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tWhen looking for general stru
ture from a �-nite dis
rete data set it is quite 
ommon tosear
h over the 
lass of Bayesian Networks(BNs). The 
lass of Chain Event Graph(CEG) models is however mu
h more expres-sive and is parti
ularly suited to depi
tinghypotheses about how situations might un-fold. The CEG retains many of the desirablequalities of the BN. In parti
ular it admits
onjugate learning on its 
onditional proba-bility parameters using produ
t Diri
hlet pri-ors. The Bayes Fa
tors asso
iated with di�er-ent CEG models 
an therefore be 
al
ulatedin an expli
it 
losed form, whi
h means thatsear
h for the maximum a posteriori (MAP)model in this 
lass 
an be ena
ted by evalu-ating the s
ore fun
tion of su

essive modelsand optimizing. As with BNs, by 
hoosing anappropriate prior over the model spa
e, the
onjuga
y property ensures that this s
orefun
tion is linear in the di�erent 
omponentsof the CEG model. Lo
al sear
h algorithms
an therefore be devised whi
h unveil theri
h 
lass of 
andidate explanatory models,and allow us to sele
t the most appropriate.In this paper we 
on
entrate on this dis
ov-ery pro
ess and upon the s
oring of modelswithin this 
lass.1 INTRODUCTIONThe Chain Event Graph (CEG), introdu
ed in Smith& Anderson (2008), Thwaites, Smith & Cowell (2008)and Smith, Ri

omagno & Thwaites (2009), is a graph-i
al model spe
i�
ally designed to embody the 
ondi-tional independen
e stru
ture of problems whose statespa
es are highly asymmetri
 and do not admit a nat-ural produ
t stru
ture. There are many s
enarios in

medi
ine, biology and edu
ation where su
h asymme-tries arise naturally (for examples see Smith & Ander-son (2008)), and where the main features of the model
lass 
annot be fully 
aptured by a single BN or even a
ontext spe
i�
 BN. A key property of the CEG frame-work is that these graphi
al models are qualitative intheir topologies { they en
ode sets of 
onditional inde-penden
e statements about how things might happen,without prespe
ifying the probabilities asso
iated withthese events. Ea
h CEG model 
an therefore be identi-�ed with a unique explanation of how situations mightunfold.For a detailed formal des
ription and motivation forusing a CEG model and an outline of some of its im-pli
it 
onditional independen
e stru
ture see Smith &Anderson (2008). In this paper it was shown that theCEG is a more expressive graphi
al model than theBN in that any asymmetries are represented expli
itlyin the topology of the CEG, and in that CEGs 
anbe used to express a mu
h ri
her set of 
onditional in-dependen
e statements not simultaneously expressiblethrough a single BN. It was also shown that the 
lassof BNs is 
ontained within that of CEGs. This is aproperty whi
h we exploit later, sin
e with appropri-ate prior settings, it follows that BN model sele
tionpro
edures 
an be nested within those for CEGs.The CEG is an event-based (rather than variable-based) graphi
al model, and is a fun
tion of an eventtree. Any problem on a �nite dis
rete data set 
anbe modelled using an event tree, but they are parti
u-larly suited to problems with asymmetri
 state spa
es.Unfortunately, it is almost impossible to read the 
on-ditional independen
e properties of a model from anevent tree representation, as only trivial independen-
