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Abstract. We study a particular example of a recursive distributional equation (RDE)
on the unit interval. We identify all invariant distributions, the corresponding “basins of
attraction” and address the issue of endogeny for the associated tree-indexed problem,
making use of an extension of a recent result of Warren.

April 30, 2007

1. Introduction

Let M be a random variable, taking values in N = {1, ...;∞}, and let ξ be an inde-
pendent Bernoulli(p) random variable.

We consider the following simple Recursive Distributional Equation (henceforth ab-
breviated as RDE):

(1.1) Y = ξ
M∏
i=1

Yi + (1− ξ)(1−
M∏
i=1

Yi).

Viewing (1.1) as an RDE, we seek a stationary distribution, ν, such that if Yi are iid
with distribution ν and are independent of (M, ξ), then Y also has distribution ν.

We term (1.1) the noisy veto-voter model since, if each Yi takes values in {0, 1} with
value 0 being regarded as a veto, then the outcome is vetoed unless either (a) each voter
i ‘assents’ (Yi = 1 for each 1 ≤ i ≤ M) and there’s no noise (ξ = 1) or (b) someone
vetos, but is reversed by the noise (ξ = 0).

The system was originally envisaged as modelling a representative voting system ap-
plied to a veto issue. Thus each representative votes according to their constituency if
ξ = 1 or reverses the decision if ξ = 0. An alternative interpretation is as a model for a
noisy distributed error-reporting system. Here a 0 represents an error report from a sub-
system. Thus there is an error in the system if there is an error in any sub-sytem (hence
the veto structure). Noise can reverse the binary (on-off) report from any sub-system.

In this paper, we look for solutions to the RDE (1.1) taking values in [0, 1].
As observed in Aldous and Bandhapadhyay [1], and as we shall explain in a little more

detail in section 2, we may think of (families of) solution to the RDE as being located
at the nodes of a (family) tree (for a Galton-Watson branching process). Actually, for
some purposes we shall find it more convenient to embed this family tree into T, the
deterministic tree with infinite branching factor of size ℵ0.

Key words: endogeny; veto-voter model; distributed error-reporting; basin of attraction; Galton-
Watson branching process.
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2 SAUL JACKA AND MARCUS SHEEHAN

The generic setup in such circumstances is to find distributional fixed points of the
recursion:

(1.2) Xu = f(ξu; Xui, i ≥ 1),

where Xu and ξu are respectively, the value and the noise associated with node u and ui
is the address of the ith daughter of node u.

With this model, it is of some interest not only to find solutions to the RDE (1.2) but
also to answer the question of endogeny:

‘is (Xu; u ∈ T) measurable with respect to (ξu; u ∈ T)?’

If this measurability condition holds, then X· is said to be endogenous.
In the context of the error-reporting model, endogeny represents the worst possible

situation—the top-level error report is based entirely on the noise and is uninfluenced by
the error state of low-level sub-systems. Similarly, in the veto-voter paradigm, endogeny
represents the situatrion where the voice of the ‘little man’ is completely swamped by
reversals by officials.

In this paper we will first show how to transform (1.1) into the new RDE:

(1.3) X = 1−
N∏

i=1

Xi,

for a suitable, random variable N , independent of the Xi, Then we’ll not only find all
the solutions to this RDE on [0, 1], their basins of attractions and the limit cycles of the
corresponding map on the space of distributions on [0, 1], but also give necessary and
sufficient conditions for the corresponding solutions on T to be endogenous.

The fundamental technique we use, which we believe is entirely novel, is to consider
the distribution of a solution conditional upon the noise and to identify endogeny by
showing that this conditional distribution is concentrated on {0, 1}.

2. Notation and a transformation of the RDE

2.1. Tree-indexed solutions. We seek distributions ν on [0, 1] such that if (Yi; 1 ≤ i)
are independent with distribution ν, then the random variable Y satisfying (1.1) also
has distribution ν. More precisely, writing P for the set of probability measures on [0, 1],
suppose that M has distribution d on Z+ and define the map

T ≡ Td : P → P
Then we set T (ν) to be the law of the random variable Y given by (1.1), when the Yi

are independent and identically distributed with distribution ν and are independent of
N , and seek fixed points of the map T . The existence and uniqueness of fixed points
of this type of map, together with properties of the solutions, are addressed by Aldous
and Bandhapadhyay in [1] (the reader is also referred to [2] and [4] and the references
therein). The linear and min cases are particularly well-surveyed, though we are dealing
with a non-linear case to which the main results do not apply.

A convenient generalisation of the problem is the so-called tree-indexed problem, in
which we think of the Yi as being marks associated with the daughter nodes of the root
of T , a family tree of a Galton-Watson branching process. We start at some level m
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of the random tree. Each vertex v in level m − 1 of the tree has Mv daughter vertices,
where the Mv are i.i.d. with common distribution d and has associated with it noise ξv,
where the (ξu; u ∈ T ) are iid and are independent of the (Mu; u ∈ T ).

By associating with daughter vertices independent random variables Yvi having distri-
bution ν, we see that Yv and Yvi; 1 ≤ i ≤ Mv satisfy equation (1.1).

In this setting the notion of endogeny was introduced in [1]. Loosely speaking, a
solution to the tree-indexed problem (which we will define precisely in the next section)
is said to be endogenous if it is a function of the initial data or noise alone so that no
additional randomness is present.

It is convenient to work on a tree with infinite branching factor and then think of the
random tree of the previous paragraph as being embedded within it. An initial ancestor
(in level zero), which we denote ∅, gives rise to a countably infinite number of daughter
vertices (which form the members of the first generation), each of which gives rise to an
infinite number of daughters (which form the members of the second generation), and so
on. We assign each vertex an address according to its position in the tree: the members
of the first generation are denoted 1, 2, ..., the second 11, 12, . . . 21, 22, . . . , 31, 32, . . . etc,
so that vertices in level n of the tree correspond to sequences of positive integers of length
n. We also write uj, j = 1, 2, ... for the daughters of a vertex u. We write T for the
collection of all vertices or nodes (i.e. T =

⋃∞
n=0 Nn) and think of it as being partitioned

by depth, that is, as being composed of levels or generations, in the way described and
define the depth function | · | by |u| = n if vertex u is in level n of the tree. Associated to
each of the vertices u ∈ T are iid random variables Mu with distribution d, telling us the
(random) number of offspring produced by u. The vertices u1, u2, ..., uMu are thought
of as being alive (relative to ∅) and the {uj : j > Mu} as dead. We can now write our
original equation as a recursion on the vertices of T:

(2.1) Yu = ξu

Mu∏
i=1

Yui + (1− ξu)(1−
Mu∏
i=1

Yui), u ∈ T.

