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Abstract

When looking for general structure from a fi-
nite discrete data set it is quite common to
search over the class of Bayesian Networks
(BNs). The class of Chain Event Graph
(CEG) models is however much more expres-
sive and is particularly suited to depicting
hypotheses about how situations might un-
fold. The CEG retains many of the desirable
qualities of the BN. In particular it admits
conjugate learning on its conditional proba-
bility parameters using product Dirichlet pri-
ors. The Bayes Factors associated with differ-
ent CEG models can therefore be calculated
in an explicit closed form, which means that
search for the maximum a posteriori (MAP)
model in this class can be enacted by evalu-
ating the score function of successive models
and optimizing. As with BNs, by choosing an
appropriate prior over the model space, the
conjugacy property ensures that this score
function is linear in the different components
of the CEG model. Local search algorithms
can therefore be devised which unveil the
rich class of candidate explanatory models,
and allow us to select the most appropriate.
In this paper we concentrate on this discov-
ery process and upon the scoring of models
within this class.

1 INTRODUCTION

The Chain Event Graph (CEG), introduced in Smith
& Anderson (2008), Thwaites, Smith & Cowell (2008)
and Smith, Riccomagno & Thwaites (2009), is a graph-
ical model specifically designed to embody the condi-
tional independence structure of problems whose state
spaces are highly asymmetric and do not admit a nat-
ural product structure. There are many scenarios in

medicine, biology and education where such asymme-
tries arise naturally (for examples see Smith & Ander-
son (2008)), and where the main features of the model
class cannot be fully captured by a single BN or even a
context specific BN. A key property of the CEG frame-
work is that these graphical models are qualitative in
their topologies — they encode sets of conditional inde-
pendence statements about how things might happen,
without prespecifying the probabilities associated with
these events. Each CEG model can therefore be identi-
fied with a unique explanation of how situations might
unfold.

For a detailed formal description and motivation for
using a CEG model and an outline of some of its im-
plicit conditional independence structure see Smith &
Anderson (2008). In this paper it was shown that the
CEG is a more expressive graphical model than the
BN in that any asymmetries are represented explicitly
in the topology of the CEG, and in that CEGs can
be used to express a much richer set of conditional in-
dependence statements not simultaneously expressible
through a single BN. It was also shown that the class
of BNs is contained within that of CEGs. This is a
property which we exploit later, since with appropri-
ate prior settings, it follows that BN model selection
procedures can be nested within those for CEGs.

The CEG is an event-based (rather than variable-
based) graphical model, and is a function of an event
tree. Any problem on a finite discrete data set can
be modelled using an event tree, but they are particu-
larly suited to problems with asymmetric state spaces.
Unfortunately, it is almost impossible to read the con-
ditional independence properties of a model from an
event tree representation, as only trivial independen-
cies are expressed within its topology. The CEG el-
egantly solves this problem, encoding a rich class of
conditional independence statements through its edge
and vertex structure.

So consider an event tree T' with vertex set V(T'), di-
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rected edge set E(T'), and S(T') C V(T), the set of the
tree’s non-leaf vertices or situations (Shafer (1996)). A
probability tree can then be specified by a transition
matrix on V(T'), where absorbing states correspond to
leaf-vertices. Transition probabilities are zero except
for transitions to a situation’s children (see Table 1).

Table 1: Part of the transition matrix for Example 1

v V2 U3 V4 U5 Vg ... UL vE
Vo 01 02 93 0 0 0 ... 0 0
U1 0 0 0 95 0 0 P 94 0
0

(%] 0 0 0 0 04 05 ... 0

Let T'(v) be the subtree rooted in the situation v which
contains all vertices after v in T. We say that v; and
v are in the same position if:

e the trees T'(v1) and T'(vy) are topologically iden-
tical,

e there is a map between T'(v1) and T'(vs) such that
the edges in T'(vy) are labelled, under this map, by
the same probabilities as the corresponding edges
in T(vy).

