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Abstract

The adjustment of the binomial data by small constants is a common practice in statistical
modelling, for avoiding sparseness issues and, historically, for improving the asymptotic proper-
ties of the estimators. However, there are two main disadvantages with such practice: i) there
is not a universal constant adjustment that results estimators with optimal asymptotic proper-
ties for all possible modelling settings, and ii) the resultant estimators are not invariant to the
representation of the binomial data. In the current work, we present a parameter-dependent
adjustment scheme which is applicable to binomial-response generalized linear models with ar-
bitrary link functions. The adjustment scheme results by the expressions for the bias-reducing
adjusted score functions in Kosmidis & Firth (2008, Biometrika) and thus its use guarantees
estimators with second-order bias. Based on an appropriate expression of the adjusted data,
a procedure for obtaining the bias-reduced estimates is developed which relies on the iterative
adjustment of the binomial responses and totals using existing maximum likelihood implemen-
tations. Furthermore, it is shown that the bias-reduced estimator, like the maximum likelihood
estimator, is invariant to the representation of the binomial data. A complete enumeration
study is used to demonstrate the superior statistical properties of the bias-reduced estimator to
the maximum likelihood estimator.
Keywords: bias reduction, adjusted responses, adjusted score functions

1 Introduction

In statistical modelling, the additive adjustment of binomial data by a constant a is a common
practice for avoiding sparseness issues which may result to infinite maximum likelihood estimates
and severe bias, or for improving the properties of the estimators, especially bias.

Consider independent binomial random variables Y1, . . . , Yn with totals m1, . . . ,mn and
probabilities π1, . . . , πn, and the logistic regression model

log
(

πr
1− πr

)
= ηr =

p∑
t=1

βtxrt (r = 1, . . . , n) , (1)

with xrt the (r, t)th component of an n × p design matrix X and with β1, . . . , βp unknown
parameters (an intercept can be included in the model by setting the components of a column of
X to one). Perhaps the most famous adjustment is the Haldane-Anscombe correction (Haldane,
1955; Anscombe, 1956), where a = 1/2 is appended to the binomial response and 2a to the
binomial totals. Such an adjustment results in an estimator of the log-odds log{π/(1 − π)}
with bias of order O(m−2) and has the further advantage that the resultant estimate is finite for
every value of the response y. For the estimation of the parameters of a logistic regression model
with ηr = β1 + β2xr in (1), Hitchcock (1962) showed that the Haldane-Anscombe correction
is not optimal in terms of the bias of the estimators and proposed a = 1/4 for n = 3 and no
adjustment for n > 3. Hitchcock (1962) also noted that the first-order biases (O(m−1) when
m = m1 = . . . = mn) depend on the parameter values (see, Gart and Zweifel, 1967, for a
comparison of the above adjustments and some other adjustment schemes in terms of the bias
of resultant log-odds estimators). In Gart et al. (1985), the Hitchcock (1962) proposal is verified
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for n = 2, 3 and 4 and refined for n > 4, demonstrating that for n > 2 there is not a universally
optimal value of the constant a.

Clogg et al. (1991) presented a more sophisticated adjustment scheme for general logistic
regressions where based on standard Bayesian arguments relating to the behaviour of the Jeffreys
prior amongst every possible logistic regression, a = p

∑n
r=1 yr/(n

∑n
r=1mr) was appended to

the binomial responses and p/n was to the binomial totals (see, also Rubin and Schenker, 1987).
The stated aim in Clogg et al. (1991) was not bias reduction but rather an applicable method
of eliminating the possibility of infinite maximum likelihood estimates for the many logistic
regressions which were involved in the large application that was under consideration. The
resultant estimator enjoys certain shrinkage properties which result in some reduction of the
bias.

All the above adjustment schemes have the common property, and possibly were motivated
by the fact, that a is constant with respect to the parameter vector β = (β1, . . . , βp) and thus
estimation can be conveniently performed by the following procedure:

i) adjust the binomial data by a constant, and
ii) proceed with usual estimation methods, treating the adjusted responses as actual.

However, because the adjustments are constants, the resultant estimators are generally not
invariant to different representations of the data (for example, aggregated and disaggregated
view), a desirable invariance property that the maximum likelihood estimator has. Furthermore,
the first-order bias of the maximum likelihood estimator for logistic regressions generally depends
on the parameter values (see, Cordeiro and McCullagh, 1991, for explicit expressions) and thus,
as is also amply evident from the studies in Hitchcock (1962) and Gart et al. (1985) there cannot
be a universal constant a which always eliminates the first-order bias.

