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Abstract

This paper illustrates the theory and applications of a methodol-
ogy for non-stationary time series modeling which combines sequen-
tial parametric Bayesian estimation with non-parametric change-point
testing. A novel Kullback-Leibler divergence between posterior dis-
tributions arising from different sets of data is proposed as a non-
parametric test statistic. A closed form expression of this test statistic
is derived for exponential family models whereas Markov chain Monte
Carlo simulation is used in general to approximate its value and that
of its critical region. The effects of detecting a change-point using
our method are assessed analytically for the one-step ahead predictive
distribution of a linear dynamic Gaussian time series model. Condi-
tions under which our approach reduces to fully parametric state-space
modeling are illustrated.

The method is applied to estimating the functional dynamics of a
wide range of neural data, including multi-channel electroencephalo-
gram recordings, the learning performance in longitudinal behavioural
experiments and in-vivo multiple spike trains. The estimated dynam-
ics are related to the presentation of visual stimuli, to the generation
of motor responses and to variations of the functional connections be-
tween neurons across different experiments.

Introduction

Stochastic modeling of dynamic processes is often implemented via mod-
els having time-dependent parameters (Hamilton [1994], West and Harrison
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[1997], Frühwirth-Shnatter [2006]). These dynamic time series models can
effectively capture non-stationarities induced by the occurrence of change-
points in the data dependence structure (Page [1955], Smith [1975], Carlin
et al. [1992], Ferger [1995], Chib [1998]), by switches among different depen-
dence regimes (Hamilton [1990], Shumway and Stoffer [1991], Robert et al.
[1993], Albert and Chib [1993], McCulloch and Tsay [1994], Kim [1994],
Ghahramani and Hinton [2000], Frühwirth-Shnatter [2001]) or by smooth
changes of the model parameters through time (Harrison and Stevens [1976],
West and Harrison [1986a]). This paper illustrates the theory and applica-
tions of a novel sequential method for estimating semi-parametrically the
dynamics of such time-dependent model coefficients.

The distinctive characteristic of our approach with respect to state-space
and hidden Markov models (Kalman [1960], West et al. [1985], West and
Harrison [1997], Cappe et al. [2005]) and parametric change-point models
(Muller [1992], Stephens [1994], Loader [1996], Mira and Petrone [1996],
Bélisle et al. [1998], Jain et al. [2007], Fearnhead and Liu [2007]) is that
change-points are defined through the discrepancy between one-step ahead
predictive distributions, measured here by a novel Kullback-Leibler (KL)
divergence (Kullback and Leibler [1951], Kullback [1997]). The distribution
of this KL statistic reflects the concentration of the joint posterior distribu-
tion of the model’s parameters when new data are generated using the same
model structure as for past observations and parameter values drawn from
their current joint posterior distribution. An important implication of this
approach is that the occurrence of changes in the model coefficients is not
assumed as in standard state-space frameworks but it is sequentially tested
at each time point.

The motivation for adopting this sequential framework for dynamic time
series modeling is twofold. First, in state-space models inferences and pre-
dictions are sensitive to the form of the state evolution equations (Frühwirth-
Shnatter [1995], Bengtsson and Cavanaugh [2006]). Therefore, an exploratory
non-parametric approach is a natural choice for a first analysis of the data
when no reliable information about the latent evolution of a model’s parame-
ters are available (Robinson [1983], Härdle et al. [1997]). This is typically the
case for many biological systems, where dynamic responses to novel experi-
mental conditions are difficul to anticipate. Second, fully Bayesian sequential
inference for a model’s parameters and for a latent multiple change-point
process is impractical unless marginal likelihoods can be calculated explic-
itly. This is because the Bayes factors measuring the strength of evidence in
the data about the occurrence of change-points can only be approximated
(Han and Carlin [2001]). The approach taken in this work represents a
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practical alternative providing a non-parametric point estimate of a latent
change-point process without computing marginal likelihoods.

Section 1 of this paper includes the methodological developments. A
general time series framework is introduced and the KL test is illustrated.
A closed form expression of the KL statistic for exponential family models is
derived and examples are presented. Markov chain Monte Carlo simulation
(Gelfand and Smith [1990], Tierney [1994]) is used to estimate in general
the value of the KL statistic and of its critical region under the null hy-
pothesis. A sequential algorithm integrating parametric Bayesian inference
with a non-parametric change-point test using the KL statistic is presented.
The behaviour of both location and spread of the one-step ahead predictive
distribution is described analytically as a function of the timing of the last
detected change-point for a linear Gaussian dynamic model with conjugate
priors. Conditions are given so that our semi-parametric approach reduces
to fully parametric state-space modeling.

In sections 2, 3 and 4 our method is applied to estimating three differ-
ent types of neural dynamics. First we analyse a multivariate time series of
electroencephalogram (EEG) recordings (Delorme et al. [2002], Makeig et al.
[2002]) to reconstruct the dynamics functional relationships among different
brain areas. Second, we estimate semi-parametrically a learning curve using
a univariate binary time series arising from a longitudinal behavioural ex-
periment (Smith et al. [2004]). Finally, our method is applied to estimating
the functional dynamics of networks of neurons using in-vivo experimental
multiple spike trains recordings (Buzsáki [2004]).

1 Sequential time series modelling and Kullback-

Leibler change-point testing

Let {Yi}
N
i=1 represent a sequence of N consecutive time series Yi ∈ Y of

random variables Yi,k,t with k = 1, ...,K measured at the time points t =
ti,1 < ti,2 < ... < ti,ni

with ti,ni
< ti+1,1. The distinction between the N time

series is relevant when we allow for the occurrence of time gaps of possibly
unknown length between them. This situation arises, for instance, when N
consecutive trials are run sequentially interposed by resting periods.