The set W(T') of positions w partitions S(7"). The
transporter CEG (Thwaites, Smith & Cowell 2008) is
a directed graph with vertices W (T') U {w }, with an
an edge e from w; to ws # wes for each situation
vy € ws which is a child of a fixed representative
vy € wy for some vy € S(T), and an edge from w;
to wo for each leaf-node v € V(T') which is a child of
some fixed representative vy € w; for some v; € S(T).

For the position w in our transporter CEG, we define
the floret F'(w) to be w together with the set of out-
going edges from w. We say that w; and w, are in the
same stage if:

e the florets F(w;) and F(wy) are topologically
identical,

e there is a map between F'(w;) and F(ws) such
that the edges in F'(wz) are labelled, under this
map, by the same probabilities as the correspond-
ing edges in F'(wy).

The CEG C(T) is then a mixed graph with vertex set
W(C) equal to the vertex set of the transporter CEG,
directed edge set Eq(C) equal to the edge set of the
transporter CEG, and undirected edge set E,(C) con-
sisting of edges which connect the component positions

of each stage u € U(C), the set of stages. The CEG-
construction process is illustrated in Example 1, and
an example CEG in Figure 2.

Example 1

Consider the tree in Figure 1 which has 11 atoms (root-
to-leaf paths). Symmetries in the tree allow us to store
the distribution in 5 conditional tables which contain
11 (6 free) probabilities. The transporter CEG is pro-
duced by combining the vertices {v4,vs,v7} into one
position wy, the vertices {vg,vs} into one position ws,
and all leaf-nodes into a single sink-node wy,. The
CEG C (Figure 2) has an undirected edge connecting
the positions w; and w, as these lie in the same stage
— their florets are topologically identical, and the edges
of these florets carry the same probabilities.

1
Vint

Figure 2: CEG for Example 1

Note that the CEG is specified through a particular
event tree and statements about specific developments
sharing the same distribution. Both of these properties
can be expressed verbally in terms of a general expla-
nation of the unfolding of events, and therefore have a
meaning that transcends the particular instance.
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The analogue in the CEG of the clique in a BN is the
floret. Fast propagation algorithms for a simple CEG
were developed in Thwaites, Smith & Cowell (2008).
These exploited the graph’s embedded conditional in-
dependencies to factorize its mass function over lo-
cal masses on florets. In this paper we demonstrate
how this factorization of the joint mass function over
a given event space can also be used as a framework for
searching over a space of promising candidate CEGs
to discover models that provide good qualitative expla-
nations of the underlying data generating process of a
given data set. Because these search methods are sim-
ilar to well known algorithms used for searching BNs
we are able to use similar arguments for setting up hy-
perparameters over priors so that the priors over the
model space decompose as collections of local beliefs.

As the CEG can express a richer class of conditional
independence structures than the BN, CEG model se-
lection allows for the automatic identification of more
subtle features of the data generating process than it
would be possible to express (and therefore to eval-
uate) through the class of BNs. Simple examples of
the types of structure that might exist and could be
discovered are given below.

Section 2 introduces the techniques for learning CEGs
and compares these with those for learning BNs. Sec-
tion 3 consists of an example illustrating the advan-
tages of searching over the extended candidate set
available when learning CEGs, and section 4 contains
further discussion of the theory.

2 LEARNING CEGs

The reason the CEG shares the conjugacy properties
of the BN is that with complete random sampling the
likelihood separates into products of terms which are
only a function of parameters associated with one com-
ponent of the model. In the BN each term is associated
with a variable and its parents; in the case of the CEG,
the model component is the floret. Furthermore, the
term in the likelihood corresponding to a particular
floret is proportional to one obtained from multino-
mial sampling on the set of units arriving at the root
of the floret.

