
Chain Event Graph MAP model seletion
Peter A. Thwaites, Guy Freeman and Jim Q. SmithDepartment of StatistisUniversity of WarwikCoventry UK CV4 7ALAbstratWhen looking for general struture from a �-nite disrete data set it is quite ommon tosearh over the lass of Bayesian Networks(BNs). The lass of Chain Event Graph(CEG) models is however muh more expres-sive and is partiularly suited to depitinghypotheses about how situations might un-fold. The CEG retains many of the desirablequalities of the BN. In partiular it admitsonjugate learning on its onditional proba-bility parameters using produt Dirihlet pri-ors. The Bayes Fators assoiated with di�er-ent CEG models an therefore be alulatedin an expliit losed form, whih means thatsearh for the maximum a posteriori (MAP)model in this lass an be enated by evalu-ating the sore funtion of suessive modelsand optimizing. As with BNs, by hoosing anappropriate prior over the model spae, theonjugay property ensures that this sorefuntion is linear in the di�erent omponentsof the CEG model. Loal searh algorithmsan therefore be devised whih unveil therih lass of andidate explanatory models,and allow us to selet the most appropriate.In this paper we onentrate on this disov-ery proess and upon the soring of modelswithin this lass.1 INTRODUCTIONThe Chain Event Graph (CEG), introdued in Smith& Anderson (2008), Thwaites, Smith & Cowell (2008)and Smith, Riomagno & Thwaites (2009), is a graph-ial model spei�ally designed to embody the ondi-tional independene struture of problems whose statespaes are highly asymmetri and do not admit a nat-ural produt struture. There are many senarios in

mediine, biology and eduation where suh asymme-tries arise naturally (for examples see Smith & Ander-son (2008)), and where the main features of the modellass annot be fully aptured by a single BN or even aontext spei� BN. A key property of the CEG frame-work is that these graphial models are qualitative intheir topologies { they enode sets of onditional inde-pendene statements about how things might happen,without prespeifying the probabilities assoiated withthese events. Eah CEG model an therefore be identi-�ed with a unique explanation of how situations mightunfold.For a detailed formal desription and motivation forusing a CEG model and an outline of some of its im-pliit onditional independene struture see Smith &Anderson (2008). In this paper it was shown that theCEG is a more expressive graphial model than theBN in that any asymmetries are represented expliitlyin the topology of the CEG, and in that CEGs anbe used to express a muh riher set of onditional in-dependene statements not simultaneously expressiblethrough a single BN. It was also shown that the lassof BNs is ontained within that of CEGs. This is aproperty whih we exploit later, sine with appropri-ate prior settings, it follows that BN model seletionproedures an be nested within those for CEGs.The CEG is an event-based (rather than variable-based) graphial model, and is a funtion of an eventtree. Any problem on a �nite disrete data set anbe modelled using an event tree, but they are partiu-larly suited to problems with asymmetri state spaes.Unfortunately, it is almost impossible to read the on-ditional independene properties of a model from anevent tree representation, as only trivial independen-ies are expressed within its topology. The CEG el-egantly solves this problem, enoding a rih lass ofonditional independene statements through its edgeand vertex struture.So onsider an event tree T with vertex set V (T ), di-
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reted edge set E(T ), and S(T ) � V (T ), the set of thetree's non-leaf verties or situations (Shafer (1996)). Aprobability tree an then be spei�ed by a transitionmatrix on V (T ), where absorbing states orrespond toleaf-verties. Transition probabilities are zero exeptfor transitions to a situation's hildren (see Table 1).Table 1: Part of the transition matrix for Example 1v1 v2 v3 v4 v5 v6 : : : v11 v21 : : :v0 �1 �2 �3 0 0 0 : : : 0 0 : : :v1 0 0 0 �5 0 0 : : : �4 0 : : :v2 0 0 0 0 �4 �5 : : : 0 0 : : :... ... ... ... ...Let T (v) be the subtree rooted in the situation v whihontains all verties after v in T . We say that v1 andv2 are in the same position if:� the trees T (v1) and T (v2) are topologially iden-tial,� there is a map between T (v1) and T (v2) suh thatthe edges in T (v2) are labelled, under this map, bythe same probabilities as the orresponding