missing data mechanism for the covariate upper limb function;
γ3 refers to the distribution of the missing data mechanism for the covariate cognitive function;
γ4 refers to the distribution of the missing data mechanism for the covariate visual function;

The parameters γk0, γk1, γk2, γk3 for variable k (1...4) (above) represents and intercept value,

an effect due to the covariate, and effect due to the event time, and an effect due to the censoring

status.

Notes:

Model 1: Intercept only (MAR); Model 2: Intercept, covariate; Model 3: Intercept, covariate, time,

censoring status.

Estimates for main parameters are given in Table 6.
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Figure 1. Kaplan-Meier estimates of survival for the severe and unknown impairments
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Key
LLF: Lower Limb Function (ambulation); ULF: Upper Limb Function (manual); IQ: Intelligence

quotient
Mersey: ; North of England: · · · ; Northern Ireland: − · − ; Oxford: −−; Scotland: − · · ·−