From our CEG definition, if wy,ws € u for some u,
then the corresponding edges in the florets F'(w;) and
F(ws) carry the same probabilities. So, for each mem-
ber u of the set of stages prescribed by the model under
consideration for our CEG, we can label the edges leav-
ing u by their probabilities under this model. We can
then let x,, be the total number of sample units pass-
ing through an edge labelled 7y,; and the likelihood
L(m) for our CEG model is given by

For BNs, the assumptions of local and global inde-
pendence, and the use of Dirichlet priors ensures con-
jugacy. The analogue for CEGs is to give the vec-
tors of probabilities associated with the stages inde-
pendent Dirichlet distributions. Then the structure
of the likelihood L(7r) results in prior and posterior
distributions for the CEG model which are products
of Dirichlet densities. The result of this conjugacy is
that the marginal likelihood of each CEG is therefore
the product of the marginal likelihoods of its compo-
nent florets. Explicitly, the marginal likelihood of a
CEG C'is

F(Zn aun)
s

T(aun + Tun)
Zn(aun + Tyn)) 1;[

T(oun)
where, as above

e 1 indexes the stages of C'

e 1 indexes the outgoing edges of each stage

aun are the exponents of our Dirichlet priors

Tun are the data counts

As we are actually interested in p(model | data), and
this is proportional to p(data | model) x p(model), we
need to set both parameter priors and prior probabil-

ities for the possible models.

Care needs to be taken when choosing these param-
eters if the model selection algorithm is to function
efficiently. We return to this issue in section 4, but
note that many aspects have already been addressed
by a number of authors for the special case of BNs
(see for example Heckerman (1998)), using concepts
of distribution and independence equivalence, and pa-
rameter modularity to ensure plausibly consistent pri-
ors over this class. For a full Bayesian estimation with
conjugate locally and globally independent priors, the
class of BNs nests within the larger class of CEGs.
If we require (quite reasonably) that all BNs within
the subclass of CEGs we are studying continue to re-
spect these independence rules, whilst also retaining
our floret independence, then the choices of prior hy-
perparameters are limited analogously with the class
of BNs. For example, if we search over the class of all
CEGs whose underlying trees have a non prime num-
ber of leaves, then using a result from Geiger & Hecker-
man (1997), it can be shown that if we assign Markov
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equivalent models the same prior, then the joint dis-
tribution on the leaves is necessarily a priori Dirichlet
(see Freeman & Smith (2009)). Modularity conditions
then result in floret distributions being Dirichlet and
mutually independent.

Exactly analogously with BNs, parameter modularity
in CEGs implies that whenever CEG models share
some aspect of their topology, we assign this aspect
the same prior distribution in each model. When such
priors reflect our beliefs in a given context, this can
reduce our problem dramatically to one of simply ex-
pressing prior beliefs about the possible floret distri-
butions (ie. the local differences in model structure).
As each CEG model is essentially a partition of the
vertices in the underlying tree into sets of stages, this
requirement ensures that when two partitions differ
only in whether or not some subset of vertices belong
to the same stage, the prior expressions for the models
differ only in the term relating to this stage. The sepa-
ration of the likelihood means that this local difference
property is retained in the posterior distribution.

Now, our candidate set is much richer than the corre-
sponding candidate BN set, and will probably contain
models we have not previously considered in our anal-
ysis. Again, evoking modularity, if we have no infor-
mation to suggest otherwise, we follow standard BN
practice and let p(model) be constant for all models in
the class of CEGs. We now use the logarithm of the
marginal likelihood of a CEG model as its score, and
maximise this score over our set of candidate models
to find the MAP model.

Our expression has the nice property that the differ-
ence in score between two models which are identical
except for a particular subset of florets, is a function
of the subscores only of the probability tables on the
florets where they differ. Various fast deterministic
and stochastic algorithms can therefore be derived to
search over the model space, even when this is large —
see Freeman & Smith (2009) for examples of these in
the particular case where the underlying event tree is
fixed. This property is of course shared by the class
of BNs.