edgesin T (v1).The set W (T ) of positions w partitions S(T ). Thetransporter CEG (Thwaites, Smith & Cowell 2008) isa direted graph with verties W (T )[ fw1g, with anan edge e from w1 to w2 6= w1 for eah situationv2 2 w2 whih is a hild of a �xed representativev1 2 w1 for some v1 2 S(T ), and an edge from w1to w1 for eah leaf-node v 2 V (T ) whih is a hild ofsome �xed representative v1 2 w1 for some v1 2 S(T ).For the position w in our transporter CEG, we de�nethe oret F (w) to be w together with the set of out-going edges from w. We say that w1 and w2 are in thesame stage if:� the orets F (w1) and F (w2) are topologiallyidential,� there is a map between F (w1) and F (w2) suhthat the edges in F (w2) are labelled, under thismap, by the same probabilities as the orrespond-ing edges in F (w1).The CEG C(T ) is then a mixed graph with vertex setW (C) equal to the vertex set of the transporter CEG,direted edge set Ed(C) equal to the edge set of thetransporter CEG, and undireted edge set Eu(C) on-sisting of edges whih onnet the omponent positions

of eah stage u 2 U(C), the set of stages. The CEG-onstrution proess is illustrated in Example 1, andan example CEG in Figure 2.Example 1Consider the tree in Figure 1 whih has 11 atoms (root-to-leaf paths). Symmetries in the tree allow us to storethe distribution in 5 onditional tables whih ontain11 (6 free) probabilities. The transporter CEG is pro-dued by ombining the verties fv4; v5; v7g into oneposition w4, the verties fv6; v8g into one position w5,and all leaf-nodes into a single sink-node w1. TheCEG C (Figure 2) has an undireted edge onnetingthe positions w1 and w2 as these lie in the same stage{ their orets are topologially idential, and the edgesof these orets arry the same probabilities.
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The analogue in the CEG of the lique in a BN is theoret. Fast propagation algorithms for a simple CEGwere developed in Thwaites, Smith & Cowell (2008).These exploited the graph's embedded onditional in-dependenies to fatorize its mass funtion over lo-al masses on orets. In this paper we demonstratehow this fatorization of the joint mass funtion overa given event spae an also be used as a framework forsearhing over a spae of promising andidate CEGsto disover models that provide good qualitative expla-nations of the underlying data generating proess of agiven data set. Beause these searh methods are sim-ilar to well known algorithms used for searhing BNswe are able to use similar arguments for setting up hy-perparameters over priors so that the priors over themodel spae deompose as olletions of loal beliefs.As the CEG an express a riher lass of onditionalindependene strutures than the BN, CEG model se-letion allows for the automati identi�ation of moresubtle features of the data generating proess than itwould be possible to express (and therefore to eval-uate) through the lass of BNs. Simple examples ofthe types of struture that might exist and ould bedisovered are given below.Setion 2 introdues the tehniques for learning CEGsand ompares these with those for learning BNs. Se-tion 3 onsists of an example illustrating the advan-tages of searhing over the extended andidate setavailable when learning CEGs, and setion 4 ontainsfurther disussion of the theory.2 LEARNING CEGsThe reason the CEG shares the onjugay propertiesof the BN is that with omplete random sampling thelikelihood separates into produts of terms whih areonly a funtion of parameters assoiated with one om-ponent of the model. In the BN eah term is assoiatedwith a variable and its parents; in the ase of the CEG,the model omponent is the oret. Furthermore, theterm in the likelihood orresponding to a partiularoret is proportional to one obtained from multino-mial sampling on the set of units arriving at the rootof the oret.From our CEG de�nition, if w1; w2 2 u for some u,then the orresponding edges in the orets F (w1) andF (w2) arry the same probabilities. So, for eah mem-ber u of the set of stages presribed by the model underonsideration for our CEG, we an label the edges leav-ing u by their probabilities under this model. We anthen let xun be the total number of sample units pass-ing through an edge labelled �un; and the likelihoodL(�) for our CEG model is given by