The marginal probability of the data (Y1 = y1, ..., YN = yn) can always
be written as

P (y1, ..., yN ) =

N
∏

i=1

Pi(yi | y0:(i−1)), (1)
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where y0:(i−1) includes fixed initial conditions y0 and the observations (y1, ..., yi−1)
(see, for instance Dawid [1984]). Explicit representations of the left-hand
side of (1) are obtained by specifying suitable conditional distributions P1(y1 |
y0), ..., PN (yN | y0:(N−1)). From a Bayesian perspective, these conditional
distributions are often constructed by assuming that

Pi(yi | y0:(i−1)) =

∫

Θi

P (yi | θi−1, y
0:(i−1))f(θi−1 | y0:(i−1))dθi−1, (2)

meaning that the multivariate time series Yi are assumed to be generated by
a fixed model P (yi | θi−1, y

0:(i−1)), such as a vector auto-regressive (VAR)
model with shared parameters θi−1 within each of the N periods. The
probability density f(θi−1 | y0:(i−1)) here represents the distribution of the
model coefficients given the initial conditions y0 and all past observations.
Note that in (2), although the parameter values are allowed to vary in time,
neither the functional form of the likelihood function nor the interpretation
of its coefficients change over time.

Within this framework, dynamic modeling consists of specifying a trans-
fer map taking as arguments the posterior density f(θi−1 | y0:(i−1)), the time
series data yi and possibly additional hyper-parameters α and returning the
density f(θi | y0:i) for any value i = 1, ...,N . Various characterisations of
analogous maps are given, for instance, in Smith [1990] and Smith [1992].
In standard state-space models the coefficients are assumed to vary across
each time period, so that their transfer map is defined implicitly via the
transition equations defining the prior distribution for θi in terms of the
coefficients θi−1 and of fixed hyper-parameters. In Markov switching and
finite mixture time series models, this transfer map is again derived from
modelling the full joint density of the coefficients θi and θi−1 conditional
on the location of a sequence of change-points (Frühwirth-Shnatter [2006]).
In this work we model the transfer map semi-parametrically by integrating
sequential Bayesian inference for the model’s parameters with a statistic
detecting the occurrence of change-points. The latter statistic is similar in
spirit to the cumulative Bayes factors proposed in West [1986] and West
and Harrison [1986b], with the practical advantage that the computation of
marginal likelihoods is not required.

When a change-point occurs upon observing the data yi, we define a
transfer prior

θi ∼ h(θi | θ̂i−1), (3)

taking as arguments functionals of the current posterior density, θ̂i−1, and
returning a prior density h(·) for the model’s parameters θi. Among the
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many possible formulations of this transfer prior we let the hyperparameters
of the conditional prior density for θi be fully specified using estimates of
the first two moments of the current posterior density. We note that similar
forms of prior moment matching have been used for dynamic point process
modeling by Gamerman [1992] and for multi-process dynamic linear models
by West and Harrison [1997].

Equation (3) represents a partially specified state evolution density where
neither the exact form of the prior nor the time of occurrence of the change-
points are given a priori. Specific choices for the prior density will in fact
depend on the structure of the time series model being entertained and on
the interpretation of its parameters. When no change-points are detected
prior to observing the data Yi = yi, under (3) the joint posterior density of
the model’s parameters is

f(θi | y0:i, α) ∝

{

f(θi−1 | y0:(i−1))P (yi | θi−1, y
0:(i−1)) if yi ∈ Ψi(α),

h(θi | θ̂i−1)P (yi | θi, y
0:(i−1)) if yi /∈ Ψi(α),

(4)

where Ψ1(α) = Y and for i = 2, ...,N the sets Ψi(α) ⊆ Y include the time
series Yi which are inconsistent with their observed past under the assumed
model and the hyper-parameters α.

The implementation of (4) presents two related challenges. First, it is
essential to reformulate the rejection sets (Ψ2(α), ...,ΨN (α)) in terms of a
low-dimensional statistic and of the hyper-parameters α. Second, it must
be possible to derive the distribution of such statistic over the sample space
at least approximately, so as to provide a sequential approximation of the
rejection sets for any value of α. A natural way to overcome these challenges
is to view the sets (Ψ2(α), ...,ΨN (α)) as the α-level critical regions of a
sequential change-point test based on an appropriate statistic. The transfer
map is thus completely specified by the transfer prior (3) together with a
choice of this test statistic. The next section illustrates the derivation of a
suitable statistic using well established information theoretic principles.

1.1 A Kullback-Leibler change-point statistic

The KL divergence (Kullback and Leibler [1951]) is a well-known information-
theoretic criterion with many applications in statistics, such as density esti-
mation (Hall [1987], Hastie [1987]), model selection (Akaike [1978], Akaike
[1981], Carota et al. [1996], Goutis and Robert [1998]), experimental design
(Lindley [1956], Stone [1959]) and the construction of uninformative prior
distributions (Bernardo [1979]). The geometric properties of the KL diver-
gence have been throughly explored: see for instance Critchley et al. [1994].
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The statistic proposed in this work has an analogous function to the KL
divergence when used to support model selection. In the latter case, the
null hypothesis specifies an assumed model structure which is compared to
a typically more parsimonious formulation. In (4), under the hypothesis of
no change sequential Bayesian learning is used to update the joint distri-
bution of the model parameters. When this hypothesis is not sufficiently
supported by the data, their distribution is updated using the conditional
transfer prior (3). Therefore, instead of testing which of two competing
model structures best predicts one given set of data, we construct a statistic
detecting whether the same parameter values could have likely generated
two sets of data given a common model structure.