Firth (1993), in his study of bias-reducing adjusted score functions, presented a parameter-
dependent adjustment scheme for logistic regressions which eliminates the first-order bias of the
estimator. That adjustment scheme consists of the addition of half a leverage and a leverage to
the binomial responses and totals, respectively.

In the current note, a parameter-dependent, bias-reducing adjustment scheme is proposed for
the general class of binary-response generalized linear models with arbitrary link functions. The
proposed adjustment scheme results naturally by the form of the bias-reducing adjusted score
functions in Kosmidis and Firth (2008). An appropriate expression of the adjusted responses
and totals is given so that the adjusted data mimic the range of the binomial responses and totals
(0 ≤ yr ≤ mr). Based on that expression, an alternative to the modified iterative re-weighted
least squares algorithm in Kosmidis and Firth (2008) is developed, where estimates with second-
order bias can be obtained simply by the use of existing maximum likelihood implementations
and appropriately adjusted responses and totals. Furthermore, it is shown that the adjustment
schemes result in estimates that are invariant to the representation of the binomial data. A
complete enumeration study is used to demonstrate the finiteness and shrinkage properties of
the bias-reduced estimator as well as its better performance in terms of bias and mean squared
error over the maximum likelihood estimator. Furthermore, the effect of bias reduction on the
fitted probabilities is discussed.

2 Bias reducing adjustments to the score functions

Consider the same setup as for (1) but where the binomial probabilities are linked to the model
parameters as

g(πr) = ηr (r = 1, . . . , n) , (2)

with g(.) a monotone function from [0, 1] to the real line. According to the results in Kosmidis
& Firth (2008, Section 4.1), a second-order unbiased estimator of β can be obtained by the
solutions of the adjusted score equations U∗t = 0 (t = 1, . . . , p), with

U∗t =
n∑
r=1

wr
dr

(
yr +

1
2
hr
d′r
wr
−mrπr

)
xrt , (3)

where dr = mrdπr/dηr, d′r = mrd2πr/dη2
r , wr = d2

r/{mrπr(1−πr)} is the rth quadratic weight
and hr is the rth diagonal element of the hat matrix H = X(XTWX)−1XTW , with W the
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diagonal matrix with non-zero elements wr (r = 1, . . . , n). The above adjusted score functions
suggest appending hrd′r/(2wr) to the binomial response yr (r = 1, . . . , n). Kosmidis and Firth
(2008) give the form of the adjusted responses for binomial-response generalized linear models
for some well-known link functions.

3 Adjustment of the binomial responses and totals

3.1 An appropriate pseudo-data representation

A convenient way of solving the adjusted-score equations would be to use the adjusted responses
in existing maximum likelihood implementations, iteratively. Nevertheless, a practical issue that
can arise relates to the sign of hrd′r/wr (or simply the sign of d′r) which can result in negative
adjusted responses or adjusted responses greater than the binomial totals, violating the range
of the actual data (0 ≤ yr ≤ mr). Fortunately, this issue can be resolved with simple algebraic
manipulation.

Dropping the subject index r, a pseudo-data representation is defined as the pair {y∗,m∗},
with y∗ the adjusted response and m∗ the adjusted binomial total. By this definition, the
apparent pseudo-data representation suggested by (3) is {y + hd′/(2w),m}. Nevertheless, the
form of (3) suggests that there is a countable set of equivalent pseudo-data representations,
equivalent in the sense that if the actual responses and totals are replaced with {y∗,m∗} in the
likelihood equations then the adjusted score equations result. Any pseudo-data representations
in this set can be obtained from any other by the operations of adding and subtracting a
quantity to either the adjusted responses or the adjusted totals, and of moving summands from
the adjusted responses to the adjusted totals after division by −π.