ies are expressed within its topology. The CEG el-egantly solves this problem, en
oding a ri
h 
lass of
onditional independen
e statements through its edgeand vertex stru
ture.So 
onsider an event tree T with vertex set V (T ), di-
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re
ted edge set E(T ), and S(T ) � V (T ), the set of thetree's non-leaf verti
es or situations (Shafer (1996)). Aprobability tree 
an then be spe
i�ed by a transitionmatrix on V (T ), where absorbing states 
orrespond toleaf-verti
es. Transition probabilities are zero ex
eptfor transitions to a situation's 
hildren (see Table 1).Table 1: Part of the transition matrix for Example 1v1 v2 v3 v4 v5 v6 : : : v11 v21 : : :v0 �1 �2 �3 0 0 0 : : : 0 0 : : :v1 0 0 0 �5 0 0 : : : �4 0 : : :v2 0 0 0 0 �4 �5 : : : 0 0 : : :... ... ... ... ...Let T (v) be the subtree rooted in the situation v whi
h
ontains all verti
es after v in T . We say that v1 andv2 are in the same position if:� the trees T (v1) and T (v2) are topologi
ally iden-ti
al,� there is a map between T (v1) and T (v2) su
h thatthe edges in T (v2) are labelled, under this map, bythe same probabilities as the 
orresponding edgesin T (v1).The set W (T ) of positions w partitions S(T ). Thetransporter CEG (Thwaites, Smith & Cowell 2008) isa dire
ted graph with verti
es W (T )[ fw1g, with anan edge e from w1 to w2 6= w1 for ea
h situationv2 2 w2 whi
h is a 
hild of a �xed representativev1 2 w1 for some v1 2 S(T ), and an edge from w1to w1 for ea
h leaf-node v 2 V (T ) whi
h is a 
hild ofsome �xed representative v1 2 w1 for some v1 2 S(T ).For the position w in our transporter CEG, we de�nethe 
oret F (w) to be w together with the set of out-going edges from w. We say that w1 and w2 are in thesame stage if:� the 
orets F (w1) and F (w2) are topologi
allyidenti
al,� there is a map between F (w1) and F (w2) su
hthat the edges in F (w2) are labelled, under thismap, by the same probabilities as the 
orrespond-ing edges in F (w1).The CEG C(T ) is then a mixed graph with vertex setW (C) equal to the vertex set of the transporter CEG,dire
ted edge set Ed(C) equal to the edge set of thetransporter CEG, and undire
ted edge set Eu(C) 
on-sisting of edges whi
h 
onne
t the 
omponent positions

of ea
h stage u 2 U(C), the set of stages. The CEG-
onstru
tion pro
ess is illustrated in Example 1, andan example CEG in Figure 2.Example 1Consider the tree in Figure 1 whi
h has 11 atoms (root-to-leaf paths). Symmetries in the tree allow us to storethe distribution in 5 
onditional tables whi
h 
ontain11 (6 free) probabilities. The transporter CEG is pro-du
ed by 
ombining the verti
es fv4; v5; v7g into oneposition w4, the verti
es fv6; v8g into one position w5,and all leaf-nodes into a single sink-node w1. TheCEG C (Figure 2) has an undire
ted edge 
onne
tingthe positions w1 and w2 as these lie in the same stage{ their 
orets are topologi
ally identi
al, and the edgesof these 
orets 
arry the same probabilities.
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i�ed through a parti
ularevent tree and statements about spe
i�
 developmentssharing the same distribution. Both of these properties
an be expressed verbally in terms of a general expla-nation of the unfolding of events, and therefore have ameaning that trans
ends the parti
ular instan
e.