L(�) =Yu Yn �unxunFor BNs, the assumptions of loal and global inde-pendene, and the use of Dirihlet priors ensures on-jugay. The analogue for CEGs is to give the ve-tors of probabilities assoiated with the stages inde-pendent Dirihlet distributions. Then the strutureof the likelihood L(�) results in prior and posteriordistributions for the CEG model whih are produtsof Dirihlet densities. The result of this onjugay isthat the marginal likelihood of eah CEG is thereforethe produt of the marginal likelihoods of its ompo-nent orets. Expliitly, the marginal likelihood of aCEG C isYu �(Pn �un)�(Pn(�un + xun))Yn �(�un + xun)�(�un)where, as above� u indexes the stages of C� n indexes the outgoing edges of eah stage� �un are the exponents of our Dirihlet priors� xun are the data ountsAs we are atually interested in p(model j data), andthis is proportional to p(data j model)� p(model), weneed to set both parameter priors and prior probabil-ities for the possible models.Care needs to be taken when hoosing these param-eters if the model seletion algorithm is to funtioneÆiently. We return to this issue in setion 4, butnote that many aspets have already been addressedby a number of authors for the speial ase of BNs(see for example Hekerman (1998)), using oneptsof distribution and independene equivalene, and pa-rameter modularity to ensure plausibly onsistent pri-ors over this lass. For a full Bayesian estimation withonjugate loally and globally independent priors, thelass of BNs nests within the larger lass of CEGs.If we require (quite reasonably) that all BNs withinthe sublass of CEGs we are studying ontinue to re-spet these independene rules, whilst also retainingour oret independene, then the hoies of prior hy-perparameters are limited analogously with the lassof BNs. For example, if we searh over the lass of allCEGs whose underlying trees have a non prime num-ber of leaves, then using a result from Geiger & Heker-man (1997), it an be shown that if we assign Markov
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equivalent models the same prior, then the joint dis-tribution on the leaves is neessarily a priori Dirihlet(see Freeman & Smith (2009)). Modularity onditionsthen result in oret distributions being Dirihlet andmutually independent.Exatly analogously with BNs, parameter modularityin CEGs implies that whenever CEG models sharesome aspet of their topology, we assign this aspetthe same prior distribution in eah model. When suhpriors reet our beliefs in a given ontext, this anredue our problem dramatially to one of simply ex-pressing prior beliefs about the possible oret distri-butions (ie. the loal di�erenes in model struture).As eah CEG model is essentially a partition of theverties in the underlying tree into sets of stages, thisrequirement ensures that when two partitions di�eronly in whether or not some subset of verties belongto the same stage, the prior expressions for the modelsdi�er only in the term relating to this stage. The sepa-ration of the likelihood means that this loal di�ereneproperty is retained in the posterior distribution.Now, our andidate set is muh riher than the orre-sponding andidate BN set, and will probably ontainmodels we have not previously onsidered in our anal-ysis. Again, evoking modularity, if we have no infor-mation to suggest otherwise, we follow standard BNpratie and let p(model) be onstant for all models inthe lass of CEGs. We now use the logarithm of themarginal likelihood of a CEG model as its sore, andmaximise this sore over our set of andidate modelsto �nd the MAP model.Our expression has the nie property that the di�er-ene in sore between two models whih are identialexept for a partiular subset of orets, is a funtionof the subsores only of the probability tables on theorets where they di�er. Various fast deterministiand stohasti algorithms an therefore be derived tosearh over the model spae, even when this is large {see Freeman & Smith (2009) for examples of these inthe partiular ase where the underlying event tree is�xed. This property is of ourse shared by the lassof BNs.We set the priors of the hyperparameters so that theyorrespond to ounts of dummy units through thegraph. This an be done by setting a Dirihlet dis-tribution on the root-to-sink paths, and for simpliitywe hoose a uniform distribution for this. It is theneasy to hek (see Freeman & Smith (2009)) that inthe speial ase where the CEG is expressible as a BN,the CEG sore above is equal to the standard sore fora BN using the usual prior settings as reommendedin, for example, Cooper & Herskovits (1992) and Hek-erman, Geiger & Chikering (1995). As a omparison