We set the priors of the hyperparameters so that they
correspond to counts of dummy units through the
graph. This can be done by setting a Dirichlet dis-
tribution on the root-to-sink paths, and for simplicity
we choose a uniform distribution for this. It is then
easy to check (see Freeman & Smith (2009)) that in
the special case where the CEG is expressible as a BN,
the CEG score above is equal to the standard score for
a BN using the usual prior settings as recommended
in, for example, Cooper & Herskovits (1992) and Heck-
erman, Geiger & Chickering (1995). As a comparison

with our CEG-expression; given Dirichlet priors and
a multivariate likelihood, the marginal likelihood on a
BN is expressible as

H H Z azmn H F azmn + xzmn)
F azmn + xzmn aimn)

ieVLm n

where

e | indexes the set of variables of the BN
e n indexes the levels of the variable X;

e m indexes vectors of levels of the parental vari-
ables of X;

The importance of this result is that were we first to
search the space of BNs for the MAP model, then
we could seamlessly refine this model using the CEG
search score described above. Such embellishments
will allow us to search over models containing con-
text specific information or Noisy AND/OR gates.
Furthermore any model we find will have an associ-
ated interpretation which can be stated in common
language, and can be discussed and critiqued by our
client/expert for its phenomenological plausibility.

For the CEG in Figure 2, we put a uniform prior over
the 11 root-to-leaf paths, which in turn allows us to as-
sign our stage priors as follows: we assign a Di(3,4,4)
prior to the stage identified by wg, a Di(3,4) prior to
the stage u; = (w1, wa), a Di(2,2) prior to each of the
stages identified by ws and ws, and a Di(3,3) prior
to the stage identified by ws. We would then have a
marginal likelihood of

T(11) T(3+4 z01)0'(4 + 202)T(4 + x03)
(114 N) T(3)I'(4)r'4)
(7) T3+ z14 + 224)T (4 + x15 + 225)
(7 4+ 201 + 2o2) r'(3)T'(4)
F(4) F(Q + $36)F(2 + £E37)
T'(4 + 203) T'(2)r(2)
r'(6) [(3 4+ 248)T(3 + 249)
L'(6 + z15 + 224 + Z36) r'(3)T'(3)
r'4) T2+ z5.10)T (24 z5.11)
['(4 + z25 + x37) r'(2)T(2)

X

where, with a slight abuse of notation, we let for ex-
ample x44 be the data value associated with the edge
leaving wo labelled 84; and where N is the sample size

= Zi:l Ton-

Note that, as in this example, CEGs can be used to
depict models which admit known logical constraints.
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If we attempt to express this particular constraint
through a BN, we find that some variables have no
outcomes given particular vectors of values of ances-
tral variables. We cannot simply set probabilities to
zero in this instance as a Dirichlet distribution is then
no longer appropriate and so the usual model selec-
tion procedures fails. Furthermore, this is one type
of scenario which cannot be modelled adequately us-
ing the standard classes of context-specific BNs. By
comparison, since such models exist within the class
of CEG models, they can of course be revealed (and if
appropriate, selected) by CEG-based conjugate search
algorithms.

3 A SIMPLE SIMULATED MODEL

In this section we consider a simple example which
demonstrates the versatility of our method. Our client
is analysing a medical data set relating to an inher-
ited condition. A random sample of 100 (51 female,
49 male) people has been taken from a population
who have had recent ancestors with the condition. For
each individual in the sample a record has been kept of
whether or not they displayed a particular symptom
in their teens, and whether or not they then devel-
oped the condition in middle age. The data is given
in Table 2, where A = 0,1 corresponds to female,
male; B = 1 corresponds to the individual display-
ing the symptom; and C' = 1 corresponds to the indi-
vidual developing the condition. Our client does not
know whether displaying the symptom is independent
of gender, but having looked at the data, believes that
it is not.

Table 2: Data for example (N = 100)

A
0 1
B B
0o 1|10 1
cC 0133 6|10 12
116 6|9 18

Using his medical knowledge, our client has decided
that the model lies in a candidate class of six, but
is unwilling to express any preference for a particular
model within this set.