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The analogue in the CEG of the 
lique in a BN is the
oret. Fast propagation algorithms for a simple CEGwere developed in Thwaites, Smith & Cowell (2008).These exploited the graph's embedded 
onditional in-dependen
ies to fa
torize its mass fun
tion over lo-
al masses on 
orets. In this paper we demonstratehow this fa
torization of the joint mass fun
tion overa given event spa
e 
an also be used as a framework forsear
hing over a spa
e of promising 
andidate CEGsto dis
over models that provide good qualitative expla-nations of the underlying data generating pro
ess of agiven data set. Be
ause these sear
h methods are sim-ilar to well known algorithms used for sear
hing BNswe are able to use similar arguments for setting up hy-perparameters over priors so that the priors over themodel spa
e de
ompose as 
olle
tions of lo
al beliefs.As the CEG 
an express a ri
her 
lass of 
onditionalindependen
e stru
tures than the BN, CEG model se-le
tion allows for the automati
 identi�
ation of moresubtle features of the data generating pro
ess than itwould be possible to express (and therefore to eval-uate) through the 
lass of BNs. Simple examples ofthe types of stru
ture that might exist and 
ould bedis
overed are given below.Se
tion 2 introdu
es the te
hniques for learning CEGsand 
ompares these with those for learning BNs. Se
-tion 3 
onsists of an example illustrating the advan-tages of sear
hing over the extended 
andidate setavailable when learning CEGs, and se
tion 4 
ontainsfurther dis
ussion of the theory.2 LEARNING CEGsThe reason the CEG shares the 
onjuga
y propertiesof the BN is that with 
omplete random sampling thelikelihood separates into produ
ts of terms whi
h areonly a fun
tion of parameters asso
iated with one 
om-ponent of the model. In the BN ea
h term is asso
iatedwith a variable and its parents; in the 
ase of the CEG,the model 
omponent is the 
oret. Furthermore, theterm in the likelihood 
orresponding to a parti
ular
oret is proportional to one obtained from multino-mial sampling on the set of units arriving at the rootof the 
oret.From our CEG de�nition, if w1; w2 2 u for some u,then the 
orresponding edges in the 
orets F (w1) andF (w2) 
arry the same probabilities. So, for ea
h mem-ber u of the set of stages pres
ribed by the model under
onsideration for our CEG, we 
an label the edges leav-ing u by their probabilities under this model. We 
anthen let xun be the total number of sample units pass-ing through an edge labelled �un; and the likelihoodL(�) for our CEG model is given by

L(�) =Yu Yn �unxunFor BNs, the assumptions of lo
al and global inde-penden
e, and the use of Diri
hlet priors ensures 
on-juga
y. The analogue for CEGs is to give the ve
-tors of probabilities asso
iated with the stages inde-pendent Diri
hlet distributions. Then the stru
tureof the likelihood L(�) results in prior and posteriordistributions for the CEG model whi
h are produ
tsof Diri
hlet densities. The result of this 
onjuga
y isthat the marginal likelihood of ea
h CEG is thereforethe produ
t of the marginal likelihoods of its 
ompo-nent 
orets. Expli
itly, the marginal likelihood of aCEG C isYu �(Pn �un)�(Pn(�un + xun))Yn �(�un + xun)�(�un)where, as above� u indexes the stages of C� n indexes the outgoing edges of ea
h stage� �un are the exponents of our Diri
hlet priors� xun are the data 
ountsAs we are a
tually interested in p(model j data), andthis is proportional to p(data j model)� p(model), weneed to set both parameter priors and prior probabil-ities for the possible models.Care needs to be taken when 
hoosing these param-eters if the model sele
tion algorithm is to fun
tioneÆ
iently. We return to this issue in se
tion 4, butnote that many aspe
ts have already been addressedby a number of authors for the spe
ial 
ase of BNs(see for example He
kerman (1998)), using 
on
eptsof distribution and independen
e equivalen
e, and pa-rameter modularity to ensure plausibly 
onsistent pri-ors over this 
lass. For a full Bayesian estimation with
onjugate lo
ally and globally independent priors, the
lass of BNs nests within the larger 
lass of CEGs.If we require (quite reasonably) that all BNs withinthe sub
lass of CEGs we are studying 
ontinue to re-spe
t these independen
e rules, whilst also retainingour 
oret independen
e, then the 
hoi
es of prior hy-perparameters are limited analogously with the 
lassof BNs. For example, if we sear
h over the 
lass of allCEGs whose underlying trees have a non prime num-ber of leaves, then using a result from Geiger & He