As a statistic to measure the evidence in the data in favour of the hy-
pothesis of no change we adopt a Kullback-Leibler divergence

KL(y0:(i+1)) =
∫

Θi
log
(

f(θi|y
0:i)

f(θi|y0:(i+1))

)

f(θi | y0:i)dθi,

= log(Eθi|y0:i(P (yi+1 | θi, y
0:i))) − Eθi|y0:i(log(P (yi+1 | θi, y

0:i))), (5)

where the expectations in (5) are taken with respect to the posterior density
f(θi | y0:i). The right-hand side of (5) is finite when the likelihood function
is bounded away from zero for all values of the model’s parameters and
when their posterior density is proper. In this case (5) is a non-negative
convex function measuring the discrepancy between the posterior densities
f(θi | y0:i) and f(θi | y0:(i+1)), being equal to zero if and only if the likelihood
function does not vary with θi over the range of the former posterior density.
Prior to observing the data Yi+1 = yi+1, (5) is a random variable which
distribution under the null hypothesis depends on that of the future data
Yi+1 via the time series model P (Yi+1 | θi, y

0:i). The following sections focus
on the interpretation and on the computation of (5).

1.1.1 Interpretation of the KL statistic and of the change-points

The hyper-parameter α of the joint posterior (4) has the interpretation of
the type-1 error probability for the change-point test using the statistic (5).
The rejection sets can be written explicitely as intervals Ψi(α) = (li,α, ui,α),
each representing the α-level highest probability interval for the random
variable (5) under the hypothesis of no change over period i.

When (5) lies below the value li,α, the likelihood is almost a constant
function of the parameters θi for non-negligible values of their current poste-
rior density. In other terms, the parameter values maximising the likelihood
of the observed yi+1 conditionally on the past data y0:i are given almost zero
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probability by the posterior distribution under the hypothesis of no change.
If the change-point statistic lies above ui,α, the parameter values maximis-
ing the likelihood of the data yi+1 are associated to substantial values of the
current joint posterior density but they are far from its global maximum. In
this case the joint posterior density of all data y0:(i+1) under the hypothesis
of no change tends to be bimodal, signaling that the latest batch of data
yi+1 are not adequately explained by the current parameter values.

In both the above cases, the detection of change-points using the statistic
(5) indicate that, with probability 1 − α, the estimated shape of the pos-
terior density of y0:(i+1) significantly departs from its assumed shape under
the hypothesis that standard sequential Bayesian inference is adequate for
estimating the model parameters in time.

When α = 0 no change-point is ever detected, so that the only revi-
sions in the estimates of the model’s parameters are those induced by the
sequential accrual of information via Bayes’ rule. On the other end, if α = 1
a change-point in the parameter values is systematically detected at every
time point. In this second limiting case the methodology proposed in this
work is equivalent to a fully parametric first order Markov state-space model
with state evolution equation partially specified by the transfer prior (3).

1.1.2 Computation of the change-point statistic

In general neither the value of (5) nor the rejection sets (Ψ2(α), ...,ΨN (α))
can be derived in closed form under the hypothesis of no change. At each
time period i = 2, ...,N this change-point statistic and its critcal interval
can be approximated using a sequence of draws {θm

i }M
m=1 generated using a

Markov chain Monte Carlo algorithm (Gelfand and Smith [1990], Smith and
Roberts [1993], Tierney [1994]) having as target the posterior probability
density of the model’s parameters at period i conditional on the change-
points detected in the past. Using this technique, the value of (5) can be
approximated using the average

KL(y0:(i+1)) ≈ log

(

∑M
m=1 P (yi+1 | θm

i , y0:i)

M

)

−

∑M
m=1 log(P (yi+1 | θm

i , y0:i))

M
. (6)

An approximation of the distribution of (5) for varying values of Yi+1 under
the hypothesis of no change can be constructed using the same sequence of
draws as follows:

i) for each draw θm
i generate a pseudo-realisation ym

i+1 using the joint
sampling probability P (Yi+1 | θm

i , y0:i);
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ii) compute the statistic KL(y
0:(i+1)
m ), where y

0:(i+1)
m = (y0, ..., yi, y

m
i+1),

using its Monte Carlo approximation (6).

The empirical distribution of the sequence {KL(y
0:(i+1)
m )}M

m=1 approximates
that of the KL statistic (5) under the hypothesis of no change. Therefore

the empirical (α
2 , 1 − α

2 )th percentiles of the sequence {KL(y
0:(i+1)
m )}M

m=1

approximate the rejection sets Ψi(α) = (li,α, ui,α) for any given value of α.

1.2 Sequential fitting and change-point testing algorithm

Given initial conditions (α, y0) and a parametric time series model P (Yi+1 |
θi, y

0:i), time-dependent inferences for its coefficients θi can be derived by
integrating Bayesian sequential learning with the change-point KL test de-
scribed above. We illustrate this algorithm starting from the first sample
y1:

i) upon observing the data y1, derive the posterior density

f(θ1 | y0:1) ∝ h(θi | y0)P (yi | θi, y0),

ii) having observed data y2, compute the statistic KL(y0:2) and its rejec-
tion set Ψi(α) = (l1,α, u1,α) as described in the previous section;

iii) if l1,α < KL(y0:2) < u1,α, update the posterior density as

f(θ1 | y0:2, α) ∝ f(θ1 | y0:1)P (y2 | θ1, y
0:1).

Otherwise, derive the conditional posterior density

f(θ2 | θ̂1, y
0:2, α) ∝ h(θ2 | θ̂1)P (y2 | θ2, y

0:1),

where θ̂1 represents estimates of the first two moments of the f(θ1 |
y0:1).