The advantage of the embedding now becomes clear: we can talk about the RDE at any
vertex in the infinite tree and yet, because the product only runs over the live daughters
relative to u, the random Galton-Watson family tree is encoded into the RDE as noise.

2.2. The transformed problem. It is a relatively simple maer to transform the RDE
(2.1) into the following, simpler, RDE:

(2.2) Xu = 1−
Nu∏
i=1

Xui, u ∈ T.

To do so, first note that if we colour red all the nodes, v, in the tree T for which ξv = 0
then it is clear that we may proceed down each line of descent from a node u until we hit
a red node. In this way, we either ”cut” the tree at a collection of nodes which we shall
view as the revised family of u, or not, in which case u has an infinite family. Denote
this new random family size by Nu then

Yu = 1−
Nu∏
i=1

Yûi,
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if u is red, where ûi denotes the ith red node in the revised family of u. Now condition
on node u being red, then with this revised tree we obtain the RDE (2.2). It is easy to
see that if the original tree has family size PGF G, then the family size in the new tree
corresponds to the total number of deaths in the original tree when it is independently
thinned, with the descendants of each node being pruned with probability q. It is easy
to obtain the equation for the PGF, H, of the family size Nu on the new tree:

(2.3) H(z) = G(pH(z) + qz).

3. The discrete and conditional probability solutions

We begin with some notation and terminology. We say that the random variables
in (2.1) are weakly stationary if Xu has the same distribution for every u ∈ T. The
stationarity of the Xu corresponds to Xu having as distribution an invariant measure for
the distributional equation (2.2).

Definition 3.1. We say that the process (or collection of random variables) X =
(Xu; u ∈ T) is a tree-indexed solution to the RDE (2.2) if

(1) for every n, the random variables (Xu; |u| = n) are mutually independent and
independent of (Nv; |v| ≤ n− 1);

(2) for every u ∈ T, Xu satisfies

Xu = 1−
Nu∏
i=1

Xui,

and the (Xu; u ∈ T) are weakly stationary.

Notice that these conditions determine the law of X. This means that a tree-indexed
solution is also stationary in the strong sense, that is, a tree-indexed solution is “transla-
tion invariant” with respect to the root (if we consider the collection Xv = (Xu; u ∈ Tv),
where Tv is the sub-tree rooted at v, then Xv has the same distribution as X for any
v ∈ T). Furthermore, we say that such a solution is endogenous if it is measurable
with respect to the random tree (i.e. the collection of family sizes) (Nu; u ∈ T). As we
remarked in the introduction, in informal terms this means that the solution depends
only on the noise with no additional randomness coming from the boundary of the tree.
See [1] for a thorough discussion of endogeny together with examples.

The following is easy to prove.

Lemma 3.2. Let (Xu; u ∈ T) be a tree-indexed solution to the RDE (2.2). Then the
following are equivalent:

(1) X is endogenous;
(2) X∅ is measurable with respect to σ(Nu; u ∈ T);
(3) Xu is measurable with respect to σ(Nv; v ∈ T) for each u ∈ T;
(4) Xu is measurable with respect to σ(Nv; v ∈ Tu) for each u ∈ T.

Remark 3.3. Notice that if a tree-indexed solution to (2.2) is endogenous then property
(1) of a tree-indexed solution is automatic: for every u ∈ T, Xu is measurable with
respect to σ(Nv; v ∈ Tu) and hence is independent of (Nv; |v| ≤ n− 1).
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Lemma 3.4. There exists a unique probability measure on {0, 1} which is invariant
under (1.3).

Proof. Let X be a random variable whose distribution is concentrated on {0, 1} and
which is invariant under (1.3). Let µ1 = P(X = 1). We have then P(X = 0) = 1 − µ1

and

P(Xi = 1; for i = 1, ..., N) =
∑

n

P(Xi = 1; for i = 1, ..., n|N = n)P(N = n) = H(µ1).

Now, X = 0 if and only if Xi = 1 for i = 1, ..., N . Hence a necessary and sufficient
condition for invariance is

(3.1) 1− µ1 = H(µ1).

Now let

K(x)
def
= H(x) + x− 1.

Since H is a generating function and H(0) = 0, we have K(0) = −1 < 0 and K(1) > 0
so that K is guaranteed to have a zero in (0, 1), and it is unique since the mapping
x 7→ H(x) + x is strictly increasing. �

We can now deduce that there exists a tree-indexed solution on {0, 1}T to the RDE
(2.2) by virtue of Lemma 6 of [1].

Theorem 3.5. Let S = (Su; u ∈ T) be a tree-indexed solution on {0, 1}T to the RDE
(2.2) (i.e. the Su have the invariant distribution on the two point set {0, 1}), which we
will henceforth refer to as the discrete solution. Let Cu = P(Su = 1|Nv; v ∈ T). Then
C = (Cu; u ∈ T) is the unique endogenous tree-indexed solution to the RDE.

Proof. To verify the relationship between the random variables, we have, writing N =
(Nu; u ∈ T) and Nu = (Nv; v ∈ Tu),

Cu = P(Su = 1|N ) = E[1(Su=1)|N ] = E[Su|N ]

= E[1−
Nu∏
i=1

Sui|N ]

= 1− E[
Nu∏
i=1

Sui|N ]

= 1−
Nu∏
i=1

E[Sui|N ]

= 1−
Nu∏
i=1

Cui,

since the Sui are independent and N is strongly stationary. To verify stationarity, let

Cn
u = P(Su = 1|Nv; |v| ≤ n).
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Then the sequence (Cn
u )n≥1 is a uniformly bounded martingale and so converges almost

surely and in L2 to a limit which must in fact be Cu. Now, we can write Cn
u as

Cn
u = 1−

Nu∏
i1=1

Cn
ui1

(3.2)

= 1−
Nu∏

i1=1

1−
Nui1∏
i2=1

(
...(1−

Nui1i2...in−2−|u|∏
in−1−|u|=1

(1− (µ1)
Nui1i2...in−1−|u| ))...