with our CEG-expression; given Dirihlet priors anda multivariate likelihood, the marginal likelihood on aBN is expressible asYi2V"Ym �(Pn �imn)�(Pn(�imn + ximn))Yn �(�imn + ximn)�(�imn) #where� i indexes the set of variables of the BN� n indexes the levels of the variable Xi� m indexes vetors of levels of the parental vari-ables of XiThe importane of this result is that were we �rst tosearh the spae of BNs for the MAP model, thenwe ould seamlessly re�ne this model using the CEGsearh sore desribed above. Suh embellishmentswill allow us to searh over models ontaining on-text spei� information or Noisy AND/OR gates.Furthermore any model we �nd will have an assoi-ated interpretation whih an be stated in ommonlanguage, and an be disussed and ritiqued by ourlient/expert for its phenomenologial plausibility.For the CEG in Figure 2, we put a uniform prior overthe 11 root-to-leaf paths, whih in turn allows us to as-sign our stage priors as follows: we assign a Di(3; 4; 4)prior to the stage identi�ed by w0, a Di(3; 4) prior tothe stage u1 � (w1; w2), a Di(2; 2) prior to eah of thestages identi�ed by w3 and w5, and a Di(3; 3) priorto the stage identi�ed by w4. We would then have amarginal likelihood of�(11)�(11 +N) �(3 + x01)�(4 + x02)�(4 + x03)�(3)�(4)�(4)� �(7)�(7 + x01 + x02) �(3 + x14 + x24)�(4 + x15 + x25)�(3)�(4)� �(4)�(4 + x03) �(2 + x36)�(2 + x37)�(2)�(2)� �(6)�(6 + x15 + x24 + x36) �(3 + x48)�(3 + x49)�(3)�(3)� �(4)�(4 + x25 + x37) �(2 + x5�10)�(2 + x5�11)�(2)�(2)where, with a slight abuse of notation, we let for ex-ample x24 be the data value assoiated with the edgeleaving w2 labelled �4; and where N is the sample size=P3n=1 x0n.Note that, as in this example, CEGs an be used todepit models whih admit known logial onstraints.
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If we attempt to express this partiular onstraintthrough a BN, we �nd that some variables have nooutomes given partiular vetors of values of anes-tral variables. We annot simply set probabilities tozero in this instane as a Dirihlet distribution is thenno longer appropriate and so the usual model sele-tion proedures fails. Furthermore, this is one typeof senario whih annot be modelled adequately us-ing the standard lasses of ontext-spei� BNs. Byomparison, sine suh models exist within the lassof CEG models, they an of ourse be revealed (and ifappropriate, seleted) by CEG-based onjugate searhalgorithms.3 A SIMPLE SIMULATED MODELIn this setion we onsider a simple example whihdemonstrates the versatility of our method. Our lientis analysing a medial data set relating to an inher-ited ondition. A random sample of 100 (51 female,49 male) people has been taken from a populationwho have had reent anestors with the ondition. Foreah individual in the sample a reord has been kept ofwhether or not they displayed a partiular symptomin their teens, and whether or not they then devel-oped the ondition in middle age. The data is givenin Table 2, where A = 0; 1 orresponds to female,male; B = 1 orresponds to the individual display-ing the symptom; and C = 1 orresponds to the indi-vidual developing the ondition. Our lient does notknow whether displaying the symptom is independentof gender, but having looked at the data, believes thatit is not.Table 2: Data for example (N = 100)A0 1B B0 1 0 1C 0 33 6 10 121 6 6 9 18Using his medial knowledge, our lient has deidedthat the model lies in a andidate lass of six, butis unwilling to express any preferene for a partiularmodel within this set.In eah of these six models B is not independent ofA. The further onditional independene struture ofthe models is given by (i) C q (A;B), (ii) C q A j B,(iii) CqB j A, (iv) CqB j (A = 1) (there is one distri-bution for developing the ondition given that genderis male), (v) CqA j (B = 1) (there is one distributionfor developing the ondition given that symptom was