In the latter case, the sequentially estimated process of change-points up to
and including times (1, 2) reports one change at time 2. Consistently with
the interpretation of the KL statistic, the model parameters are iteratively
re-estimated using all data starting from the last detected change-point, if
any. When a change is detected at level 1 − α, the new parameter values
are estimated via their conditional posterior distribution using the transfer
prior (3) and the likelihood of the latest batch of data.
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1.3 Change-point KL statistic for exponential family models

The properties of the KL divergence within the exponential family have
been explored by McCulloch [1988]. Also the divergence (5) has a closed
form when the data Yi is generated by an exponential family model. In this
case stochastic simulation is necessary to approximate only the value of the
interval Ψi(α) = (li,α, ui,α) under the hypothesis of no change. Without loss
of generality, in what follows we assume that no change-point is detected
prior to priod i and we let Yi be a 1×ni dimensional sample of conditionally
independent observations with joint density (Diaconis and Ylvisaker [1979])

P (Yi | θi) =

ni
∏

j=1

a(Yi,j)e
Yi,jθi−b(θi), (7)

where θi is a scalar canonical parameter. Diaconis and Ylvisaker [1979] show
that each elment of Yi has mean and variance

E(Yi,j | θi) =
∂b(θi)

∂θi

, V (Yi,j | θi) =
∂2b(θi)

∂θ
′

i∂θi

.

Using the prior

f(θi | n0, y0) = c(n0, S0)e
S0θi−n0b(θi),

where S0 = n0y0 for scalar n0 and y0, the posterior for θi given the past
data y0:i has conjugate density

f(θi | n(i), y0:i) = c(n(i), S(i))e
n(i)

“

S(i)
n(i)

θi−b(θi)
”

(8)

where n(i) =
∑i

j=0 nj , S(i) =
∑i

j=0 nj ȳj and ȳj represents the arithmetic
mean of sample yj. Using the results of Gutiérrez-Peña [1997], the posterior
mean and variance of θi are

E(θi | n(i), S(i)) =
∂H(n(i), S(i))

∂S(i)
, V (θi | n(i), S(i)) =

∂H(n(i), S(i))

∂S(i)2
,

and the posterior mean and variance of the function b(θi) are

E(b(θi) | n(i), S(i)) =
∂H(n(i), S(i))

∂n(i)
, V (b(θi) | n(i), S(i)) =

∂H(n(i), S(i))

∂n(i)2
,

where H(n(i), S(i)) = − log (c(n(i), S(i))). Using these results we can derive
an explicit form for the KL divergence (5), which is stated in the following
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theorem.
Theorem: When the posterior density for the coefficients θi has form (8),
given the data up to and including yi+1 the Kullback-Leibler statistic (5) is

KL(y0:(i+1)) = log

(

c(n(i), S(i))

c(n(i + 1), S(i + 1))

)

− Si+1
∂H(n(i), S(i))

∂S(i)
+

+ ni+1
∂H(n(i), S(i))

∂n(i)
, (9)

where the terms on the right hand side of (9) are defined above.
Proof : by letting the posterior densities f(θi | n(i), S(i)) and f(θi |

n(i + 1), S(i + 1)) have form (8), the KL (5) becomes

KL(y0:(i+1)) = log

(

c(n(i), S(i))

c(n(i + 1), S(i + 1))

)

− Si+1E(θi) + ni+1E(b(θi)).(10)

For exponential family models, the expectations of θi and b(θi) with respect
to f(θi | y0:i) in equation (10) are given in Gutiérrez-Peña [1997], as reported
above. By substituting these expressions in (10), equation (9) obtains. ⋄

Example 1.1: when Yi is a Gaussian random variable with mean µi

and precision λi, its distribution can be written in the form (8) using the
two-dimensional statistic

Y ∗
i = [Yi, Y

2
i ],

and the canonical parameter

θi = [θ1,i, θ2,i] =

[

λiµi,−
λi

2

]

.

with

a(Y ∗
i ) = (2π)−

1
2 ,

b(θi) = = −
1

2
log(−2θ2,i) −

θ2
1,i

θ2,i

.

The conjugate prior for (µi, λi) is Normal-Gamma N(µi | γ, λi(2α−1))Ga(λi |
α, β) with coefficients α > 0.5, β > 0, γ ∈ R and normalising constant
(Bernardo and Smith [2007])

c(n0, S0) =

(

2π

n0

)
1
2

1
2S

S1,0
2

2,0

Γ
(

n0+1
2

) ,
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where n0 = 2α − 1, y∗0 = [y∗1,0, y
∗
2,0] = [γ, 2β

2α−1 + γ2], S1,0 = n0y
∗
1,0 and

S2,0 = n0y
∗
2,0. Upon observing the realisation (y1, ..., yi), the normalising

constant of the corresponding conjugate posterior is

c(n(i), S(i)) =

(

2π

n(i)

) 1
2 1

2S(2, i)
S(1,i)

2

Γ
(

n(i)+1
2

) ,

where n(i) = n0 + i, S(1, i) = S1,0 +
∑i

j=1 yj and S(2, i) = S2,0 +
∑i

j=1 y2
j .

When also yi+1 is observed, using (9) the KL statistic can be written as

KL(y0:(i+1)) = log

(

Γ
“

n(i+1)+1
2

”

Γ
“

n(i)+1
2

”

)

+ 1
2 log

(

n(i+1)
n(i)

)

+ log

(

S(2,i)
S(1,i)

2

S(2,i+1)
S(1,i+1)

2

)

−

−
yi+1

2 log
(

S(2,i)
2

)

− y2
i+1

S(1,i)
S(2,i) + 1

2n(i) + Γ
(

n(i)+1
2

) ∂Γ
“

n(i)+1
2

”

∂n(i) .

Example 1.2: let Yi be a sample of size ni of conditionally independent
Bernoulli random variables with success probabilities {πi}

N
i=1. The canonical

representation of the Bernoulli probability mass function obtains by letting

θi = log
(

πi

1−πi

)

, b(θi) = log
(

1 + eθi
)

and a(Yi) = 1. The conjugate prior

for πi is Beta(S0,m0) where m0 = n0 − S0. Upon observing (y1, .., yi)
the conjugate posterior is Beta(S(i),m(i)), where S(i) =

∑i
j=0 Sj , n(i) =

∑i
j=0 nj and m(i) = n(i)−S(i). When also yi+1 is observed, the KL statistic

(9) has form

KL(y0:(i+1)) = log

(

∏ni

k=1(n(i) + k)
∏ni−Si

w=1 (n(i) − S(i) + w)
∏Si

j=1(S(i) + j)

)

−

−Si+1
Γ(S(i))

Γ(n(i) − S(i))

∂ Γ(n(i)−S(i))
Γ(S(i))

∂S(i)
+ ni+1

∂(Γ(n(i))Γ(n(i)−S(i)))
∂n(i)

Γ(n(i))Γ(n(i) − S(i)))
.

