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When modeling the hazard of entry into marriage, the non-mono-
tonic dependence on age needs to be taken into account. In this paper,
nonlinear discrete-time hazard models based on a bell-shaped func-
tion are proposed, in which the support of the hazard function, the
maximum hazard and the age of maximum hazard are estimated.
Starting in the proportional hazards framework, the baseline hazard
model proposed by Blossfeld and Huinink (1991) is extended to allow
estimation of the support of the baseline hazard. A naive extension
is shown to suffer from partial aliasing and thus an alternative pa-
rameterization is proposed, in which the partial aliasing is reduced.
This parameterization includes the maximum hazard and the age of
maximum hazard as parameters. A non-proportional hazards model
is then obtained by allowing the age of maximum hazard, as well as
the maximum hazard itself, to depend on covariates. The usefulness
of the proposed models is demonstrated through application to data
from the Living in Ireland Surveys conducted between 1994 and 2001.

1. Introduction. Changes in family formation over recent decades have
provided an interesting field of research for social scientists. One aspect of
interest is the propensity to marry, which can be studied by analyzing the
timing of first marriage. In particular, the transition from being unmarried
to entering marriage can be modeled using survival analysis techniques.

We define the survival time, T, to be the number of calendar years an in-
dividual remains unmarried from the year in which they reach the minimum
legal age of marriage. If t € {0,1,2,...} is the number of calendar years since
reaching the minimum legal age, then the hazard of entry into marriage at
time t is defined as

(1) h(t) = P(T = t|T > t).

In this paper, we shall develop models for this hazard, starting within the
proportional hazards framework. The discrete-time proportional hazards
model for an individual ¢ with covariates x;; may be formulated as

(2) logit(h(t|lzi)) = ho(t) + i,
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where ho(t) is the baseline hazard (Cox and Oakes, 1984). Use of the logit
link provides a direct interpretation in terms of the conditional odds of
marriage.

The baseline hazard of entry into marriage has a non-monotonic depen-
dence on age, which needs to be represented in the model. Blossfeld and Huinink
(1991) propose the parametric baseline hazard

(3) ho(tlageir) = ¢+ Bilog(agey — 15) + B, log(45 — age;),

which forms a bell-shaped curve. This model makes the assumption that
the hazard of entry into marriage only exists between the ages of 15 and 45.
Blossfeld and Huinink (1991) do not justify this assumption and though the
left endpoint would be governed by legal constraints, it would appear that
the support of the baseline hazard was simply determined by the age range
of women in their study.

It would be preferable to estimate the support of the baseline hazard as
part of the model. An immediate extension of Equation 3 would give the
nonlinear baseline hazard

(4) ho(tlageir) = ¢+ Bilog(agey — o) + By log(a, — agesr).

We shall demonstrate, using a novel graphical method, that this naive ex-
tension suffers from partial aliasing between the parameters. We therefore
propose an alternative parameterization, in which the partial aliasing is re-
duced. With this model, it is possible to test whether assumptions made
about the endpoints are validated by the data. Furthermore, the parame-
ters of the proposed model have a more useful interpretation, allowing non-
proportional hazard models to be considered, in which there are interactions
between the covariates and parameters of the baseline hazard.

We present our approach through application to data from the Living
in Ireland Surveys, which are described in the next section. In Section 3
we follow the approach of Blossfeld and Huinink (1991) to build a reference
linear discrete-time hazard model. Then in Section 3.1, we demonstrate the
partial aliasing that occurs when Equation 4 is used as a baseline hazard and
the improvement offered by our proposed alternative. We repeat the analysis
of Section 3 with the new baseline hazard and consider further improvements
to the model. Our findings our summarized in Section 4.

2. Data. The Living in Ireland Surveys were conducted between 1994
and 2001 by the Economic and Social Research Institute. Full details of the
surveys are given in (Watson, 2004). Data was collected by yearly household
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interviews, providing information on individuals’ education, occupation and
standard of living, as well as basic demographics.

We shall consider only a subset of the data here. In particular we re-
strict our attention to women who were members of the original sample of
households and who were born between 1950 and 1975, giving five, five-year
cohorts who by 2001 had passed the mean age at marriage for women in the
full data set.

We represent the marital status simply by a binary variable, which is
equal to one if the woman is married and zero otherwise. We focus our
attention on a selection of other variables: the year and month of birth, the
social class (a seven-level factor usually based on the father), the highest
level of education attained (a seven-level factor) and the corresponding year
of attainment.