displayed), (vi) Cq (A;B) jMAX(A;B) (there is onedistribution for developing the ondition given that anindividual is male OR displayed the symptom, and onedistribution for developing the ondition given that anindividual is female AND did not display the symptom{ a Noisy OR gate).The models are depited in Figure 3. Only the �rstthree of these models an be represented as BNs, withthe fourth and �fth as ontext-spei� BNs of the typedesribed in, for example, Boutilier et al (1996) orPoole & Zhang (2003). The sixth would need us toreate new variables in order for us to represent it as aBN { another example would be C q (A;B) j ��A�B��,whih has a CEG similar to that of (ii), but with theedges leaving w2 swapped so that B = 1 j A = 1 is theedge from w2 to w3, and B = 0 j A = 1 is the edgefrom w2 to w4.We an read, for example CEG (ii) as follows:� w1 and w2 are not in the same stage, so A /q B,� edges labelled B = 0 onverge at w3, soC q A j (B = 0). Similarly, edges labelled B = 1onverge at w4, so CqA j (B = 1), and ombiningthese we get C q A j B.In CEG (v) by ontrast:� edges labelled B = 1 onverge at a single position,so C q A j (B = 1), but edges labelled B = 0 donot, so we do not have C q A j (B = 0).The CEG portrays the ontext-spei� onditional in-dependene properties of the model in its topology {the ontext-spei� BN does not.Note that our lient's andidate set is a restritionof the set of possible models { he has for instanedismissed models whih enode statements suh asC q B j (A = 0) or C q A j (B = 0) and all mod-els where A q B. In fat there are 15 possible modelsin the full andidate set if we require A to be a parentof B and B to be a temporal predeessor of C, and 30if we relax the parental ondition, but require that A isa temporal predeessor of B is a temporal predeessorof C. Note that there are only 4 possible BNs where Ais a parent of B and B is a temporal predeessor of C,and 8 possible BNs where A is a temporal predeessorof B is a temporal predeessor of C. By using CEGswe an quikly have a lear idea of the full range ofandidate models, and also our learning method worksfor all models in this range, inluding models suh asC q (A;B) j MAX(A;B) or C q (A;B) j ��A�B��.
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Figure 3: CEGs in our andidate setAs our lient has no partiular preferene for any ofthe six models, it makes sense to let p(model) be aonstant value for all models in the andidate set,as suggested in setion 2. This allows us to usep(data j model) as a measure for p(model j data), andwe an then let the sore of a model be its log marginallikelihood.The three models expressible as BNs ould of ourse besored using the expression for BNs given above, andthis would give us the same answer as our method us-ing CEGs. But note that the BN-expressions for thesemodels are more omplex and less transparent thanour CEG-expressions. We ould perhaps use a learningmethod spei�ally adapted for ontext-spei� BNsto sore the fourth and �fth models (see for exampleFeelders & van der Gaag (2005)), but it is not evidenthow we would sore the sixth model (onsistently withthe soring of the other models) using a BN-based ap-proah.The sore for model (i) deomposes into four ompo-nents assoiated with the orets at w0; w1; w2 and w3.The omponents assoiated with the orets at w0; w1and w2 are retained in the remaining �ve models, so
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the sores of the six models di�er only in the om-ponents assoiated with the orets at fwigi�3. Sor-ing our 6 models we obtain -202.79, -199.37, -199.15,-197.58, -197.53 and -196.45. We an see that model (i)is the least appropriate, indiating that C /q (A;B) andthat there must be some sort of dependeny of C on Aand/or B. Models (iv), (v) and (vi) sore better thanmodels (ii) and (iii), indiating that this dependenyis at best ontext-spei�, and that the most appro-priate model is not going to be expressible as a BN. Infat the best model in the andidate set is the NoisyOR gate, a model whih ould not be seleted by astandard BN-based learning algorithm.Looking at the CEGs in Figure 3, we an see that mod-els (iv) and (vi) an be arrived at by making one alter-ation to model (iii), and that models (v) and (vi) anbe arrived at by making one alteration to model (ii). Itis easy to see how eÆient algorithms ould be reatedto searh over the model spae in this example.Returning to the premise of our example, we sharethese results with our lient, who then wants us tohek whether a Noisy OR gate with AqB might sorebetter than CEG model (vi). This model is depitedin Figure 4. The additional information in this CEGan be read as follows:� there is an undireted edge onneting w1 and w2,so these two positions are in the same stage. Nowpositions in the same stage have their edges la-belled identially, so the edges leaving w1 and w2have labels that do not depend on the value of A.Consequently Aq B.The sore for this new model is -202.09, indiatingthat this model is not as good as model (vi). This isunsurprising given that the data in Table 1 suggestsstrongly that A is not independent of B.