In each of these six models B is not independent of
A. The further conditional independence structure of
the models is given by (i) CII (A, B), (ii) CII A | B,
(iii) COB | A, (iv) CIIB | (A = 1) (there is one distri-
bution for developing the condition given that gender
is male), (v) CITA | (B = 1) (there is one distribution
for developing the condition given that symptom was

displayed), (vi) CII(A, B) | MAX (A, B) (there is one
distribution for developing the condition given that an
individual is male OR displayed the symptom, and one
distribution for developing the condition given that an
individual is female AND did not display the symptom

— a Noisy OR gate).

The models are depicted in Figure 3. Only the first
three of these models can be represented as BNs, with
the fourth and fifth as context-specific BNs of the type
described in, for example, Boutilier et al (1996) or
Poole & Zhang (2003). The sixth would need us to
create new variables in order for us to represent it as a
BN - another example would be C1I (4, B) | |A — B,
which has a CEG similar to that of (ii), but with the
edges leaving wo swapped so that B=1] A =11is the
edge from wy to w3, and B = 0| A = 1 is the edge
from wy to wy.

We can read, for example CEG (ii) as follows:

e w; and ws are not in the same stage, so AIl B,

e edges labelled B = 0 converge at ws, so
CII A | (B =0). Similarly, edges labelled B =1
converge at wy, so CIIA | (B = 1), and combining
these we get CIT A | B.

In CEG (v) by contrast:

e edges labelled B = 1 converge at a single position,
so CIT A | (B =1), but edges labelled B = 0 do
not, so we do not have CIT 4 | (B =0).

The CEG portrays the context-specific conditional in-
dependence properties of the model in its topology —
the context-specific BN does not.

Note that our client’s candidate set is a restriction
of the set of possible models — he has for instance
dismissed models which encode statements such as
CIOB|(A=0)orCIIA]| (B =0) and all mod-
els where AII B. In fact there are 15 possible models
in the full candidate set if we require A to be a parent
of B and B to be a temporal predecessor of C, and 30
if we relax the parental condition, but require that A is
a temporal predecessor of B is a temporal predecessor
of C'. Note that there are only 4 possible BNs where A
is a parent of B and B is a temporal predecessor of C',
and 8 possible BNs where A is a temporal predecessor
of B is a temporal predecessor of C'. By using CEGs
we can quickly have a clear idea of the full range of
candidate models, and also our learning method works
for all models in this range, including models such as
CI(A,B)| MAX(A,B) or CII (4,B) | |A-B|.
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(i)

Wo

(iii)

(v)

(vi) B=0|A=0

Figure 3: CEGs in our candidate set

As our client has no particular preference for any of
the six models, it makes sense to let p(model) be a
constant value for all models in the candidate set,
as suggested in section 2. This allows us to use
p(data | model) as a measure for p(model | data), and
we can then let the score of a model be its log marginal
likelihood.

The three models expressible as BNs could of course be
scored using the expression for BNs given above, and
this would give us the same answer as our method us-
ing CEGs. But note that the BN-expressions for these
models are more complex and less transparent than
our CEG-expressions. We could perhaps use a learning
method specifically adapted for context-specific BNs
to score the fourth and fifth models (see for example
Feelders & van der Gaag (2005)), but it is not evident
how we would score the sixth model (consistently with
the scoring of the other models) using a BN-based ap-
proach.

The score for model (i) decomposes into four compo-
nents associated with the florets at wg,wq,ws and ws.
The components associated with the florets at wq, w
and wy are retained in the remaining five models, so
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the scores of the six models differ only in the com-
ponents associated with the florets at {w;};>3. Scor-
ing our 6 models we obtain -202.79, -199.37, -199.15,
-197.58,-197.53 and -196.45. We can see that model (i)
is the least appropriate, indicating that C'II (A, B) and
that there must be some sort of dependency of C' on A
and/or B. Models (iv), (v) and (vi) score better than
models (ii) and (iii), indicating that this dependency
is at best context-specific, and that the most appro-
priate model is not going to be expressible as a BN. In
fact the best model in the candidate set is the Noisy
OR gate, a model which could not be selected by a
standard BN-based learning algorithm.