Example 1.3: let Yi represent the random number of events of a given kind
observed within a time interval (ti,1, ti,ni

] of fixed length. For this example
we assume that the latter is identical for all samples i = 1, ...,N . Let the
random times at which the events take place be distributed according to a
homogeneous Poisson process with intensity λi, so that the distribution of
Yi is Poisson with parameter λ∗

i = λi(ti,ni
− ti,1). The canonical form of

the Poisson distribution has parameter θi = log(λ∗
i ) and functions a(Yi) =

1
Yi!

, b(θi) = eθi . The conjugate prior for λ∗
i is Gamma with parameters

Ga(S0, n0) having mean y0 and variance y0

n0
. Upon observing (y1, .., yi) the
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conjugate posterior for λ∗
i is Ga(S(i), n(i)) with S(i) = S0+

∑i
j=1 yj, n(i) =

n0 + i. When also yi+1 is observed, using (9) the KL statistic has form

KL(y0:(i+1)) = log

(

S(i)n(i)S(i)

n(i + 1)S(i+1)

)

+ yi+1



log(n(i)) −

∂Γ(S(i))
∂S(i)

Γ(S(i))



−
S(i)

n(i)
.

1.4 Effect of change-points for predictive densities

In this section we illustrate analytically the effect of detecting a change-
point on the one-step ahead predictive density using the transfer prior (3)
and a conjugate Gaussian model. As in the previus section, a univariate
time series is considered so that K = 1 and ni = 1 for all i = 1, ...,N .
For each value of i, in what follows we let Yi be distributed as N(µi, σ

2
i ).

Analogously to example 1.1 in the previous section, the prior distribution
for θi = (µi, σ

2
i ) is taken as the conjugate form

µi ∼ N(µ̂i∗−1, σ
2
i ),

σ2
i ∼ IGa(

ν

2
,
ν

2
σ̂2

i∗−1),

where 1 ≤ i∗ < i is the time of the last detected change-point and (µ̂i∗−1, σ̂
2
i∗−1)

represent the estimated mean and variance of the joint posterior density at
time i∗. If i∗ = 1, (µ0, σ

2
0) represents a fixed initial condition. The variance

here has marginal inverse Gamma prior with density

f(σ2
i | ν, σ̂2

i∗−1) =
(ν
2 σ̂2

i∗−1)
ν
2

Γ(ν
2 )

σ
−2( ν

2
+1)

i e
−

νσ̂2
i∗−1

2σ2
i .

Under this formulation, the prior expectation of the mean is µ̂i∗−1 and that

of the variance is
ν
2

ν
2
−1 σ̂2

i∗−1. If follows that the one-step ahead marginal

predictive distribution is non-central Student-t. In absence of a change-
point previous to time i, the predictive density is

Yi+1 | y1:i, µ0, σ
2
0 ∼ tν+i

(

µ̃i,
i + 1

i + 2

ν + i

2

1

σ̃2
i

)

, (11)

where

µ̃i =
1

1 + i
µ0 +

i

1 + i
ȳ(1:i),

σ̃2
i =

ν

2
σ2

0 +
i

2
s2
(1:i) +

i

i + 1
(µ0 − ȳ(1:i))2,

12
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and (ȳ(1:i), s2
(1:i)) represent respectively the sample mean and variance of

the data y1:i. If a change-point is detected by the KL statistic (5) at time
1 < i∗ < i, under the transfer prior (3) the conditional predictive density is

Yi+1 | µ̂i∗−1, σ̂
2
i∗−1, y

i∗:i ∼ tν+i−(i∗−1)

(

µ̃∗
i ,

i − i∗ + 2

i − i∗ + 3

ν + i − i∗ + 1

2

1

(σ̃2
i )

∗

)

,(12)

where

µ̃∗
i =

1

i − i∗ + 2
µ̂i∗−1 +

i − (i∗ − 1)

i − i∗ + 2
ȳ(i∗:i),

(σ̃2
i )

∗ =
ν

2
(σ̂i∗−1)

2 +
i − (i∗ − 1)

2
s2
(i∗:i) +

i − (i∗ − 1)

i − i∗ + 2
(µ̂i∗−1 − ȳ(i∗:i))2.

Since the mean and variance of the non-central Student-t random variable
with density tν(µ, σ2) are respectively equal to µ and to ν

ν+2σ2, equations
(11) and (12) provide a characterisation of the one-step ahead posterior
predictive moments as a function of the time of the last detected change-
point and of the inverse-Gamma prior coefficient ν. For i∗ > 1 the predictive
mean is less influenced by the sample mean of the data preceding the change-
point, ȳ1:(i∗−1), and it is more influenced by ȳi∗:i, that is the sample mean
of the data from the change-point on. When a change-point is detected
the predictive variance is larger with respect to the case of no change. Its
relative increase is a decreasing function of the difference (i − i∗) and it is
an increasing function of the coefficient ν, which measures the strenght of
the prior at the initial time.

This behaviour is consistent with the intuition that predictions ensu-
ing from a dynamic time series model should appropriately discount the
information content of remote data and focus on more recent data when sig-
nificant dynamics occur. In absence of an autoregressive model structure,
as in the present section, the distinction between remote and recent data is
entirely left to the timing of the detected change-points.