)
→ Cu a.s..

This corresponds to starting the distributional recursion at level n of the tree with unit
masses at µ1. Now, (Cn

u ; u ∈ T) is stationary since each Cn
u is the same function of

Nu, which are themselves stationary. Since Cu is the (almost sure) limit of a sequence
of stationary random variables, it follows that C = (Cu; u ∈ T) is stationary. Notice
that the conditional probability solution, C, is automatically endogenous since Cu is
σ(Nv; v ∈ Tu)-measurable for every u ∈ T and hence (Cu; |u| = n) is independent of
(Nu; |u| ≤ n− 1). The independence of the collection (Cu; |u| = n) follows from the fact
that the ((Su, Nu); |u| = n) are independent .

Finally, notice that if (Lu; u ∈ T) solve the RDE (2.2) and are integrable then

m
def
= ELu must satisfy (3.1) and hence must equal µ1. It now follows, that Ln

u

def
=

E[Lu|Nv; |v| ≤ n] = Cn
u , since at depth n, Ln

u = µ1 so that Ln
u also satisfies equation (3.2)

and hence must equal Cn
u . Now Ln

u → Lu a.s. and so, if L is endogenous then it must
equal C. This establishes that C is the unique endogenous solution. �

Remark 3.6. Notice that if S is endogenous then C = S almost surely so that if S and
C do not coincide then S cannot be endogenous.

4. The moment equation and uniqueness of solutions

Many of the results proved in this paper rely heavily on the analysis of equation (4.1)
below.

Theorem 4.1. Any invariant distribution for the RDE (2.2) must have moments (mn)n≥0

satisfying the equation

(4.1) H(mn)− (−1)nmn =
n−1∑
k=0

(n
k)(−1)kmk,

where m
1+1/n
n ≤ mn+1 ≤ mn and m0 = 1.

Proof. Let X be a random variable whose distribution is invariant for the RDE and write
mk = E[Xk]. Applying the RDE (2.2) to (1−X)n we have

E[(1−X)n] = E[
N∏

i=1

Xn
i ] = H(mn).

CRiSM Paper No. 07-17, www.warwick.ac.uk/go/crism



AN RDE ON THE UNIT INTERVAL 7

On the other hand, by expanding (1−X)n we obtain

E[(1−X)n] = E[
n∑

k=0

(n
k)(−1)kXk

i ]

=
n∑

k=0

(n
k)(−1)kmk,

so that

H(mn) =
n∑

k=0

(n
k)(−1)kmk.

The condition mn+1 ≤ mn follows from the fact that the distribution is on [0, 1]. The
other condition follows from the monotonicity of Lp norms. �

As an example, if the random variable N has generating function H(x) = x2 (i.e.
N ≡ 2), the moment equation tells us that

m2
1 + m1 − 1 = 0

so that m1 = (
√

5− 1)/2. For m2 we have

m2
2 −m2 − (2−

√
5) = 0

so that m2 = m1 or m2
1 and so on. In fact the two possible moment sequences turn out

to be m0 = 1, mn = (
√

5 − 1)/2 for n ≥ 1 or m0 = 1, m1 = (
√

5 − 1)/2, mn = mn
1 for

n ≥ 2.
We suppose from now on that H(0) = 0 and H is strictly convex (so that P(2 ≤ N <
∞) > 0).
We now state the main result of the paper.

Theorem 4.2. Let S = (Su; u ∈ T) and C = (Cu; u ∈ T) be, respectively, the discrete
solution and corresponding conditional probability solution to the RDE (2.2). Let µ1 =
E[Su]. Then

(1) S is endogenous if and only if H ′(µ1) ≤ 1;
(2) C is the unique endogenous solution;
(3) the only invariant distributions for the RDE (2.2) are those of S∅ and C∅.

The proof of the theorem relies on several lemmas. For (1) we extend a result of
Warren [5] by first truncating N and then take limits.

First however, we give some consequences of the moment equation (4.1):

Lemma 4.3. There are at most two moment sequences satisfying (4.1). Moreover, the
first moment m1 is unique and equal to µ1, 1 > m1 > 1

2
and in the case that H ′(m1) ≤ 1

there is only one moment sequence satisfying (4.1).

Proof. Uniqueness of µ1 (the root of f(m1) = 1, where f : t 7→ H(t) + t) has already
been shown in Lemma 3.4. Now set

g(x) = H(x)− x,

then g is strictly convex on [0,1] with g(0) = 0 and g(1−) = H(1−)− 1 ≤ 0. Thus there
are at most two solutions of g(x) = 1− 2m1. Since m1 itself is a solution, it follows that
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1 − 2m1 ≤ 0 and there is at most one other solution. There is another solution with
m2 < m1 if and only if m1 is greater than µ∗, the argmin of g, and this is clearly true if
and only if g′(m1) > 0 ⇔ H ′(m1) > 1.

Suppose that this last inequality holds, so that there is a solution, m2, of g(x) = 1−2m1

with m2 < µ∗ < m1. There is at most one solution of

f(x) = 1− 3m1 + 3m2,

and if it exists take this as m3. Similarly, there is at most one solution of g(x) =
1− 4m1 + 6m2 − 4m3 to the left of µ∗ and this is the only possibility for m4. Iterating
the argument, we obtain at most one strictly decreasing sequence m1, . . ..

�

4.1. The case of a bounded branching factor. Recall that the random family size
N may take the value ∞.

Lemma 4.4. Define Nn = min(n, N) and denote its generating function by Hn. Then
Nn is bounded and

(1) Hn(s) ≥ H(s) for all s ∈ [0, 1];
(2) Hn → H uniformly on compact subsets of [0, 1);
(3) H ′

n → H ′ uniformly on compact subsets of [0, 1).