Looking at the CEGs in Figure 3, we can see that mod-
els (iv) and (vi) can be arrived at by making one alter-
ation to model (iii), and that models (v) and (vi) can
be arrived at by making one alteration to model (ii). It
is easy to see how efficient algorithms could be created
to search over the model space in this example.

Returning to the premise of our example, we share
these results with our client, who then wants us to
check whether a Noisy OR gate with AIl B might score
better than CEG model (vi). This model is depicted
in Figure 4. The additional information in this CEG
can be read as follows:

e there is an undirected edge connecting w; and ws,
so these two positions are in the same stage. Now
positions in the same stage have their edges la-
belled identically, so the edges leaving w; and ws
have labels that do not depend on the value of A.
Consequently A 1T B.

The score for this new model is -202.09, indicating
that this model is not as good as model (vi). This is
unsurprising given that the data in Table 1 suggests
strongly that A is not independent of B.

Wing

Figure 4: CEG for new A Il B model

4 DISCUSSION

Clearly, searching over the class of CEGs is directly
analogous to searching over the class of BNs, but the
class of CEG models is much more expressive. This
richness has an associated disadvantage — the class of
all BNs is already difficult to search in large problems,
and various methods have been developed to restrict
the search to subsets of the class (see for example van
Gerven & Lucas (2004), where the class of BNs that
have edge-configurations consistent with a given span-
ning tree are searched). The number of possible CEGs
available for even a small number of vertices is ex-
tremely large. Therefore, in even moderately sized
problems it is usually efficacious to first restrict the
model class to something smaller.

Because each model in this class is qualitatively ex-
pressed in any given context, this task is much eas-
ier than it might first appear. Thus, for example, in
the educational examples considered in Freeman and
Smith (2009), the context demands that the under-
lying event tree is consistent with the order students
study courses, and that certain vertices could never
reasonably be combined into the same stage. These
sorts of contextually defined constraints can readily be
incorporated into customized search algorithms, and
the efficiency of the search procedure improved. Thus,
although more effort is needed to set up customized
search spaces for CEGs than for BNs, we have found
that the subsequent direct interpretability of any MAP
model more than compensates for this effort.

It is also not unusual for more quantitative informa-
tion to be available, such as one type of stage combi-
nation being proportionately more probable than an-
other. This can allow one to usefully further refine and
improve the search, although then the framework the
CEG provides is no longer totally qualitative.

Silander et al (2007) have demonstrated that MAP
model selection on the class of BNs can be sensitive to
how priors are set, even when these priors are conju-
gate product Dirichlets. Extending this idea to CEG
model selection, it may be insufficient simply to state
that we are setting a uniform Dirichlet prior on the
root-to-sink paths; we may also need to exercise care
in the choice of a scale parameter for this distribu-
tion. This requires an explicit evaluation of the over-
all strength of prior beliefs, which can then be spec-
ified via the equivalent size (count of dummy units)
assigned in the prior to each root-to-leaf path of the
underlying tree. If an analyst does not feel sufficiently
confident in making this choice, we note that other
Bayesian model selection methods (for example using
the Bayesian Information Criterion BIC) could easily
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be modified for use with the set of CEG models.

Of course, just as with BNs, the conjugacy does not
necessarily continue to hold when sampling is not com-
plete. In this case approximate or numerical search
algorithms need to be employed with consequent loss
of accuracy or speed in scoring and comparing mod-
els. However in this case the methods for estimating
BNs with missing values (see for example Riggelsen
(2004)) can usually be extended so that they also ap-
ply to CEGs. We will report on our findings on this
topic in a later paper.

Lastly, it might be argued that context-specific BNs
can be used to portray any set of conditional inde-
pendence properties of a model, and that it would be
a better use of resources developing improved learn-
ing methods for these graphs. In fact, as noted in
section 2, there are significant sets of scenarios which
cannot easily be modelled with context-specific BNs,
which can none-the-less be modelled with CEGs. More
importantly perhaps, an analyst modelling with BNs
and their variants may not be aware just how many
different models are available as possible explanations
of the underlying data generating process of their data
set. This is not a problem encountered by the analyst
modelling with CEGs.
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