2 Analysis of multivariate EEG recordings

This section presente the first application of the methods discussed above
for the estimation of neural functional dynamics. The multivariate elec-
troencephalogram (EEG) recordings analysed in this section arise from a
sequence of 80 short tests each having length of three seconds. During each
test, a subject’s task was to press a button when a green square appeared
in a specific screen location (Makeig et al. [2002], Delorme et al. [2002]).
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Previous analyses of these data have emphasized an increased synchroniza-
tion of different brain areas during the generation of the motor response to
the visual stimulus. Here we use this data to investigate the relationships
among seven functionally distinct brain areas. The multidimensional EEG
time series are modeled as a discrete time Gaussian stochastic process, which
randomness is thought of as arising from the intrinsic variability of the brain
activity and from the presence of experimenatal artifacts.

The recordings from all cranial EEG channels are first averaged within
each brain area for each trial. The rationale for this data reduction pre-
processing is that the variability across trials of the EEG recordings within
each brain region is small. The main features of the trial-averaged EEG
recordings are illustrated in the top-left plot of Figure 1. The activity of the
different brain areas prior to the presentation of the visual cue appears to
be tightly synchronised, exhibiting a markedly periodic pattern occurring
respectively at 10Hz and 60Hz for all seven areas. The lower frequency is
consistent with the so-called α band, reflecting eye movements. The higher
frequency is an experimental artifact suggestive of poor electrode grounding.

The seven-dimensional trial-averaged signal at time i, Yi, is modelled as
N7(µi,Σi). To derive Bayesian inferences for the mean vector and for the
covariance matrix, we use the conjugate Normal-Inverse-Wishart prior:

µi ∼ N7(µ̂i∗−1,Σi), (13)

Σi ∼ IW7(9, Σ̂i∗−1), (14)

where 1 ≤ i∗ < i is the time index of the last detected change-point prior to
time i. The marginal prior expectations are matched to the corresponding
estimated posterior moments (µ̂i∗−1, Σ̂i∗−1) consistently with the transfer
prior (3). The initial conditions µ0 and Σ0 were set respectively equal to the
null vector and to the identity matrix. The hyper-parameter of the posterior
density was set at α = 0.01 so as to dectect only the most prominent changes.
The number of degrees of freedom of the Inverse Wishart density is set so
that predictive intervals of length consistent with the set value of α are not
excessively inflated when a change is detected. The distribution of the KL
statistic and its value were approximated at each time i using the last 500
Gibbs sampler draws of the mean and of the covariance matrix.

Figure 1 shows the estimated change-point process, the one-step ahead
marginal posterior point predictions and their 95% highest posterior pre-
dictive intervals for each of the seven brain areas. The periodograms of
these predictions indicate that the periodicities at 10Hz and 60Hz frequency
have been effectively filtered out. The predictions emphasize a down-ward
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shift in brain activity taking place roughly at half of the initial phase of
the experiment, followed by a sharp increase corresponding to the cue pre-
sentation, a down-ward trend in the activity following the motor response
and a stabilisation of the EEG signals towards the end of the experiment.
The sharp increases in the activity of the frontal and central areas during
the generation of the response are consistent with their characterisation as
executive and motor centres of the brain.

Figure 2 depicts the estimates of the time-dependent variance and covari-
ance functions for each brain area. Whole segments represent periods dur-
ing which their 95% highest posterior intervals do not intersect zero. All
estimated variances and covariances vary over time, indicating that a time-
dependent covariance matrix is an appropriate modelling assumption for
this data. All estimated covariances are positive, suggesting that the activ-
ity of the seven brain areas is dynamically cooperative as found by Delorme
et al. [2002]. The covariances between most brain areas are increased upon
detecting a change-point, suggesting a temporary increase in their mutual
coordination. An important feature of the estimated covariance functions
is their spatial ordering over time, the strongest relationships being esti-
mated between adjacent brain areas. Since neither in the Gaussian likelihood
nor the priors (13) include a spatial component, these estimates suggest a
close correspondence between the detected functional relationships and the
anatomical structure of the brain.

3 Estimation of a learning curve

Smith et al. [2004] introduced a parametric state-space model for infer-
ring the learning performance of macaque monkeys using longitudinal be-
havioural experiments. The learning curve is thereby modeled using uni-
variate binary time series data along with a logit link for each trial’s success
probability and a Gaussian state evolution equation for the parameters’ dy-
namics. In this section we use the same Bernoulli sampling distribution for
the binary trial outcomes as in Smith et al. [2004] and we estimate the dy-
namics of its success probability over time using the semi-parametric method
illustrated in section 1. The main difference between our model and that
of Smith et al. [2004] is that we do not need a link function, thus imposing
fewer parametric constraints on the shape of the learning curve.
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Figure 1: trial-averaged EEG recordings (top-left) from the frontal (green), tempo-
ral (yellow), central (magenta), central-parietal (cyan), parietal (black), parietal-
occipital (red) and occipital (blue) lobes. The red and green vertical lines represent
the average stimulus and response times. The remaining seven plots show the esti-
mated change-points, one-step ahead marginal posterior point predictions and their
95% predictive intervals for each lobe. The brain activity is reduced roughly at half
of the initial phase of the experiment and it increases when the cue is presented.
The sharpest increases are detected in the frontal and central lobes, followed by
the central-parietal, parietal and temporal lobes. The estimated change in activity
in the parietal-occipical and occipital areas is less pronounced.
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Figure 2: estimates of the time-dependent variance and covariance functions for
each brain area. Whole segments represent periods during which their 95% posterior
intervals do not intersect zero. All estimated covariances are positive and time-
varying, representing different levels of cooperative activity of the seven brain areas
over time. The detection of a change-point generally corresponds to an increase in
the mutual coordination of their activities. The estimated covariance functions are
spatially ordered consistently over time, the strongest relationships being estimated
between adjacent brain areas.
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The data analysed in this section consist of a sequence of 55 binary tri-
als during which a macaque monkey performed a location-scene association
task (Wirth et al. [2003]). The learning curve is represented by the time-
dependent estimates of the trials’success probabilities. We derived these
estimates using a uniform prior for the success probability of the first trial.
The transfer prior (3) was implemented using a conjugate Beta prior. The
hyper-parameter α was set at 0.7, requiring weak evidence in order to detect
a change-point. This hyper-parameter setting was mainly motivated by the
limited amount of data available for the analysis. The distribution of the KL
statistic under the null hypothesis of no change was approximated using ten
thousand Monte Carlo samples from the Beta posterior distribution of each
trial’s success probability. For this data, the unsmoothed state-space esti-
mates of Smith et al. [2004] suggest that, with 90% confidence, the success
probability significantly exceed its chance value 0.25 from trial 24 onwards.
Figure 3 shows that our estimates of the success probability are more conser-
vative suggesting that, with 90% conditional posterior probability, learning
has taken place from trial 29 onwards.
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Figure 3: macaque monkey binary data and semi-parametric estimates of their
time-dependent success probabilities. The sequence of estimates of the success
probabilities describe the macaque’s learning curve over time. The first trial at
which the learning curve lies above its chance level 0.25, indicating that learning
has effectively taken place, is number 29.
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4 Dynamic modelling of functional neuronal net-