We leave the proof to the reader.
The following lemma will be used in the proof of Theorem 4.7.

Lemma 4.5. Let C
(n)
u = P(Su = 1|Nn

u ; u ∈ T) denote the conditional probability solution

for the RDE (2.2) with N replaced by Nn. Let µk
n = E[(C

(n)
u )k] denote the corresponding

kth moment and let µk = E[(Cu)
k]. Let µ∗n denote the argmin of gn(x)

def
= Hn(x)−x and

let µ2
n,m denote that root of the equation,

(4.2) gn(x) = 1− µ1
m − µ1

n,

which lies to the left of µ∗n (i.e. the lesser of the two possible roots). Then µk
n → µk for

k = 1, 2 and µ2
n,m → µ2 as min(n,m) →∞.

Proof. For the case k = 1, consider the graphs of the functions Hn(x) + x and H(x) + x.
We have Hn(x) ≥ H(x) for all x ≥ 0 and for all n ≥ 1 so that µ1

n is bounded above by
µ1 for every n, since µ1

n and µ1 are respectively the roots of

Hn(x) + x = 1 and H(x) + x = 1.

Furthermore, since Hn decreases to H pointwise on [0, 1), it follows that the µ1
n are

increasing. The µ1
n must therefore have a limit, which we will denote µ̂.

It follows from Lemma 4.4 that, since µ1 < 1, Hn(µ1
n) → H(µ̂). Hence

1 = Hn(µ1
n) + µ1

n → H(µ̂) + µ̂,

so that µ̂ is a root of H(x) + x = 1. It follows, by uniqueness, that µ̂ = µ1.

For the case k = 2 we consider the graphs of gn(x) and g(x). We first show that
µ2

n → µ2 and then that µ2
n,m → µ2 as min(n, m) →∞.
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To show that µ2
n → µ2 we argue that µ2 is the only limit point of the sequence (µ2

n)n≥1.
Notice that, since µ1

n → µ1 and µ2
n satisfies

Hn(µ2
n)− µ2

n = 1− 2µ1
n,

the only possible limit points of the sequence (µ2
n)n≥1 are µ1 and µ2. Now, either µ1 ≤ µ∗,

in which case µ1 = µ2 or, µ2 ≤ µ∗ < µ1 < 1. In the latter case, it is easy to show that
µ∗n → µ∗ (by uniform continuity of g′n) and so, since µ1

n → µ1 it follows that

µ1
n > µ∗n,

for sufficiently large n, and hence

µ2
n ≤ µ∗n,

for sufficiently large n. In either case, the only possible limit point is µ2; since the µ2
n

are bounded they must, therefore, converge to µ2.

We conclude the proof by showing that µ2 is the only limit point of the sequence (µ2
n,m).

Since µ1
m, µ1

n → µ1 as min(n,m) → ∞ and µ2
n,m satisfies (4.2), the only possible limit

points of the sequence (µ2
n,m)m,n≥1 are µ1 and µ2.

Once more, consider the two cases:

µ1 ≤ µ∗ and µ1 > µ∗.

In the first case, µ1
n = µ2

n, for sufficiently large n, so that µ2 is the only limit point; in
the second case

µ1 = lim inf
n

µ1
n > µ∗ = lim sup

n
µ∗n,

and since µ2
n,m ≤ µ∗n, µ1 cannot be a limit point. Thus, in either case, µ2 is the unique

limit point and hence is the limit.
�

Remark 4.6. Notice that the method of the proof can be extended to prove that µk
n → µk

for any k.

Theorem 4.7. C
(n)
u converges to Cu in L2.

Proof. Let n ≥ m. Define Em,n = E[(C
(m)
u − C

(n)
u )2]. Expanding this, we obtain

Em,n = µ2
m + µ2

n − 2rm,n,

where rm,n = E[C
(m)
u C

(n)
u ]. On the other hand, by applying the RDE (2.2) once, we

obtain

Em,n = E[(

Nn
u∏

i=1

C
(n)
ui −

Nm
u∏

i=1

C
(m)
ui )2]

= Hm(µ2
m) + Hn(µ2

n)− 2E[

Nm
u∏

i=1

C
(m)
ui

Nn
u∏

i=1

C
(n)
ui ].

We can bound Em,n above and below as follows: since each Ck
ui is in [0,1] omitting terms

from the product above increases it, while adding terms decreases it. Thus, since n ≥ m,
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Nn
u ≥ Nm

u , and so replacing Nn
u by Nm

u in the product above increases it while replacing
Nm

u by Nn
u decreases it. Thus we get:

Hm(µ2
m) + Hn(µ2

n)− 2Hm(rm,n) ≤ Em,n ≤ Hm(µ2
m) + Hn(µ2

n)− 2Hn(rm,n).

Using the upper bound we have

2Hn(rm,n) ≤ Hm(µ2
m) + Hn(µ2

n)− Em,n = Hm(µ2
m) + Hn(µ2

n)− µ2
m − µ2

n + 2rm,n.

The moment equation (4.1) tells us that Hm(µ2
m)−µ2

m = 1−2µ1
m and that Hn(µ2

n)−µ2
n =

1− 2µ1
n. Hence

2Hn(rm,n) ≤ 1− 2µ1
m + µ2

m + 1− 2µ1
n + µ2

n − µ2
m − µ2

n + 2rm,n,

so that, on simplifying,
Hn(rm,n)− rm,n ≤ 1− µ1

m − µ1
n.

Recall that the equation Hn(x) − x = 1 − µ1
m − µ1

n has (at most) two roots, the lesser
of which we denoted µ2

m,n. Let µ1
m,n be the other (larger) root (or 1, if the second root

does not exist). Then, since Hn(x) − x is convex, µ2
n,m ≤ rm,n ≤ µ1

n,m for all m, n and

hence lim infm→∞ rm,n ≥ µ2 since µ2
n,m → µ2 by Lemma 4.5.