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Figure 4: CEG for new Aq B model

4 DISCUSSIONClearly, searhing over the lass of CEGs is diretlyanalogous to searhing over the lass of BNs, but thelass of CEG models is muh more expressive. Thisrihness has an assoiated disadvantage { the lass ofall BNs is already diÆult to searh in large problems,and various methods have been developed to restritthe searh to subsets of the lass (see for example vanGerven & Luas (2004), where the lass of BNs thathave edge-on�gurations onsistent with a given span-ning tree are searhed). The number of possible CEGsavailable for even a small number of verties is ex-tremely large. Therefore, in even moderately sizedproblems it is usually eÆaious to �rst restrit themodel lass to something smaller.Beause eah model in this lass is qualitatively ex-pressed in any given ontext, this task is muh eas-ier than it might �rst appear. Thus, for example, inthe eduational examples onsidered in Freeman andSmith (2009), the ontext demands that the under-lying event tree is onsistent with the order studentsstudy ourses, and that ertain verties ould neverreasonably be ombined into the same stage. Thesesorts of ontextually de�ned onstraints an readily beinorporated into ustomized searh algorithms, andthe eÆieny of the searh proedure improved. Thus,although more e�ort is needed to set up ustomizedsearh spaes for CEGs than for BNs, we have foundthat the subsequent diret interpretability of any MAPmodel more than ompensates for this e�ort.It is also not unusual for more quantitative informa-tion to be available, suh as one type of stage ombi-nation being proportionately more probable than an-other. This an allow one to usefully further re�ne andimprove the searh, although then the framework theCEG provides is no longer totally qualitative.Silander et al (2007) have demonstrated that MAPmodel seletion on the lass of BNs an be sensitive tohow priors are set, even when these priors are onju-gate produt Dirihlets. Extending this idea to CEGmodel seletion, it may be insuÆient simply to statethat we are setting a uniform Dirihlet prior on theroot-to-sink paths; we may also need to exerise arein the hoie of a sale parameter for this distribu-tion. This requires an expliit evaluation of the over-all strength of prior beliefs, whih an then be spe-i�ed via the equivalent size (ount of dummy units)assigned in the prior to eah root-to-leaf path of theunderlying tree. If an analyst does not feel suÆientlyon�dent in making this hoie, we note that otherBayesian model seletion methods (for example usingthe Bayesian Information Criterion BIC) ould easily
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be modi�ed for use with the set of CEG models.Of ourse, just as with BNs, the onjugay does notneessarily ontinue to hold when sampling is not om-plete. In this ase approximate or numerial searhalgorithms need to be employed with onsequent lossof auray or speed in soring and omparing mod-els. However in this ase the methods for estimatingBNs with missing values (see for example Riggelsen(2004)) an usually be extended so that they also ap-ply to CEGs. We will report on our �ndings on thistopi in a later paper.Lastly, it might be argued that ontext-spei� BNsan be used to portray any set of onditional