works

This example illustrates the application of the method presented in section
1 in the context of a model for networks of spiking neurons. Introductions
to the neuronal physiology and to neuronal modelling are presented in Fien-
berg [1974] and Brillinger [1988]. Recent surveys of the state-of-the-art in
multiple spike trains modelling can be found in Iyengar [2001], Brown et al.
[2004], Kass et al. [2005], Okatan et al. [2005], Rao [2005] and Rigat et al.
[2006]. Dynamic point process neuronal models based on fully parametric
state-space representations have been proposed by Eden et al. [2004], Truc-
colo et al. [2005], Brown and Barbieri [2006], Srinivansan et al. [2006] and
Eden and Brown [2008].

During the experiments analysed in this section part of the neural activ-
ity of a sheep’s temporal cortex is observed at discrete times. The goal of
the experiments is to investigate the activity of brain areas associated with
memory. At each experiment the sheep is shown either a blank screen or two
images. In the latter case, a reward is given when one of a set of “familiar
faces” is correctly identified. A sequence of 77 disconnected experimental
in-vivo multi-electrode array (MEA) recordings is generated (Kendrick et al.
[2001]).

4.1 A binary network model

In what follows each element of the experimental time series {Yi}
77
i=1 is

Yi,k,ti,j(i) = 1 if neuron k fires at time ti,j(i) during trial i and Yi,k,ti,j(i) = 0
otherwise with j(i) = 1, ..., ni. We model the joint sampling distribution of
the multiple spike data for trial i, Yi, as a Bernoulli process with renewal
(Rigat et al. [2006]). The joint probability of a given realisation yi is

P (Yi = yi | πi) =

ti,ni
∏

t=ti,1

K
∏

k=1

π
yi,k,t

i,k,t (1 − πi,k,t)
1−yi,k,t . (15)

For model (15) to be biologically interpretable, the firing probability of
neuron k at time ti,j(i) during trial i, πi,k,ti,j(i) , is defined as a one-to-one
non-decreasing mapping of a real-valued voltage function vi,k,ti,j(i) onto the
interval (0, 1). The function vi,k,ti,j(i) represents the unnormalised difference
of electrical potential across the membrane of neuron k at time ti,j(i). Let
τi,k,ti,j(i) be the last spiking time of neuron k prior to time ti,j(i) during trial
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i, that is

τi,k,ti,j(i) =

{

1 if
∑ti,j(i)

τ=1 Yi,k,τ = 0 or ti,j(i) = 1,

max{1 ≤ τ < ti,j(i) : Yi,k,τ = 1} otherwise,

and the voltage function is modelled as

vi,k,ti,j(i) =

K
∑

l=1

βi,k,l

ti,j(i)−1
∑

w=τi,k,ti,j(i)

yi,l,w. (16)

The spiking probabilities are linked to (16) via the logistic mapping

πi,k,ti,j(i) =
e
vi,k,ti,j(i)

1 + e
vi,k,ti,j(i)

.

The coefficients βi,k,l represent the strenght of the functional relationship
from neuron l to neuron k during trial i. When βi,k,l is positive during trial
i, the firing activity of neuron l promotes that of neuron k whereas when it
is negative firing of l inhibits that of k. When k = l, the coefficients βi,k,k

represent the spontaneous spiking rate of neuron k during trial i. The last
summation term in equation (16) indicates that the membrane potential of a
neuron is assumed to be influenced only by the spiking activity of the other
neurons during its last inter-spike interval.

For each trial i = 1, ...,N we use a Metropolis sampler to produce approx-
imate posterior inferences for the K2 model parameters. For each experi-
ment, we run a random scan neuron-wise update with independent Gaussian
random-walk proposals for twenty-five thousand iterations. The initial prior
for the parameters of all experiments is Gaussian with zero mean, standard
deviation 1 and zero covariance for all pairs of neurons. Conditionally on
the data y0:i and on the current posterior estimates, upon observing the
outcome of the ith+1 experiment, yi+1, we use the KL statistic (5) to test
whether a significant change occurred in any of the model’s parameters.
The occurrence of such changes and the corresponding parameter estimates
indicate statistically significant variations of different aspects of the neural
activity.

4.2 Analysis of sheep multiple spike trains

In this section we analyse the spiking activity of the 7 most active neurons
among the 64 recorded cells. The panel on the left in Figure 4 shows the
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activity of these 7 neurons during all 77 experiments. The panel on the
right shows their mean firing rates, which reflect the overall low spiking
frequency typical of this type of measurements. Brighter vertical bands mark
experiments during which the mean firing rate for all neurons is relatively
high. The co-occurrence of these high firing rates suggest that the most
prominent connections among the seven neurons are mutually excitatory
functional relationships.
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Figure 4: spiking activity (left) and mean firing rates (right) for the 7 most active
neurons among the 64 recorded cells. Each dot in the upper panel marks the
number of spiking neurons for each millisecond of the 77 experiments. The range
of the mean firing rates is 0.02 − 0.12, reflecting the low overall spiking frequency
typical for this type of recordings. Vertical bright bands mark experiments during
which the spiking activity of all neurons is relatively high, suggesting that the seven
neurons are funciontally connected mostly via mutually excitatory relationships.