ker-man (1997), it 
an be shown that if we assign Markov
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equivalent models the same prior, then the joint dis-tribution on the leaves is ne
essarily a priori Diri
hlet(see Freeman & Smith (2009)). Modularity 
onditionsthen result in 
oret distributions being Diri
hlet andmutually independent.Exa
tly analogously with BNs, parameter modularityin CEGs implies that whenever CEG models sharesome aspe
t of their topology, we assign this aspe
tthe same prior distribution in ea
h model. When su
hpriors re
e
t our beliefs in a given 
ontext, this 
anredu
e our problem dramati
ally to one of simply ex-pressing prior beliefs about the possible 
oret distri-butions (ie. the lo
al di�eren
es in model stru
ture).As ea
h CEG model is essentially a partition of theverti
es in the underlying tree into sets of stages, thisrequirement ensures that when two partitions di�eronly in whether or not some subset of verti
es belongto the same stage, the prior expressions for the modelsdi�er only in the term relating to this stage. The sepa-ration of the likelihood means that this lo
al di�eren
eproperty is retained in the posterior distribution.Now, our 
andidate set is mu
h ri
her than the 
orre-sponding 
andidate BN set, and will probably 
ontainmodels we have not previously 
onsidered in our anal-ysis. Again, evoking modularity, if we have no infor-mation to suggest otherwise, we follow standard BNpra
ti
e and let p(model) be 
onstant for all models inthe 
lass of CEGs. We now use the logarithm of themarginal likelihood of a CEG model as its s
ore, andmaximise this s
ore over our set of 
andidate modelsto �nd the MAP model.Our expression has the ni
e property that the di�er-en
e in s
ore between two models whi
h are identi
alex
ept for a parti
ular subset of 
orets, is a fun
tionof the subs
ores only of the probability tables on the
orets where they di�er. Various fast deterministi
and sto
hasti
 algorithms 
an therefore be derived tosear
h over the model spa
e, even when this is large {see Freeman & Smith (2009) for examples of these inthe parti
ular 
ase where the underlying event tree is�xed. This property is of 
ourse shared by the 
lassof BNs.We set the priors of the hyperparameters so that they
orrespond to 
ounts of dummy units through thegraph. This 
an be done by setting a Diri
hlet dis-tribution on the root-to-sink paths, and for simpli
itywe 
hoose a uniform distribution for this. It is theneasy to 
he
k (see Freeman & Smith (2009)) that inthe spe
ial 
ase where the CEG is expressible as a BN,the CEG s
ore above is equal to the standard s
ore fora BN using the usual prior settings as re
ommendedin, for example, Cooper & Herskovits (1992) and He
k-erman, Geiger & Chi
kering (1995). As a 
omparison

with our CEG-expression; given Diri
hlet priors anda multivariate likelihood, the marginal likelihood on aBN is expressible asYi2V"Ym �(Pn �imn)�(Pn(�imn + ximn))Yn �(�imn + ximn)�(�imn) #where� i indexes the set of variables of the BN� n indexes the levels of the variable Xi� m indexes ve
tors of levels of the parental vari-ables of XiThe importan
e of this result is that were we �rst tosear
h the spa
e of BNs for the MAP model, thenwe 
ould seamlessly re�ne this model using the CEGsear
h s
ore des
ribed above. Su
h embellishmentswill allow us to sear
h over models 
ontaining 
on-text spe
i�
 information or Noisy AND/OR gates.Furthermore any model we �nd will have an asso
i-ated interpretation whi
h 
an be stated in 
ommonlanguage, and 
an be dis
ussed and 
ritiqued by our
lient/expert for its phenomenologi
al plausibility.For the CEG in Figure 2, we put a uniform prior overthe 11 root-to-leaf paths, whi
h in turn allows us to as-sign our stage priors as follows: we assign a Di(3; 4; 4)prior to the stage identi�ed by w0, a Di(3; 4) prior tothe stage u1 � (w1; w2), a Di(2; 2) prior to ea
h of thestages identi�ed by w3 and w5, and a Di(3; 3) priorto the stage identi�ed by w4. We would then have amarginal likelihood of�(11)�(11 +N) �(3 + x01)�(4 + x02)�(4 + x03)�(3)�(4)�(4)� �(7)�(7 + x01 + x02) �(3 + x14 + x24)�(4 + x15 + x25)�(3)�(4)� �(4)�(4 + x03) �(2 + x36)�(2 + x37)�(2)�(2)� �(6)�(6 + x15 + x24 + x36) �(3 + x48)�(3 + x49)�(3)�(3)� �(4)�(4 + x25 + x37) �(2 + x5�10)�(2 + x5�11)�(2)�(2)where, with a slight abuse of notation, we let for ex-ample x24 be the data value asso
iated with the edgeleaving w2 labelled �4; and where N is the sample size=P3n=1 x0n.Note that, as in this example, CEGs 
an be used todepi
t models whi
h admit known logi
al 
onstraints.