On the other hand, Holder’s inequality tells us that rm,n ≤
√

µ2
mµ2

n and so it follows that
lim supm→∞ rm,n ≤ µ2 since µ2

m, µ2
n → µ2 by Lemma 4.5. Hence rm,n → µ2 as n → ∞

and
Em,n → lim

m,n→∞
µ2

m + µ2
n − 2rm,n = µ2 + µ2 − 2µ2 = 0,

showing that (C
(n)
u ) is Cauchy in L2. It now follows, by the completeness of L2, that C

(n)
u

converges. Since C
(n)
u is σ(N)-measurable, the limit Lu of the C

(n)
u must also be σ(N)-

measurable for each u and the collection (Lui)i≥1 must be independent and identically
distributed on [0,1], with common mean µ1 < 1. Moreover, by strong stationarity of the
C(n)s, the Lus are strongly stationary.

To verify that L∅ is the conditional probability solution, notice that

1EnC
(n)
∅ = (1−

Nn
∅∏

i=1

C
(n)
i )1En

= (1−
N∅∏
i=1

C
(n)
i )1En ,

where En = {N∅ ≤ n}. As n → ∞, En ↑ E
def
= (N < ∞); furthermore, since the C

(n)
i

converge in L2, they do so in probability. We may assume without loss of generality,

therefore, that C
(n)
i converges almost surely for each i so that, in the limit,

(4.3) 1EL∅ = lim 1EnC
(n)
∅ = lim 1En(1−

N∅∏
i=1

C
(n)
i ) = 1E(1−

N∅∏
i=1

Li) a.s.

It is easy to show that
∞∏
i=1

Li = 0 a.s.
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while

1EcC
(n)
∅ = 1Ec(1−

(n)∏
i=1

C
(n)
i ) → 1Ec a.s.,

so that

(4.4) 1EcL∅ = lim 1EcC
(n)
∅ = 1Ec .

Thus adding equations (4.3) and (4.4) we see that

L∅ = (1−
N∅∏
i=1

Li),

and so L is an endogenous solution to the RDE. It follows from uniqueness that L must
be the conditional probability solution C. �

4.2. Proof of Theorem 4.2. We are now nearly in a position to finish proving Theorem
4.2. To recap, we have shown in Lemma 4.3 that there are at most two distributions
which solve the RDE (1.3), corresponding to the ‘moment sequences’ µ1, µ1, . . . and
µ1, µ2, . . .. The first of these is the moment sequence corresponding to the distribution
on {0, 1} with mass µ1 at 1. The second may or may not be a true moment sequence and
is equal to the first if and only if H ′(µ1) ≤ 1. Moreover, there is only one endogenous
solution, and this corresponds to the conditional probability solution C, thus if we can
show that C is not discrete (i.e. is not equal to S) whenever H ′(µ1) > 1 then we will
have proved the result.

We need to recall some theory from [5]. Consider the recursion

ξu = φ(ξu0, ξu1, ..., ξu(d−1), εu), u ∈ Γd,

where the ξu take values in a finite space S, the “noise” terms εu take values in a space
E, Γd is the deterministic d-ary tree and φ is symmetric in its first d− 1 arguments. We
suppose that the εu are independent with common law ν and that there exists a measure
π which is invariant for the above recursion (i.e. π is a solution of the associated RDE).
Let u0 = ∅, u1, u2, ... be an infinite sequence of vertices starting at the root, with un+1

being a daughter of un for every n. For n ≤ 0, define ξn = ξu−n . Then, under the
invariant measure π, the law of the sequence (ξn; n ≤ 0), which, by the symmetry of
φ does not depend on the choice of sequence of vertices chosen, is that of a stationary
Markov chain. Let P 2 be the transition matrix of a Markov chain on S2, given by

P 2((x1, x
′
1), A×A′) =

∫
S

∫
E

1(φ(x1, x2, ..., xd, z) ∈ A, φ(x′1, x2, ..., xd, z) ∈ A′)dν(z)dπ(x2)...dπ(xd).

Let P− be the restriction of P 2 to non-diagonal terms and ρ the Perron- Frobenius eigen-
value of the matrix corresponding to P−.

The following theorem gives a necessary and sufficient condition for endogeny of the
tree-indexed solution corresponding to µ. This is a small generalisation of Theorem 1 of
[5]
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12 SAUL JACKA AND MARCUS SHEEHAN

Theorem 4.8. The tree-indexed solution to the RDE associated with

ξu = φ(ξu0, ξu1, ..., ξu(d−1), εu),

corresponding to the invariant measure π, is endogenous if dρ < 1; it is non-endogenous
if dρ > 1. In the critical case dρ = 1, let H0 be the collection of L2 random variables
measurable with respect to ξ∅ and let K denote the L2 random variables measurable with
respect to (εu; u ∈ Γd). Then endogeny holds in this case provided P− is irreducible and
H0 ∩ K⊥ = {0}. See [5] for full details.

Theorem 4.9. Consider the RDE

(4.5) Xu = 1−
Nn

u∏
i=1

Xui.

Then, by Lemma 3.4, there exists an invariant probability measure on {0, 1} for (4.5).
Let µ1

n denote the probability of a 1 under this invariant measure. Then the corresponding
tree-indexed solution is endogenous if and only if H ′

n(µ1
n) ≤ 1.

Proof. Let N∗ = ess sup N < ∞ be a bound for N . We can then think of the random
tree with branching factor N as being embedded in a N∗-ary tree. Each vertex has N∗

daughter vertices and the first N of these are thought of as being alive (the remaining
being dead). In this context our RDE reads

X = 1−
∏

live u

Xu.

We now compute the transition probabilities from the previous theorem. Consider first
the transition from (0, 1) to (1, 0). The first coordinate automatically maps to 1 and the
second maps to 0 provided all of the inputs not on the distinguished line of descent are
equal to 1. The conditional probability of the vertex on the distinguished line of descent
being alive is N/N∗ since there are N∗ vertices, of which N are alive. The probability
of the remaining N − 1 vertices each taking value 1 is (µ1

n)N−1 and so the probability of
a transition from (0, 1) to (1, 0), conditional on N , is just

1(N≥1)
(µ1

n)N−1N

d
.