Figure 5 displays summaries of the point estimates of the network coeffi-
cients β across all experiments. The top-left panel shows the proportion of
experiments during which each of the network coefficients were found not
significant using their estimated 95% highest posterior probability intervals.
The top-right and bottom panels respectively show the proportion of ex-
periments where each coefficient was found either significantly inhibitory or
excitatory. Most functional pair-wise interactions are consistently found not
significant, whereas the self-dependence coefficients on the main diagonal are
always found significant and negative, representing the well-known property
of neural refractoriness. The excitatory functional connection from neuron
3 towards neuron 6 is most prominent, being significant over approximately
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65% of the experiments. Figure 6 illustrates in detail the point estimates and
the 95% highest posterior intervals of this pair-wise connection together with
those of each neuron’s self-dependence and of the connection from neuron
6 towards neuron 3. Consistently with the high proportion of experiments
when it is found significant, the excitatory effect of neuron 3 to neuron 6 is
the most stable estimate over time.
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Figure 5: proportion of experiments during which each of the network coefficients
were found not significant (top-left), significantly inhibitory (top-right) or excita-
tory (bottom). Most functional interactions are not significant over most experi-
ments, whereas the self-dependence coefficients are always significant and negative,
representing the well-known property of neural refractoriness.
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Figure 6: point estimates and 95% highest posterior intervals for the self-
dependence parameters of neurons 3 and 6 (main diagonal) and of their pair-wise
functional connections. The two neurons exhibit a comparable level of refractori-
ness over all experiments. Consistently with the high proportion of experiments
when it is significant, the excitatory effect of neuron 3 to neuron 6 is the most
stable over time.
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5 Discussion

This work is motivated by the difficulties encountered in constructing time
series models when the niether the factors driving the dynamics of their pa-
rameters nor the relationship between the resolution of the data and such
dynamics are known. The semi-parametric method illustrated here provides
flexible time-dependent estimates which may then suggest specific evolu-
tion dynamics. For exploratory data analyses, such as those presented in
sections 2, 3 and 4, these estimates may suffice to address specific scien-
tific questions. Otherwise, appropriate measures of dependence between
these time-dependent estimates and experimental factors of interest provide
a principled basis for more precise formulations of the parameters’ dynam-
ics. Describing the exact form of such dependence measures is very much
context-dependent and it lies outside of the scope of this work.

A distinctive feature of the modeling approach proposed here is that it
combines elements of sequential Bayesian learning and conditional frequen-
tist inference along the lines of Guttman [1967], Box [1980], Berger et al.
[1994], Meng [1994], Gelman et al. [1996], Berger and Bayarri [1997], Spiegel-
halter et al. [2002], Bayarri and Morales [2003], Kuhnert et al. [2003] and
Bayarri and Berger [2004] among others. A general treatment of such prag-
matic combination of frequentist and Bayesian ideas for model criticism can
be found in Chapter 8 of O’Hagan and Forster [1999]. From this perspective,
our method is a “Bayesianly justifiable” procedure (Rubin [1984]) because
only those future data that are consistent with the current conditional pos-
terior distribution of the model parameters are relevant for approximating
the distribution of the change-point statistic.

The latter statistic reflects a notion of a change-point as an observation
which, on the basis of the chosen model with its prior and the observations
so far, is ”surprising” from a predictive point of view. Note that this charac-
terization does not depend on the parametrization of the state space nor on
the unobservable sample paths of latent states, but it depends only on the
predictives on observables. Defining models and their properties via their
one step ahead predictive statements but has been recommended, among
others, by Geisser and Eddy [1979] for predictive model selection, Dawid
[1984] in his prequential inference, San Martini and Spezzaferri [1984] for
model selection, West and Harrison [1986b] for monitoring the adequacy of
Bayesian forecasting models and by Smith [1992] for comparing the charac-
teristics of different forecasting models. More recently, optimal predictive
model selection criteria have been proposed by Barbieri and Berger [2004].

In this work, one change-point process common to all model’s param-
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eters is used to define their conditional posterior distribution. Should the
data provide evidence of changes of only some parameters, the posterior
distributions for the unchanging coefficients would not reflect an efficient
use of the data. It is important to note that while in principle any subset
of model parameters can be associated to a distinct change-point process,
the limitations for implementing multivariate change-point process inference
within our framework are eminently practical. This is because marginal like-
lihoods for each subset of model parameters having a different change-point
process are required to approximate the distribution of their change-point
test statistic. For classes of models where marginal likelihoods are available
in closed form, this work can be extended by introducing a random variable
identifying groups of coefficients sharing a common change-point process.

Posterior simulation via Markov chain Monte Carlo algorithms has been
used in this work to fit multivariate time series models and to approximate
critical values of the KL statistic. Although the current implementation
of our method is operationally realistic, these computationally intensive
methods are in fact rather impractical for an iterative process of model
formulation and criticism. Currently two directions are being pursued to
improve the computational efficiency of our method. On the one hand,
faster resampling methods such as particle filters (Doucet et al. [2001]) and
approximate Bayesian computation (Marjoram et al. [2003]) can be adopted.
Alternatively, analytical posterior approximations can be adopted (Tierney
and Kadane [1986]). For instance, in the context of sequential time series
modeling Koyama et al. [2008] recently proposed a Laplace-Gauss posterior
approximation that obviates the use of cumbersome resampling techniques.
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