Within this set of pseudo-data representations consider the ones which have the form{
y + h

d′

2w
+ hπb , m+ hb

}
, (4)

with b some function of η. Substituting for w, because 0 ≤ h ≤ 1 and 0 ≤ y ≤ m, a sufficient
condition for the adjusted responses and totals to mimic the range of the actual responses and
totals (ie. 0 ≤ y∗ ≤ m∗ (r = 1, . . . , n)) is that

b ≥ md′(π − 1)/(2d2)

and
b ≥ md′π/(2d2)

are satisfied simultaneously. Thus, because 0 ≤ π ≤ 1, the requirement 0 ≤ y∗ ≤ m∗ can be
met, for example, if b = md′(π − 1)/(2d2) + 1/2 for d′ ≤ 0 and if b = md′π/(2d2) + 1/2 for
d′ > 0. Hence, b can be set to md′ (π − Id′≤0) /(2d2) + 1/2 . Substituting in (4), we obtain the
pseudo-data representation{

y +
1
2
hπ

(
1 +

md′

d2
Id′>0

)
, m+

1
2
h

(
1 +

md′

d2
(π − Id′≤0)

)}
, (5)

where IE is 1 if E holds and 0 otherwise.

3.2 Local maximum likelihood fits on pseudo-data representations

In light of (5), the bias-reduced estimates can be obtained by an iterative adjustment procedure
where the (j + 1)th iteration is as follows:

i) Update to {y∗r,(j+1),m
∗
r,(j+1)} according to (5) (r = 1, . . . , n) evaluating all the quantities

involved at the estimates β(j) from the jth iteration.

ii) Use maximum likelihood to fit model (2) with responses y∗r,(j+1) and totals m∗r,(j+1) (r =
1, . . . , n), using β(j) as starting value.

3



CRiSM Paper No. 09-36, www.warwick.ac.uk/go/crism

Table 1: asdasd

Iteration 1 Iteration 2 Iteration 3 . . . Iteration 11
Log dose y m y∗

(1)
− y m∗

(1)
−m y∗

(2)
− y m∗

(2)
−m y∗

(3)
− y m∗

(3)
−m . . . y∗

(11)
− y m∗

(11)
− y

1.691 6 59 0.13156 0.24572 0.13214 0.24644 0.13215 0.24645 . . . 0.13215 0.24645
1.724 13 60 0.14998 0.26399 0.14971 0.26309 0.14970 0.26306 . . . 0.14970 0.26306
1.755 18 62 0.14143 0.22935 0.14056 0.22772 0.14054 0.22768 . . . 0.14054 0.22768
1.784 28 56 0.09004 0.13721 0.08931 0.13611 0.08930 0.13609 . . . 0.08930 0.13609
1.811 52 63 0.10253 0.17514 0.10049 0.17154 0.10044 0.17145 . . . 0.10044 0.17145
1.837 53 59 0.16199 0.28238 0.15899 0.27705 0.15891 0.27691 . . . 0.15891 0.27691
1.861 61 62 0.14612 0.26159 0.14838 0.26526 0.14844 0.26536 . . . 0.14844 0.26536
1.884 60 60 0.03750 0.06974 0.04143 0.07690 0.04153 0.07709 . . . 0.04153 0.07709

Criterion − O(10−6) O(10−6) O(10−7) . . . O(10−11)

If the maximum likelihood estimates are finite, they provide sufficiently good starting values
for the above iteration. Otherwise, the iteration can start at the maximum likelihood estimates
obtained after the addition of a constant a > 0 to the responses and 2a to the totals.

Furthermore, the condition
∑p
t=1 |U∗t (β(j+1))| ≤ ε, ε > 0 can be used as a general convergence

criterion of the procedure.
As an illustration of the above fitting procedure, consider a complementary log-log model

for the beetle mortality data in Agresti (2002, Table 6.14). For the complementary log-log
link π = 1 − exp(− exp(η)) and direct differentiation gives d = m exp{η − exp(η)} and d′ =
d{1 − exp(η)}. Substituting in (5) and expressing everything in terms of π, an appropriate
pseudo-data representation for complementary log-log models has the form{

y +
1
2
hπ

(
1− 1 + log(1− π)

(1− π) log(1− π)
Iπ<c

)
, m+

1
2
h

(
1− 1 + log(1− π)

(1− π) log(1− π)
(π − Iπ≥c)

)}
,

where c = 1 − exp(−1) is the probability for which η = 0. Table 1 gives the values of the
additive adjustments to the responses and totals at each iteration of the fitting procedure in
5 significant places. Note that after the third iteration the changes to the adjustments appear
after the sixth decimal. The bias-reduced estimates are −39.047 for the intercept and 21.748
for the logarithmic dose, with the corresponding maximum likelihood estimates being −39.522
and 22.015, respectively.