Taking expectations, the required probability is

E[1(N≥1)
(µ1

n)N−1N

N∗ ] =
E[1(N≥1)N(µ1

n)N−1]

N∗ =
H ′

n(µ1
n)

N∗ .

The probability of a transition from (1, 0) to (0, 1) is the same by symmetry. Hence P−

is given by

P− =

(
0 H′

n(µ1
n)

N∗
H′

n(µ1
n)

N∗ 0

)
,

and the Perron-Frobenius eigenvalue ρ is H′
n(µ1

n)
N∗ . By Theorem 4.8, the criterion for en-

dogeny is N∗ρ ≤ 1, i.e. H ′
n(µ1

n) ≤ 1, provided that, in the critical case H ′
n(µ1

n) = 1, we
verify the stated non-degeneracy conditions.

CRiSM Paper No. 07-17, www.warwick.ac.uk/go/crism



AN RDE ON THE UNIT INTERVAL 13

It is easily seen that P− is irreducible. For the other criterion, let X ∈ H0 ∩ K⊥ so
that X = f(X∅) for some L2 function f and E[XY ] = 0 for all Y ∈ K. Taking Y = 1,
we obtain E[X] = 0. Writing X as

X = a1(X∅=1) + b1(X∅=0),

where a, b are constants, we obtain

X = a1(X∅=1) −
aµ1

n

1− µ1
n

11(X∅=0).

For convenience we will scale by taking a = 1 (we assume that X 6= 0):

X = 1(X∅=1) −
µ1

n

1− µ1
n

1(X∅=0).

Now, for each k take Yk = 1(N∅=k) ∈ K. Then

E[XYk] = E[1(N∅=k)(1(X∅=1) −
µ1

n

1− µ1
n

1(X∅=0))]

= P(N = k)[1− (µ1
n)k − (µ1

n)k+1

1− µ1
n

]

= P(N = k)(1− (µ1
n)k

1− µ1
n

).

Now if we sum this expression over k we get 1− Hn(µ1
n)

1−µ1
n

= 0. So either each term in the

sum is zero or one or more are not. But at least two of the probabilities are non-zero

by assumption (at least for sufficiently large n) whilst the term (1 − (µ1
n)k

1−µ1
n
) can only

disappear for at most one choice of k. Hence at least one of the terms is non-zero and
this contradicts the assumption that X ∈ H0 ∩ K⊥. �

Proof of the remainder of Theorem 4.2 We prove that H ′(µ1) > 1 implies S is not
endogenous so that C cannot equal S.

By Theorem 4.9 we know that the RDE (4.5) has two invariant distributions if and only

if H ′
n(µ1

n) > 1. But we know that C
(n)
u converges to Cu in L2 and hence µ2

n → µ2 6= µ1 so
that Su and Cu have different second moments. It now follows that Su does not have the
same distribution as Cu. Since [0, 1] is bounded, this sequence of moments determines
a unique distribution which is therefore that of Cu: see Theorem 1 of Chapter VII.3 of
Feller [3] �

5. Basins of attraction

Now we consider the basin of attraction of the endogenous solution. That is, we ask
for what initial distributions does the corresponding solution at root, X∅, converge (in
law) to the endogenous solution.
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14 SAUL JACKA AND MARCUS SHEEHAN

Definition 5.1. Let ς be the law of the endogenous solution. Suppose that we insert
independent, identically distributed random variables with law ν at level n of the tree and
apply the RDE to obtain the corresponding solution Xn

u (ν) (with law T n−|u|(ν)) at vertex
u.

The basin of attraction B(π) of any solution is given by

B(π) = {ν ∈ P : T n(ν)
weak∗→ π},

which is, of course, equivalent to the set of distributions ν for which Xn
u (ν) converges in

law to a solution X of the RDE, with law π.

5.1. The unstable case: H ′(µ1) > 1.

Lemma 5.2. Suppose that H ′(µ1) > 1. Then Xn
u (ν)

L2

→ Cu, the endogenous solution,
for any ν with mean µ1 other than the discrete measure on {0, 1}.

Proof. Let Ek = E[Xn
u (ν)2], where k = n− |u|, and let rk = E[CuX

n
u (ν)]. Then

E[(Xn
u (ν)− Cu)

2] = Ek − 2rk + µ2.

Now,

Ek = E[(1− 2
Nu∏
i=1

Xn
ui(ν) +

Nu∏
i=1

Xn
ui(ν)2)]

= 1− 2H(µ1) + H(Ek−1).

This is a recursion for Ek with at most two fixed points (recall that the equation
H(x)−x = constant has at most two roots). Recalling the moment equation (4.1), these
are easily seen to be µ1 and µ2, the first and second moments of the endogenous solution.
We have assumed that ν is not the discrete distribution and so its second moment (i.e.
E0) must be strictly less than µ1. Now, under the assumption that H ′(µ1) > 1, µ1 and
µ2 lie either side of the minimum µ∗ of H(x) − x and H ′(µ∗) = 1 so that H ′(µ2) < 1.
Hence µ2 is the stable fixed point and it now follows that Ek converges to µ2.

The recursion for rk is essentially the same as that for Ek:

µ2 − rk = H(µ2)−H(rk−1).

This has µ1 and µ2 as fixed points and, since

r0 = E[CuXu(ν)] ≤
√

E[C2
u]E[Xu(ν)2] <

√
µ1µ1 = µ1,

we are in the same situation as with Ek. That is, we start to the left of µ1 and, because
H ′(µ1) > 1, we conclude that µ1 is repulsive and it follows that rk converges to µ2 under
the assumptions of the lemma. Hence

E[(Xn
u (ν)− Cu)

2] = Ek − 2rk + µ2 → 0.

�

Theorem 5.3. Let δ denote the discrete distribution on {0, 1} with mean µ1. Then

B(ς) = {ν ∈ P :

∫
xdν(x) = µ1 and ν 6= δ}.
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That is, B(ς) is precisely the set of distributions on [0, 1] with the correct mean (except
the discrete distribution with mean µ1).