We use the method of episode-splitting (see e.g. Powers and Xie, 2000) to
generate yearly pseudo-observations data for each individual, from the year
in which they became 16 up to the year in which they became 45 or were
lost to follow up. The observations are assumed to be made at the start of
the calendar year, so that the age at time ¢ is taken to be

16 — (monb—0.5)/12+t

where ¢t € {0,1,...} is the number of calendar years since that in which the
woman became 16 and monb € 1,2,...,12 is the month of birth. Our final
data set comprised 31009 records for 2902 women.

3. Linear Discrete-time Hazard Models. We conduct an initial
analysis of the data using the discrete-time proportional hazards model
(Equation 2) with the linear baseline hazard of Equation 3, which assumes
that the support of the baseline hazard is known. As far as possible, we
follow the model-building strategy of Blossfeld and Huinink (1991): starting
with the null model, adding the baseline hazard variables, then adding the
social class, cohort and education variables in turn. The results are presented
in Table 1.

As in Blossfeld and Huinink (1991), the effect of education is modeled
using a time-varying binary variable which indicates whether the woman is in
education or not at time ¢. Blossfeld and Huinink (1991) consider in addition
a dynamic measure of the level of education, which we can not generate from
our data. However Blossfeld and Huinink (1991) find this variable not to be
significant; consistent with this result, we find that including the final level
of education as a covariate does not significantly improve the model. Once
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TABLE 1

Discrete-time proportional hazard models of entry into marriage for women born between

1950 and 1975, using the linear baseline hazard model defined in Equation 3. The body of
the table shows parameter estimates, with standard errors in parentheses for Model 6.

Model
Variables 1 2 3 4 5 6
Intercept —2.82 —18.11 -—18.09 -—-19.74 —18.37 —18.33 (0.91)
Log(age - 15) 2.19 2.20 2.33 2.09 2.07 (0.10)
Log(45 - age) 3.66 3.70 4.25 3.96 3.93 (0.24)
Class s/skilled manual -0.13  -0.11 —0.09
Class skilled manual —0.15 —0.07 —0.05
Class non manual —0.27 —0.23 —0.19
Class low professional —0.22 —0.20 —-0.13
Class high professional —0.50 —0.44 —-0.32
Class missing —0.07 —0.09 —0.04
Cohort (54,59] 0.03 0.03 0.03 (0.07)
Cohort (59,64] —0.09 —0.07 —0.08 (0.07)
Cohort (64,69] —0.61 —0.59 —0.59 (0.08)
Cohort (69,74] ~1.46  —1.41  —1.42 (0.10)
In education —-2.17  —2.22 (0.31)
Deviance 13666 12573 12548 12181 12077 12089
Df 31008 31006 31000 30996 30995 31001
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the educational status indicator is added to the model, the class factor can
be dropped from the model without a significant increase in deviance.

Thus the final model includes the baseline hazard variables, the cohort
factor and the educational status indicator. The coefficient of the first base-
line variable is lower than that of the second (2.07 compared to 3.93), so the
baseline hazard is right-skewed. Compared to the baseline cohort of women
born in 1950-1954, the conditional odds of marriage for a woman of the
same educational status are not significantly different in the 1955-1959 or
1960-1964 cohorts, but rapidly decrease through the later cohorts to 24%
of the baseline conditional odds in the 1970-1974 cohort (95% confidence
interval: 20 - 30%). The conditional odds of marriage for a woman who is
in education are 11% of those for a woman of the same cohort who is not in
education (95% confidence interval: 6 - 20%).

3.1. Nonlinear Discrete-time Hazard Models. We now turn to a nonlin-
ear discrete-time proportional hazard model in which the endpoints of the
support of the baseline hazard are to be estimated from the data. We first fit
the baseline hazard model as defined in Equation 4 using the R package for
generalized nonlinear models, gnm (Turner and Firth, 2007). The endpoint
parameters o; and «, need to be constrained to ensure that the log terms
remain finite. To enforce the constraints oy < agej,) and ar > agejmaq)s
where agej,i,) and agej,q,) are the minimum and maximum ages observed,
we set

(5) O = agefmin] — exp(])
(6) Qp = Ag€[max] + 6xp(a:)

and estimate o) and oj. The gnm software detects numerically that the
estimates of the parameters in the baseline hazard model are not identified,
despite the design matrix being of full rank.

We can demonstrate the partial aliasing graphically using “recoil plots”,
an example of which is given in Figure 1. We plot the fitted model on the
probability scale, then plot the curve obtained by shifting one of the model
parameters to a new value, and finally plot the model obtained when the
parameters are re-estimated with the shifted parameter constrained to its
new value. The partial aliasing is clearly apparent in Figure 1, since the
re-fitted model coincides with the original model, i.e., the other parameters
compensate for the arbitrary shift. A similar plot is obtained for the other
parameters in the model.