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If we attempt to express this parti
ular 
onstraintthrough a BN, we �nd that some variables have noout
omes given parti
ular ve
tors of values of an
es-tral variables. We 
annot simply set probabilities tozero in this instan
e as a Diri
hlet distribution is thenno longer appropriate and so the usual model sele
-tion pro
edures fails. Furthermore, this is one typeof s
enario whi
h 
annot be modelled adequately us-ing the standard 
lasses of 
ontext-spe
i�
 BNs. By
omparison, sin
e su
h models exist within the 
lassof CEG models, they 
an of 
ourse be revealed (and ifappropriate, sele
ted) by CEG-based 
onjugate sear
halgorithms.3 A SIMPLE SIMULATED MODELIn this se
tion we 
onsider a simple example whi
hdemonstrates the versatility of our method. Our 
lientis analysing a medi
al data set relating to an inher-ited 
ondition. A random sample of 100 (51 female,49 male) people has been taken from a populationwho have had re
ent an
estors with the 
ondition. Forea
h individual in the sample a re
ord has been kept ofwhether or not they displayed a parti
ular symptomin their teens, and whether or not they then devel-oped the 
ondition in middle age. The data is givenin Table 2, where A = 0; 1 
orresponds to female,male; B = 1 
orresponds to the individual display-ing the symptom; and C = 1 
orresponds to the indi-vidual developing the 
ondition. Our 
lient does notknow whether displaying the symptom is independentof gender, but having looked at the data, believes thatit is not.Table 2: Data for example (N = 100)A0 1B B0 1 0 1C 0 33 6 10 121 6 6 9 18Using his medi
al knowledge, our 
lient has de
idedthat the model lies in a 
andidate 
lass of six, butis unwilling to express any preferen
e for a parti
ularmodel within this set.In ea
h of these six models B is not independent ofA. The further 
onditional independen
e stru
ture ofthe models is given by (i) C q (A;B), (ii) C q A j B,(iii) CqB j A, (iv) CqB j (A = 1) (there is one distri-bution for developing the 
ondition given that genderis male), (v) CqA j (B = 1) (there is one distributionfor developing the 
ondition given that symptom was

displayed), (vi) Cq (A;B) jMAX(A;B) (there is onedistribution for developing the 
ondition given that anindividual is male OR displayed the symptom, and onedistribution for developing the 
ondition given that anindividual is female AND did not display the symptom{ a Noisy OR gate).The models are depi
ted in Figure 3. Only the �rstthree of these models 
an be represented as BNs, withthe fourth and �fth as 
ontext-spe
i�
 BNs of the typedes
ribed in, for example, Boutilier et al (1996) orPoole & Zhang (2003). The sixth would need us to
reate new variables in order for us to represent it as aBN { another example would be C q (A;B) j ��A�B��,whi
h has a CEG similar to that of (ii), but with theedges leaving w2 swapped so that B = 1 j A = 1 is theedge from w2 to w3, and B = 0 j A = 1 is the edgefrom w2 to w4.We 
an read, for example CEG (ii) as follows:� w1 and w2 are not in the same stage, so A /q B,� edges labelled B = 0 
onverge at w3, soC q A j (B = 0). Similarly, edges labelled B = 1
onverge at w4, so CqA j (B = 1), and 
ombiningthese we get C q A j B.In CEG (v) by 
ontrast:� edges labelled B = 1 
onverge at a single position,so C q A j (B = 1), but edges labelled B = 0 donot, so we do not have C q A j (B = 0).The CEG portrays the 
ontext-spe
i�
 
onditional in-dependen
e properties of the model in its topology {the 
ontext-spe
i�
 BN does not.Note that our 
lient's 
andidate set is a restri
tionof the set of possible models { he has for instan
edismissed models whi
h en
ode statements su
h asC q B j (A = 0) or C q A j (B = 0) and all mod-els where A q B. In fa
t there are 15 possible modelsin the full 
andidate set if we require A to be a parentof B and B to be a temporal prede
essor of C, and 30if we relax the parental 
ondition, but require that A isa temporal prede
essor of B is a temporal prede
essorof C. Note that there are only 4 possible BNs where Ais a parent of B and B is a temporal prede
essor of C,and 8 possible BNs where A is a temporal prede
essorof B is a temporal prede
essor of C. By using CEGswe 
an qui
kly have a 
lear idea of the full range of
andidate models, and also our learning method worksfor all models in this range, in
luding models su
h asC q (A;B) j MAX(A;B) or C q (A;B) j ��A�B��.