3.3 Invariance of the estimates to the structure of the data

It is always possible to represent Yr as
∑kr

s=1 Zrs, where Zr1, . . . , Zrkr
are independent binomial

random variables each with probability of success πr and totals lr1, . . . , lrkr
, respectively, with

mr =
∑kr

s=1 lrs (r = 1, . . . , n). By this construction, in the presence of a covariate vector xr for
each observation yr, the data for a binomial-response generalized linear model can be represented
in equivalent ways, (yr,mr, xr) (r = 1, . . . , n) and (zrs, lrs, xr) (r = 1, . . . , n; s = 1, . . . , kr). The
maximum likelihood estimator of the model parameters is invariant to the choice of either
representation and, in contrast to constant adjustment schemes, the bias-reduced estimator also
has the same invariance property.

To show this, denote z∗rs and l∗rs (r = 1, . . . , n; s = 1, . . . , kr), the adjusted responses and
totals, respectively. Note that the bias-reducing pseudo-data representations have the generic
form {zrs+ h̃rsqr,mrs+ h̃rsvr} where qr ≡ q(πr) and vr ≡ v(πr) and h̃rs is the generic diagonal
element of the hat matrix. Note that, qr and vr depend solely on πr and, also, a simple
calculation can show that

∑kr

s=1 h̃rs = hr (r = 1, . . . , n). Hence,
∑kr

s=1 z
∗
rs = y∗r and

∑kr

s=1 l
∗
rs =

m∗r (r = 1, . . . , n) and because the adjusted score functions result by the replacement of the
actual responses and totals by their adjusted versions, the bias-reduced estimates are invariant
to the structure of the binomial data.
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Table 2: Implied probabilities for β1 = −1 and β2 = 1.5 for the logistic, probit and complementary
log-log link functions.

π1 π2 π3 π4 π5

logit 0.01799 0.07586 0.26894 0.62246 0.88080
probit 0.00003 0.00621 0.15866 0.69146 0.97725
cloglog 0.01815 0.07881 0.30780 0.80770 0.99938

4 Illustration of the properties of the bias-reduced esti-
mator

To illustrate the properties of the bias-reduced estimator let n = 5 and mr = m (r = 1, . . . , 5).
Furthermore, consider the model (2) with ηr = β1 + β2xr and let x = (−2,−1, 0, 1, 2). For
m = 4, 8, 16 and for the logit, probit and complementary log-log link functions, the bias and
mean squared error of the bias-reduced estimator, as well as, the coverage of the nominally
95% Wald-type confidence interval were calculated through complete enumeration when the
true parameter values are β1 = −1 and β2 = 1.5, which imply the extreme probability settings
shown in Table 1. This calculation is possible, because for every data set and every link function,
the bias-reduced estimates were finite. Nevertheless, the maximum likelihood estimator has at
least one infinite component with positive probability. Thus the corresponding quantities for
the maximum likelihood estimator are undefined and are only calculated conditionally on the
finiteness of both its components.

The results are shown in Table 3. Direct comparison of the conditional moments and cov-
erage for the maximum likelihood estimator with the corresponding unconditional quantities
for the bias-reduced estimator is misleading, in the direction of favouring the method of maxi-
mum likelihood. Despite this reservation, according to the results in Table 3, in cases where the
probability of infinite maximum likelihood estimates is small or moderate, the bias-reduced esti-
mator has bias and mean squared error properties that are better, even, than the corresponding
conditional quantities for maximum likelihood.

In Figure 1, using the results of the complete enumeration for the complementary log log
link with m = 4, the fitted probabilities based on the bias-reduced estimates are plotted against
the fitted probabilities based on the maximum likelihood estimates. The shrinkage of the former
towards 1 − exp(−1) ≈ 0.632 is apparent. Correspondingly, the bias-reduced estimates shrink
towards the origin of the scale of the linear predictor relative to the maximum likelihood esti-
mates. This behaviour is typical for binomial-response generalized linear models; for the probit
and logit model the fitted probabilities shrink towards 0.5 (see, also, Kosmidis, 2007b).