Proof. We have already shown that

{ν ∈ P :

∫
xdν(x) = µ1 and ν 6= δ)} ⊆ B(ς).

Since the identity is bounded on [0, 1], we conclude that

EXn
u (ν) → ECu, if ν ∈ B(ς),

so that ν ∈ B(ς) only if the mean of T n(ν) converges to µ1. From the moment equation
(4.1), the mean of Xn

u (ν) is obtained by iterating the map f n times, starting with
the mean of ν. This mapping has a unique fixed point µ1 and, since H ′(µ1) > 1, it is
repulsive. It follows that the only way we can have convergence in mean is if we start
with the correct mean, that is, if ν has mean µ1. Hence

B(ς) ⊆ {ν ∈ P :

∫
xdν(x) = µ1 and ν 6= δ}.

�

5.2. The stable case: H ′(µ1) ≤ 1.

Theorem 5.4. Let b(µ1) be the basin of attraction of µ1 under the iterative map for the
first moment, f : t 7→ 1−H(t). Then

B(ς) = {ν ∈ P :

∫
xdν(x) ∈ b(µ1)}.

Consider once again E[(Xn
u (ν)− Cu)

2]. Let mθ
k = EXn

u (ν)θ, where k = n− |u|. Then

m2
k = E(1− 2

Nu∏
i=1

Xn
ui(ν) +

Nu∏
i=1

Xn
ui(ν)2)

= 1− 2H(m1
k−1) + H(m2

k−1).

Recalling that rk = E[CuX
n
u (ν)], we have

rk = E[(1−
Nu∏
i=1

Cui)(1−
Nu∏
i=1

Xn
ui(ν))]

= E[(1−
Nu∏
i=1

Cui −
Nu∏
i=1

Xn
ui(ν) +

Nu∏
i=1

CuiX
n
ui(ν))]

= 1−H(µ1)−H(m1
k−1) + H(rk−1).

We now turn our attention to analysing the dynamics of m2
k and rk. We will concentrate

on the equation for m2
k as the equation for rk is essentially the same. By assumption,

m1
k converges to µ1 and so we may approximate m1

k, for k ≥ kε (say), by µ1± ε, for some
small ε > 0.
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16 SAUL JACKA AND MARCUS SHEEHAN

Lemma 5.5. The trajectory lk of the dynamical system defined by the recursion

lk = 1− 2H(µ1 + ε) + H(lk−1), lkε = m2
kε

,

is a lower bound for m2
k for all k ≥ kε, where kε is a positive integer chosen so that

|m1
k − µ1| < ε, for k ≥ kε.

The proof is obvious.

Lemma 5.6. Let

fε(x) = 1− 2H(µ1 + ε) + H(x), x ∈ [0, 1].

Then, for sufficiently small ε > 0, fε has a unique fixed point µ1(ε) for which µ1(ε) < µ∗.
Moreover, as ε → 0, µ1(ε) → µ1.

Proof. This follows from uniform continuity, the fact that H(µ1 + ε) < H(µ1) and the
the fact that H ′(µ1) ≤ 1 ⇒ µ1 ≤ µ∗. �

Lemma 5.7. lk converges to µ1(ε).

Proof. We have lk = fk−kε
ε (lkε) and so we need only verify that lkε is in the basin of

attraction of µ1(ε) and that µ1(ε) is stable. We know that

fε(µ
1 + ε) < µ1 + ε

since 1−H(µ1+ε) < 1−H(µ1) = µ1 and so it must be the case that µ1+ε ∈ (µ1(ε), p(ε)).
It now follows that lkε < p(ε) since lkε ≤ m1

kε
< µ1 + ε. In the strictly stable case

H ′(µ1) < 1, the stability of µ1(ε) follows from the fact that µ1(ε) converges to µ1 as
ε tends to zero (by the previous lemma) and therefore µ1(ε) can be made arbitrarily
close to µ1 by choosing ε to be sufficiently small. This means that for sufficiently small
ε, H ′(µ1(ε)) < 1 by the continuity of H ′. In the critical case H ′(µ1) = 1, we have
µ1(ε) < µ1, so that (by strict convexity) H ′(µ1(ε)) < 1. In either case it now follows that
fk−kε

ε (lkε) converges to µ1(ε). �

Proof of Theorem 5.4 The preceding lemmas tell us that

lim inf
k→∞

m2
k ≥ lim

k→∞
lk = µ1(ε).

Letting ε tend to zero, we obtain

lim inf
k→∞

m2
k ≥ µ1.

The fact that m2
k ≤ m1

k for every k gives us the corresponding inequality for the lim sup:

lim sup
k→∞

m2
k ≤ lim

k→∞
m1

k = µ1.

We conclude that m2
k converges to µ1.

Now,

E[(Xn
u (ν)− Cu)]

2 = m2
k − 2rk + µ2,
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so that E[(Xn
u (ν)−Cu)

2] → 0, remembering that in the stable case the discrete solution
and endogenous solution coincide (i.e. µ1 = µ2). We have now shown that

{ν ∈ P :

∫
xdν(x) ∈ b(µ1)} ⊆ B(ς),

and the necessity for convergence in mean ensures that we have the reverse inclusion.
This completes the proof. �

6. Outside the basin of attraction of the endogenous solution

In this section we examine what happens if we iterate distributions with mean outside
the basin of attraction of the endogenous solution.

Definition 6.1. Recall that a map f has an n-cycle starting from p if fn(p) = p, where
fn denotes the n-fold composition of f with itself.

It is easily seen that the map for the first moment f : t 7→ 1−H(t) can have only one-
and two-cycles. This is because the iterated map f (2) : t 7→ 1−H(1−H(t)) is increasing
in t and hence can have only one-cycles. Notice also that the fixed points (or one-cycles)
of f (2) come in pairs: if p is a fixed point then so too is 1−H(p).

We consider the iterated RDE:

(6.1) X = 1−
N∅∏
i=1

(1−
Ni∏
j=1

Xij).