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Figure 3: CEGs in our 
andidate setAs our 
lient has no parti
ular preferen
e for any ofthe six models, it makes sense to let p(model) be a
onstant value for all models in the 
andidate set,as suggested in se
tion 2. This allows us to usep(data j model) as a measure for p(model j data), andwe 
an then let the s
ore of a model be its log marginallikelihood.The three models expressible as BNs 
ould of 
ourse bes
ored using the expression for BNs given above, andthis would give us the same answer as our method us-ing CEGs. But note that the BN-expressions for thesemodels are more 
omplex and less transparent thanour CEG-expressions. We 
ould perhaps use a learningmethod spe
i�
ally adapted for 
ontext-spe
i�
 BNsto s
ore the fourth and �fth models (see for exampleFeelders & van der Gaag (2005)), but it is not evidenthow we would s
ore the sixth model (
onsistently withthe s
oring of the other models) using a BN-based ap-proa
h.The s
ore for model (i) de
omposes into four 
ompo-nents asso
iated with the 
orets at w0; w1; w2 and w3.The 
omponents asso
iated with the 
orets at w0; w1and w2 are retained in the remaining �ve models, so
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the s
ores of the six models di�er only in the 
om-ponents asso
iated with the 
orets at fwigi�3. S
or-ing our 6 models we obtain -202.79, -199.37, -199.15,-197.58, -197.53 and -196.45. We 
an see that model (i)is the least appropriate, indi
ating that C /q (A;B) andthat there must be some sort of dependen
y of C on Aand/or B. Models (iv), (v) and (vi) s
ore better thanmodels (ii) and (iii), indi
ating that this dependen
yis at best 
ontext-spe
i�
, and that the most appro-priate model is not going to be expressible as a BN. Infa
t the best model in the 
andidate set is the NoisyOR gate, a model whi
h 
ould not be sele
ted by astandard BN-based learning algorithm.Looking at the CEGs in Figure 3, we 
an see that mod-els (iv) and (vi) 
an be arrived at by making one alter-ation to model (iii), and that models (v) and (vi) 
anbe arrived at by making one alteration to model (ii). Itis easy to see how eÆ
ient algorithms 
ould be 
reatedto sear
h over the model spa
e in this example.Returning to the premise of our example, we sharethese results with our 
lient, who then wants us to
he
k whether a Noisy OR gate with AqB might s
orebetter than CEG model (vi). This model is depi
tedin Figure 4. The additional information in this CEG
an be read as follows:� there is an undire
ted edge 
onne
ting w1 and w2,so these two positions are in the same stage. Nowpositions in the same stage have their edges la-belled identi
ally, so the edges leaving w1 and w2have labels that do not depend on the value of A.Consequently Aq B.The s
ore for this new model is -202.09, indi
atingthat this model is not as good as model (vi). This isunsurprising given that the data in Table 1 suggestsstrongly that A is not independent of B.