From the results in Table 1, the coverage of the nominally 95% Wald-type confidence intervals
for the bias-reduced estimator is poor in this setting. A reason for this is that the performance of
the intervals is studied for extreme true parameter values; the finiteness and shrinkage properties
of the bias-reduced estimator result in smaller estimated asymptotic standard errors (square
roots of the diagonal of the Fisher information) so that the resultant Wald-type confidence
intervals are short in length and do not cover extreme effects with sufficiently high probability.
In contrast, for m = 4 and for true parameter values β1 = −1 and β2 = 0.5, the Wald-type
confidence interval for the bias-reduced estimator of β2 has better coverage behaviour with
coverage 0.969 for the probit link and 0.971 for the complementary log log link. As the sample
size increases the coverage tends to the nominal level.

5 Discussion

For binomial-response generalized linear models, it has been shown how second-order unbiased
estimators can be resulted by iteratively adjusting the binomial responses and totals and using
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Table 3: The results of the complete enumeration. The parenthesized probabilities refer to the event
of encountering at least one infinite ML estimate for the corresponding m and link function. All
the quantities for the ML estimator are calculated conditionally on the finiteness of its components.

Link m Parameter Bias (×102) MSE (×10) Coverage
ML BR ML BR ML BR

logit 4 β1 -8.79 0.52 5.84 6.07 0.971 0.972
(0.1621) β2 14.44 -0.13 3.62 4.73 0.960 0.939

8 β1 -12.94 -0.68 3.93 3.11 0.972 0.964
(0.0171) β2 20.17 1.11 3.70 2.68 0.972 0.942

16 β1 -7.00 -0.19 1.75 1.42 0.961 0.957
(0.0002) β2 10.55 0.29 1.59 1.16 0.960 0.948

probit 4 β1 17.89 13.54 1.44 2.61 0.968 0.911
(0.5475) β2 -18.84 -16.93 0.98 3.07 0.960 0.897

8 β1 0.80 3.24 1.07 1.82 0.964 0.938
(0.2296) β2 6.08 -3.81 1.26 2.13 0.972 0.908

16 β1 -7.06 0.24 1.03 1.08 0.974 0.949
(0.0411) β2 12.54 -0.17 1.39 1.22 0.973 0.933

cloglog 4 β1 2.97 3.18 2.97 3.07 0.959 0.962
(0.3732) β2 -2.93 -12.97 1.35 3.51 0.955 0.880

8 β1 -8.42 0.84 2.49 1.89 0.962 0.953
(0.1000) β2 15.63 -5.40 2.33 2.36 0.972 0.906

16 β1 -6.45 0.17 1.32 0.98 0.964 0.957
(0.0071) β2 13.13 -1.74 1.60 1.23 0.965 0.921

ML: maximum likelihood; BR: bias reduction.

existing maximum likelihood implementations.
Like the maximum likelihood estimator, the bias-reduced estimator is invariant to the repre-

sentation of the binomial data. In addition, contrastingly to the maximum likelihood estimates,
as has been illustrated through complete enumeration, the bias-reduced estimates are always
finite and because of their improved statistical properties, their routine use in applications is
appealing.

Nevertheless, Wald-type approximate confidence intervals for the bias-reduced estimator
can have bad coverage properties. In the case of logistic regression, the adjusted score functions
correspond to the penalization of the likelihood by the Jeffreys invariant prior (Firth, 1993).
Heinze and Schemper (2002) used this fact and illustrated that approximate confidence intervals
based on the profiles of the penalized likelihood can have better coverage properties than Wald-
type approximate confidence intervals. However, according to Kosmidis & Firth (2008, Theorem
1), the adjusted score functions for binomial-response generalized linear models with non-logistic
link, do not generally admit a penalized likelihood interpretation. In those cases the adjusted-
score statistic

U∗t (β̂1, . . . , β̂t−1, βt, β̂t+1, . . . , β̂p)2F tt(β̂1, . . . , β̂t−1, βt, β̂t+1, . . . , β̂p)

could be used for the construction of confidence intervals for the parameter βt (t = 1, . . . , p).
Here, β̂u (u = 1, . . . , t− 1, t+ 1, . . . , p) are the bias-reduced estimates when the tth component
of the parameter vector is fixed at βt and F tt is the (t, t)th component of the inverse Fisher
information. Because U∗t = Ut + At, where Ut is the tth component of the score vector and At
is O(1) as the sample size increases, the adjusted-score statistic is asymptotically distributed
according to a chi-squared distribution with one degree of freedom.
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Figure 1: Fitted probabilities based on the bias-reduced estimates against the fitted probabilities
based on the maximum likelihood estimates for the cloglog link with m = 4. The marked point on
the plots is (c, c), where c = 1− exp(−1).
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