Given the problem of partial aliasing, we propose a re-parameterization

CRiSM Paper No. 07-16, www.warwick.ac.uk/go/crism



A. BATCHELOR ET AL./NONLINEAR DISCRETE-TIME HAZARD MODELS 6

1o}
— -
o
N —— Original (c = -118.5)

\ — - Perturbed (c =-118.3)
/ o Re-fitted (c = -118.3)

Probability of Marriage
0.05
1

0.00
1

Age (years)

Fi1c 1. A “recoil plot” for the intercept, c, demonstrating the aliasing in the baseline haz-
ard model defined by Equation 4. Three hazard curves are shown: for the fitted model
where ¢ = —118.5 (Original); for the perturbed model with c shifted to —118.3 and the
other parameters left at their fitted values (Perturbed), and for the re-fitted model with c
constrained to —118.3 and the other parameters re-estimated (Re-fitted).

of Equation 4 as follows:

(7) ho(tlageir) =y =0 {(V —au)log <V_al)}

ageit — o

#0{(or—ven (TP -

The corresponding set of recoil plots, Figure 2, show that the partial aliasing
is greatly reduced.

An additional benefit of the new parameterization is that the parameters
have a more useful interpretation, as illustrated in Figure 3. The left and
right endpoints are given by the parameters «; and «, as before, while v
gives the location of the peak hazard and ~ gives the maximum hazard on
the logit scale. The fifth parameter, §, does not have a direct interpretation,
but relates to the sharpness of the peak and can be loosely interpreted as
the ‘fall off’ from the peak.

Using the new baseline hazard, we repeat the analysis presented in Section
3, giving the results shown in Table 2. Compared to the linear baseline
hazard model (Model 2, Table 1) the nonlinear baseline hazard model (Model
7, Table 2) reduces the residual deviance by 20 at the expense of two degrees
of freedom. A similar reduction in deviance is seen across the models and the
estimated effect of the covariates on the hazard is little changed. Therefore
the qualitative interpretation remains the same, but the residual deviance is
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Fi1G 2. Recoil plots for the parameters of the baseline hazard model defined in Equation
7. In each case three hazard curves are shown: for the fitted model (Original Model); for
the perturbed model with the parameter of interest shifted to a new value and the other
parameters left at their fitted values (Perturbed Model), and for the re-fitted model with the
parameter of interest constrained at its new value and the other parameters re-estimated
(Re-fitted Model).

significantly reduced by estimating the support of the hazard function from
the data.

As the theoretically important variables are added to the model, the es-
timated endpoints of the support of the baseline hazard diverge from their
constraints of 152—14 and 45% for the left and right endpoints respectively.
In particular, the right endpoint ends up at 400.15 with a standard error
of 3342.66 (Model 11, Table 2). Given that this endpoint is so far from the
data and indeed, in practical terms, may be regarded as representing the
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Fic 3. An illustrative hazard curve, showing how the parameters of the baseline hazard
model defined in Equation 7 relate to the features of the curve.

TABLE 2
Discrete-time proportional hazard models of entry into marriage for women born between
1950 and 1975, using the nonlinear baseline hazard model defined in Equation 7. The
body of the table shows parameter estimates, with standard errors in parentheses for

Model 11.
Model

Variables 7 8 9 10 11
Intercept (vy) -2.09 -192 -160 -1.67 —1.74  (0.06)
Peak age (v) 25.39 25.37 24.85 25.41 24.71 (0.26)
Fall-off (§) 0.33 0.34 0.44 0.21 0.47 (0.25)
Left endpoint (a;) 1418 1414 1357 1490 1259  (2.24)
Right endpoint (o) 100.92 102.82 195.81 44.96  400.15 (3342.66)
Class s/skilled manual -0.13 -0.11 —0.09
Class skilled manual —-0.15 —-0.07 —0.05
Class non manual -0.27 -0.23 -0.19
Class low professional —-0.23 —-0.20 -0.13
Class high professional —-0.50 —-0.44 —0.32
Class missing —-0.07 —-0.09 -0.04
Cohort (54,59] 0.03 0.03 0.03 (0.07)
Cohort (59,64] —0.08 —0.08 —0.08 (0.07)
Cohort (64,69] —-0.62 —-0.59 —0.60 (0.08)
Cohort (69,74] —1.48 —1.41 —1.43 (0.1)
In education —-2.17 =221 (0.31)
Deviance 12553 12527 12154 12077 12064
Df 31004 30998 30994 30994 30999

CRiSM Paper No. 07-16, www.warwick.ac.uk/go/crism



A. BATCHELOR ET AL./NONLINEAR DISCRETE-TIME HAZARD MODELS 9

TABLE 3
Discrete-time hazard models of entry into marriage for women born between 1950 and
1975, using the baseline hazard model with infinite right endpoint defined in Equation 8.
The body of the table shows parameter estimates, with standard errors in parentheses for
Model 15. Models 14 and 15 are non-proportional hazard models due to the dependence of
the peak location parameter (v) on the education level.