This corresponds to the iterated map on laws on [0,1], T 2, where T is given at the
beginning of section 2. We denote a generic two-cycle of the map f (2) by the pair
(µ1

+, µ1
−).

Theorem 6.2. Suppose that (µ1
+, µ1

−) is a two-cycle of f (2). There are at most two
solutions of the RDE (6.1) with mean µ1

+. There is a unique endogenous solution C+,
and a (possibly distinct) discrete solution, S+, taking values in {0, 1}. The endogenous
solution C+ is given by P (S+ = 1|T) (just as in the non-iterated case). The solutions
are distinct if and only if H ′(µ1

−)H ′(µ1
+) > 1, i.e. if and only if µ1

+ (or µ1
−) is an unstable

fixed point of f (2).

Proof. This uses the same method as the proofs of results in section 4.
First, it is clear that S+ is a solution to (6.1), where P (S+ = 1) = µ1

+ = 1−P (S+ = 0).
Now take interleaved tree-indexed solutions to the RDE on the tree T, corresponding
(on consecutive layers) to mean µ1

+ and µ1
−. Then we define C+

(n) = P (S+
∅ = 1|Nv; |v| ≤

2n) = 1−
∏N∅

i1=1(1−
∏Ni1

i2=1(...(1− (µ1
+)Ni1i2...i2n−1 )...)). It follows that C+

(n) converges a.s.

and in L2 to C+ and that this must be the unique endogeneous solution (since if Z is
any solution with mean µ1

+ then E[Z∅|Nv; |v| ≤ 2n] = C+
(n)).

As in Lemma 4.3, we establish that there are at most two solutions by showing that
there are at most two possible moment sequences for a solution and that if µ1

+ is stable

(for f (2)) then the only possible moment sequence corresponds to the discrete solution
S+.
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To do this, note that, denoting a possible moment sequence starting with first moment
µ1

+ by (µk
+), we have

(6.2) H(µk
−) = H(

k∑
j=0

(−1)j

(
k

j

)
H(µj

+)) =
k∑

j=0

(−1)j

(
k

j

)
µj

+.

Then we look for solutions of

(6.3) H(
k−1∑
j=0

(−1)j

(
k

j

)
H(µj

+) + (−1)kH(t)) =
k−1∑
j=0

(−1)j

(
k

j

)
µj

+ + (−1)kt,

in the range where the argument of H on the lefthand side is non- negative and less than
1. In this range H is increasing and convex so there are at most two solutions.

Suppose that µ1
+ is a stable fixed point then the unique moment sequence is constant,

since the other solution of

g(t)
def
= H(1− 2H(µ1

+) + H(t))− (1− 2µ1
+ + t) = 0

must be greater than µ1
+ (because g′(µ1

+) = H ′(µ1
+)H ′(µ1

−)− 1 ≤ 0).
If µ1

+ is unstable, then there are, potentially two solutions for µ2
+, one of which is µ1

+.
Taking the other potential solution, and seeking to solve (6.3), one of the solutions will
give a value for µk

− greater than µ∗ > µ2
− which is not feasible, so there will be at most

one sequence with µ2
+ 6= µ1

+.
Now, as in the proof of Theorem 4.9, we can show that, if µ1

+ is unstable then, in the
corresponding RDE with branching factor truncated by n, the two solutions to the RDE
are distinct for large n, and the endogenous solution converges to C+ in L2 as n → ∞.
It follows that there are two distinct solutions in this case.

�

Given a fixed point µ1
+ of f (2), denote the law of the corresponding conditional proba-

bility solution by ς+. Denote the corresponding basin of attraction (under T 2) by B(ς+)
and denote the basin of attraction of µ1

+ under the map f (2) by b2(µ1
+). Then

Theorem 6.3. the following dichotomy holds:

(i) if H ′(µ1
+)H ′(µ1

−) > 1, then

B(ς+) = {π : π has mean µ1
+ and π is not concentrated on {0, 1}}.

(ii) if H ′(µ1
+)H ′(µ1

−) ≤ 1 then

B(ς+) = {π : π has mean m ∈ b2(µ1
+)}

Proof. This can be proved in exactly the same way as Theorems 5.3 and 5.4. �

7. Examples

We conclude with some examples.

Example 7.1. We consider first the case where N is Geometric(α), so that P (N =
k) = βk−1α and H(s) = αs

1−βs
(with β = 1− α). It follows that

f (2)(s) = s,
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so that every pair (s, 1−s
1−qs

) is a two-cycle of f and the unique fixed point of f is 1−
√

α.

It also follows that s is a neutrally stable fixed point of f (2) for each s ∈ [0, 1]. Thus we
see that the unique endogenous solution to the original RDE is discrete and the value at

the root of the tree is the a.s. limit of 1−
∏N∅

i1=1(1−
∏Ni1

i2=1(. . . (1− (1−
√

α)Ni1,...,in ) . . .)).
Moreover, for any s, there is a unique solution to the iterated RDE with mean s and

it is discrete and endogenous and is the a.s. limit of 1 −
∏N∅

i1=1(1 −
∏Ni1

i2=1(. . . (1 −
sNi1,...,i2n−1 ) . . .)).

Example 7.2. Consider the original noisy veto-voter model on the binary tree. It follows
from (2.3) that

H(z) = (pH(z) + qz)2 ⇒ H(z) =
1− 2pqz −

√
1− 4pqz

2p2
.

This is non-defective if and only if p ≤ 1
2

(naturally), i.e. if and only if extinction is
certain in the trimmed tree from the original veto-voter model. It is fairly straightforward
to show that H ′(µ1) > 1 ⇔ p < 1

2
. Thus, the endogenous solution is non-discrete precisely

when the trimmed tree is sub-critical.

Example 7.3. In contrast to the case of the veto-voter model on the binary tree, the veto-
voter model on a trinary tree can show a non-endogenous discrete solution even when the
trimmed tree is supercritical. More precisely, the trimmed tree is supercritical precisely

when p > 1
3
, but the discrete solution is non-endogenous if and only if p < p

(3)
e

def
= 3.

√
3−4

3.
√

3−2
,

and p
(3)
e > 1

3
.
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