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4 DISCUSSIONClearly, sear
hing over the 
lass of CEGs is dire
tlyanalogous to sear
hing over the 
lass of BNs, but the
lass of CEG models is mu
h more expressive. Thisri
hness has an asso
iated disadvantage { the 
lass ofall BNs is already diÆ
ult to sear
h in large problems,and various methods have been developed to restri
tthe sear
h to subsets of the 
lass (see for example vanGerven & Lu
as (2004), where the 
lass of BNs thathave edge-
on�gurations 
onsistent with a given span-ning tree are sear
hed). The number of possible CEGsavailable for even a small number of verti
es is ex-tremely large. Therefore, in even moderately sizedproblems it is usually eÆ
a
ious to �rst restri
t themodel 
lass to something smaller.Be
ause ea
h model in this 
lass is qualitatively ex-pressed in any given 
ontext, this task is mu
h eas-ier than it might �rst appear. Thus, for example, inthe edu
ational examples 
onsidered in Freeman andSmith (2009), the 
ontext demands that the under-lying event tree is 
onsistent with the order studentsstudy 
ourses, and that 
ertain verti
es 
ould neverreasonably be 
ombined into the same stage. Thesesorts of 
ontextually de�ned 
onstraints 
an readily bein
orporated into 
ustomized sear
h algorithms, andthe eÆ
ien
y of the sear
h pro
edure improved. Thus,although more e�ort is needed to set up 
ustomizedsear
h spa
es for CEGs than for BNs, we have foundthat the subsequent dire
t interpretability of any MAPmodel more than 
ompensates for this e�ort.It is also not unusual for more quantitative informa-tion to be available, su
h as one type of stage 
ombi-nation being proportionately more probable than an-other. This 
an allow one to usefully further re�ne andimprove the sear
h, although then the framework theCEG provides is no longer totally qualitative.Silander et al (2007) have demonstrated that MAPmodel sele
tion on the 
lass of BNs 
an be sensitive tohow priors are set, even when these priors are 
onju-gate produ
t Diri
hlets. Extending this idea to CEGmodel sele
tion, it may be insuÆ
ient simply to statethat we are setting a uniform Diri
hlet prior on theroot-to-sink paths; we may also need to exer
ise 
arein the 
hoi
e of a s
ale parameter for this distribu-tion. This requires an expli
it evaluation of the over-all strength of prior beliefs, whi
h 
an then be spe
-i�ed via the equivalent size (
ount of dummy units)assigned in the prior to ea
h root-to-leaf path of theunderlying tree. If an analyst does not feel suÆ
iently
on�dent in making this 
hoi
e, we note that otherBayesian model sele
tion methods (for example usingthe Bayesian Information Criterion BIC) 
ould easily
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be modi�ed for use with the set of CEG models.Of 
ourse, just as with BNs, the 
onjuga
y does notne
essarily 
ontinue to hold when sampling is not 
om-plete. In this 
ase approximate or numeri
al sear
halgorithms need to be employed with 
onsequent lossof a

ura
y or speed in s
oring and 
omparing mod-els. However in this 
ase the methods for estimatingBNs with missing values (see for example Riggelsen(2004)) 
an usually be extended so that they also ap-ply to CEGs. We will report on our �ndings on thistopi
 in a later paper.Lastly, it might be argued that 
ontext-spe
i�
 BNs
an be used to portray any set of 
onditional inde-penden
e properties of a model, and that it would bea better use of resour
es developing improved learn-ing methods for these graphs. In fa
t, as noted inse
tion 2, there are signi�
ant sets of s
enarios whi
h
annot easily be modelled with 
ontext-spe
i�
 BNs,whi
h 
an none-the-less be modelled with CEGs. Moreimportantly perhaps, an analyst modelling with BNsand their variants may not be aware just how manydi�erent models are available as possible explanationsof the underlying data generating pro
ess of their dataset. This is not a problem en
ountered by the analystmodelling with CEGs.A
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