inde-pendene properties of a model, and that it would bea better use of resoures developing improved learn-ing methods for these graphs. In fat, as noted insetion 2, there are signi�ant sets of senarios whihannot easily be modelled with ontext-spei� BNs,whih an none-the-less be modelled with CEGs. Moreimportantly perhaps, an analyst modelling with BNsand their variants may not be aware just how manydi�erent models are available as possible explanationsof the underlying data generating proess of their dataset. This is not a problem enountered by the analystmodelling with CEGs.AknowledgementsThis researh has been partly funded by the UK En-gineering and Physial Sienes Researh Counil aspart of the projet Chain Event Graphs: Semantisand Inferene (grant no. EP/F036752/1).Referenes[1℄ C. Boutilier, N. Friedman, M. Goldszmidt, andD. Koller. Context-spei� independene inBayesian Networks. In Proeedings of the 12thConferene on Unertainty in Arti�ial Intelli-gene, pages 115{123, Portland, Oregon, 1996.[2℄ G. F. Cooper and E. Herskovits. A Bayesianmethod for the indution of Probabilisti Net-works from data. Mahine Learning, 9(4):309{347, 1992.[3℄ A. Feelders and L. van der Gaag. LearningBayesian Network parameters with prior knowl-edge about ontext-spei� qualitative inuenes.In Proeedings of the 21st Conferene on Uner-tainty in Arti�ial Intelligene, Arlington, Vir-ginia, 2005.[4℄ G. Freeman and J. Q. Smith. Bayesian model se-letion of Chain Event Graphs. Researh Report,CRiSM, 2009.

[5℄ D. Geiger and D. Hekerman. A harateriza-tion of the Dirihlet distribution through Globaland Loal independene. Annals of Statistis,25:1344{1369, 1997.[6℄ D. Hekerman. A tutorial on Learning withBayesian Networks. In M. I. Jordan, editor,Learning in Graphial Models, pages 301{354.MIT Press, 1998.[7℄ D. Hekerman, D. Geiger, and D. Chikering.Learning Bayesian Networks: The ombination ofknowledge and statistial data. Mahine Learn-ing, 20:197{243, 1995.[8℄ D. Poole and N. L. Zhang. Exploiting ontextualindependene in probabilisti inferene. Jour-nal of Arti�ial Intelligene Researh, 18:263{313,2003.[9℄ C. Riggelsen. Learning Bayesian Network param-eters from inomplete data using importane sam-pling. In Proeedings of the 2nd European Work-shop on Probabilisti Graphial Models, pages169{176, Leiden, 2004.[10℄ G. Shafer. The Art of Causal Conjeture. MITPress, 1996.[11℄ T. Silander, P. Kontkanen, and P. Myllymaki.On the sensitivity of the MAP Bayesian Networkstruture to the equivalent sample size parameter.In Proeedings of the 23rd Conferene on Uner-tainty in Arti�ial Intelligene, Vanouver, 2007.[12℄ J. Q. Smith and P. E. Anderson. Conditional in-dependene and Chain Event Graphs. Arti�ialIntelligene, 172:42{68, 2008.[13℄ J. Q. Smith, E. M. Riomagno, and P. A.Thwaites. Causal analysis with Chain EventGraphs. Submitted to Arti�ial Intelligene,2009.[14℄ P. A. Thwaites, J. Q. Smith, and R. G. Cowell.Propagation using Chain Event Graphs. In Pro-eedings of the 24th Conferene on Unertainty inArti�ial Intelligene, Helsinki, 2008.[15℄ M. A. J. van Gerven and P. J. F. Luas. Us-ing bakground knowledge to onstrut Bayesianlassi�ers for data-poor domains. In Proeedingsof the 2nd European Workshop on ProbabilistiGraphial Models, Leiden, 2004.

CRiSM Paper No. 09-07, www.warwick.ac.uk/go/crism