Model

Variables 12 13 14 15
Intercept () —-1.73 —-1.63 —1.59 —1.60 (0.06)
Peak age (v)

Intercept 2470  24.66 13.74 14.42 (0.9)

Education level 0.97 0.88 (0.08)
Fall-off (4) 0.50 0.50 0.50 0.46 (0.05)
Left endpoint (o) 12.33  12.38 13.98  13.86 (0.65)
Cohort (54,59] 12.33
Cohort (59,64] —0.08
Cohort (64 69] —0.60
Cohort (69,74] —1.43
Birth year

1950 effect 12.38 —0.02 —0.02 (0.01)

Exponential decay 0.19 0.20 0.20 (0.03)
In education —2.21 —-220 -1.13 —1.46 (0.33)
Early years post-educaton —0.48 (0.11)
Deviance 12064 12046 11867 11847
Df 31000 31002 31001 31000

end of life, it seems sensible to consider an alternative baseline hazard in
which the right endpoint tends to infinity. Letting o, — oo in Equation 7
we obtain:

(8) ho(tlageir) =~ — 9§ {(1/ —«ag)log <I/al) — age; — 1/}
ageit — oy

Re-fitting Model 11 (Table 2) with an infinite right endpoint, the deviance
is increased by only 0.01 on one degree of freedom, so there is no significant
difference (Model 12, Table 3). The estimates of the remaining parameters
are largely unchanged, except that the estimated ‘fall off’ is slightly increased
from 0.47 (s.e. 0.25) to 0.50 (s.e. 0.07) and the left endpoint moves down
from 12.59 (s.e. 2.24) to 12.33 (s.e. 1.11).

The cohort effects have the pattern noted in Section 3, that is, there is
no significant cohort effect until after 1964, when the cohort effects become
increasingly negative. This suggests that a cohort factor may not be the best
way to model the effect of the year of birth. To investigate this further, we
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Fi1G 4. Estimated year-of-birth effects when the cohort factor in Model 12 is replaced by a
year-of-birth factor. The effect for year-of-birth equal to 1950 is set to zero.

fit a model in which the cohort factor is replaced by a year-of-birth factor
and plot the fitted effects (Figure 4). The pattern of these effects suggests
that a more appropriate model might be

9) 0 exp(A(yrb; — 1950)).

where yrb; is the year of birth for individual ¢. Fitting this curve directly
to the year-of-birth effects seems to give a reasonable fit (Figure 4), so we
include this nonlinear term in our model and drop the cohort factor. This
reduces the deviance by 19 while increasing the residual degrees of freedom
by 2 (Model 13, Table 3).

In order to check the fit of Model 13, we compare the observed and fitted
proportions in different sub-groups of the data. Figure 5, shows the observed
and fitted proportions for each year of age, by highest level of education at-
tained. The seven levels of education have been reduced to five, since the
“sub-primary” group and the “post-leaving certificate” group were small in
size and could be merged with the “primary” and “institute of technology”
groups respectively, since the pattern of observed proportions were not dis-
similar. From Figure 5 we can see that the fitted model fits quite well for
the “upper secondary” group, but peaks too late for lower education levels
and too early for higher education levels.

This suggests that the peak location depends monotonically on education
level. We quantify the education level, ed, as the equivalent average years
spent in education (calculated from the data) and allow for a linear trend
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Fic 5. Fitted hazard curves for Model 13, with a common peak location for all levels of
education (common v in the baseline hazard) and Model 14, with a separate peak location
for each level of education (v dependent on equivalent average years spent in education).
The curves are laid over the observed proportion married for each year of age.

in the model as follows:

. o o vy + 1ed; — o
(10) logit(h(t|xi)) =~v— 06 {(Vo + vied; — ap) log (ageit o >}

+ 0 {ageir + vo + v1ed;} + O exp(A(yrb; — 1950)) + Bredstaty.

where edstat;; is the binary variable indicating whether a woman is in ed-
ucation or not at time ¢. This is no longer a proportional hazards model,
since both the scale and location of the hazard curve can vary between in-
dividuals. Allowing separate peak locations for each education level visually
improves the fit (Figure 5) and significantly reduces the deviance (Model
14, Table 3).

Continuing to check the fit of the model as before, we find no particu-
lar lack of fit over age, class or year of birth. Grouping the data by the
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Fi1G 6. The fitted hazard curve for Model 14, laid over the observed proportion married for
each year post-education.

educational status indicator would not be meaningful, so instead we group
by years post-education as shown in Figure 6. There are several points to
note about this plot. First, there is some evidence that the rate of increase
in the proportion married is lower in the first three years post-education
than it is three to six years post-education. Second, there appears to be a
sharp change in the pattern of marriages at seven years post-education and
the model does not capture this change. Finally, there are unusually high
proportions of women marrying at 13, 20 and 28 years post-education.

With regard to the outlying points, we note that the sample size decreases
with increasing years post-education, so the observed proportions would be
more influenced by small fluctuations in the number of marriages. From a
total sample size of 2902, the outlying points at 13, 20 and 28 years post-
education are based on 545, 209 and 55 women respectively. Examining the
data at 13 years post-education more closely, we find no unusual character-
istics of the 62 women who marry that might explain the high proportion
of marriages. There is a high proportion of 29 and 30 year olds (36/62), but
this is in keeping with the observed trend over years post-education.

Similarly, we find no simple explanation for the sharp peak at seven years
post-education. The model does not capture this peak, even if we re-fit the
model with the data for 13 years post-education removed. We could improve
the fit by allowing the peak location to change after six years post-education,
however we are concerned that the sharp peak may be a feature specific to
this data set and we do not wish to over-fit.

On the other hand, allowing a separate effect for the early years post-
education seems quite natural, as one might expect a lower rate of marriage
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while women establish themselves in their careers. Furthermore the sample
sizes are at their highest here: over 2400 women contribute to the observed
proportions. We supplement the “in education” indicator by a second bi-
nary variable that indicates when a woman is in her first three years post-
education. This reduces the deviance by 19.5 for 1 degree of freedom (Model
15, Table 3).

The hazard and survival curves for our final model are shown in Figure
7. The left endpoint of the support of the hazard function is estimated
as 13.86 years (s.e. 0.65) and the deviance is significantly increased if this
endpoint is constrained to 15 years as in the linear model. The location of
the peak hazard varies from 21.32 years (s.e. 0.10) for the group with no
formal education to 27.60 years (s.e. 0.14) for university graduates. For a
woman born in 1950, the peak hazard of entry into marriage is 0.17 (s.e.
0.002). This probability drops slightly to 0.15 (s.e. 0.001) for a woman born
in 1960, but drops to 0.07 (s.e. 0.003) for a woman born in 1970. Clearly
this model is inappropriate for predicting the hazard of marriage for women
born after 1974 (the last year included in the analysis) as the peak hazard
would soon be near-zero. A logistic term of the form

0

(11) 1+ exp(A(p — yrb;))

may be more appropriate in this case, but it did not significantly improve
the fit for our data.

4. Summary. We have shown that restricting the support of the hazard
function to the age range represented in the sample may not be justified and
an improved model may be obtained by estimating the support of the hazard
function from the data. We have illustrated the problem of partial aliasing
that can arise from an naive extension of a linear model to a nonlinear
model, but have demonstrated how such problems can be overcome through
re-parameterization.

In addition to estimating the support of the hazard function from the
data, our proposed model has the benefit of more interpretable parameters,
allowing investigation of the effect of covariates on both the location and
scale of the maximum hazard. These features of the hazard curve are both
the most interesting from a substantive point of view (Raymo, 2003) and the
ones on which there is the most information in the data. Therefore, although
it would theoretically be possible to allow dependence of the endpoints or
the fall-off parameter on covariates, we do not recommend this.
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F1c 7. The fitted hazard curves (left) and survival curves (right) for women born in 1950,
for each level of education: Sub-primary (average 7.8 years in education), Primary (8.2
years), Lower Secondary (9.8 years), Upper Secondary (11.5 years), Post-Leaving Certifi-
cate (12.3 years), Institute of Technology (13.5 years), University (14.9 years).

The parametric form of our model does impose some restrictions on the
shape of the hazard curve. While these restrictions reduce the influence of
outliers on the model, it also means that the model does not always capture
fully the pattern of the data. Nevertheless, we believe that our proposed
model strikes a useful balance between flexibility and interpretability.
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