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Abstract

Over the last 50 years there has been an enormous explosion in devel-
oping full distributional analogues of the Kalman �lter. In this paper we
explore some of the ways analogues of the orginal second order processes
discovered by Kalman have their analogues in Bayesian state space mod-
els. Many of these analogues need to be calculated using numerical meth-
ods like MCMC so they retain, or even enhance the descriptive power of
the Kalman Filter, but at a cost of transparency. However, if the ana-
logues are drawn properly, elegant recurrence relationships - like those of
the Kalman Filter - can still be developed that apply at least for one step
ahead forecast distribution. In this paper we explore the variety of ways
such models have been built, in particular with respect to graphical time
series models..

1 Introduction

Kalman�s seminal paper and its many analogues spawned enormous activity over
a wide range of environments. In this paper we will restrict our attention to a
small subset of these �elds: the impact of his work on the Bayesian analysis of
discrete time series models, the relationship between Kalman�s work and recent
developments in graphical modeling and models of causation and control.. Even
surveying all the important work in these three area would be a hopeless task
in this short review. So I hope the reader will forgive us for focusing on those
modeling issues about which we have a particular interest. Even then we will pay
special attention to multivariate time series whose structure can be represented
by graphs where it is possible to describe explicit closed form recurrences for the
series and their causal extensions to controlled models. The motivating examples
we use will be drawn from business, social and environmental applications of
this technology.
There are several reasons why the Kalman �lter has such an impact on the

areas mentioned above. First, and possibly most importantly, it was one of the
�rst to explicitly recognise the e¢ cacy of expressing a time series in terms of an
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underlying process which represented what was actually driving what was seen.
He explicitly separated this from the measurement of the process which was
imperfect and subject to error. Yes, he only considered second order processes
with linear dynamics but we will see below that these naturally extended into
full distributional Gaussian state space time series: see below. These Dynamic
Linear Models in turn not only catalyzed the development of hierarchical linear
models which form the bedrock of a large proportion of Bayesian analyses we see
today, but also directly enabled a systematic study of non-Gaussian dynamic
state space models which are now so widely studied especially in the modeling
of �nancial time series.
The second impact his work had was the recognition of the existence of

simple recurrences for both the one step ahead forecasts, and state estimates.
The closed form solutions made the impact of hyperparameters clear in terms
of their e¤ect on adaptive coe¢ cients, forecast variances as well as providing a
narrative for why the formulae made logical sense. In particular it became pos-
sible to appreciate why certain ad hoc exponential smoothers were so successful
in practice by mapping these on to values of hyperparameters in the Kalman
�lter where they had an interpretation in terms of the parameters of the terms
in the transition equations and the parameters of the sampling error. Within
the context of Bayesian Dynamic modelling, because of the excitement about
the implementability of numerical methods round his framework this useful fea-
ture has been rather neglected. However as researcher become more ambitious,
modeling time series over very high dimensional spaces or selecting models over
enormous model spaces the e¢ cacy of closed form recurrences is once again be-
ing recognized, not only to facilitate the necessary fast computation needed for
this type of modeling but also to ensure a harmonious interpretation of process
across an otherwise very heterogeneous domain.
Rather later, after the full distribution analogues of the Kalman �lter had

been developed, researchers became aware that one reason the recurrences could
exhibit a closed form was the existence of the conditional independence struc-
ture implicit in the Markovian assumptions of the distributional Kalman Filter.
The distributional Kalman �lter is a Bayesian Network and this was one of the
�rst non-trivial graphical models to be widely studied. The recurrences of the
decomposable Gaussian Bayesian Network can be seen as a rather trivial ex-
tension of backward and froward recurrences associated with the Kalman �lter.
So again the Kalman �lter was the forerunner of another completely di¤erent
but large class of models which is now extremely widely applied. Over the last
twenty years or so many authors have explored dynamic versions of BN�s. De-
velopments of the Kalman �lter structure have been intrinsic to the success of
many of these methods.
Most recently there has been a vigorous study of causal systems. Somewhat

belatedly it has been appreciated that ideas of causation are best viewed within a
dynamic framework where causal hypotheses are expressed in terms of controls
on the dynamic system. Again the distributional Kalman �lter has been a
natural starting point from which to develop a proper understanding of causal
models. First its very structure was designed to separate the actual process
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from the observed process. Because of this it naturally admits an extension
to model a controlled process where control can be enacted by manipulating
the system error to take certain values. Indeed in the early applications of the
technology this embedding was often immediately valid because of context. So
early applications of Kalman �lters were in fact often what we would call now
applications of causal models.
Second causal models Pearl (2000) demand that factorisation formulae of a

joint density of variables in a controlled system are a simple transformation of
these factors as they appear in the uncontrolled system. Happily the Kalman
�lter formulae for prediction under control respect exactly this sort of transfor-
mation. The controlled Kalman �lter is beginning to have a strong impact on
this area of study as well.
Our story will begin with reviewing in the next section how the Kalman

�lter was transformed into a full Bayesian model through its development into
a Dynamic Linear Model. We will then outline some developments of closed
form recurrences associated with distributions other than the Gaussian and the
links with exponential smoothing. We continue by exploring the use of implicit
conditional independences in the Kalman �lter that enabled its links with hi-
erarchical structures to be better appreciated. This conditional independence
structure let to the discovery of new classes of multivariate models which on the
one hand expressed useful qualitative hypotheses and on the other could exploit
the implicit factorizations induced through the state space structure to obtain
useful recurrences on the system. We will conclude by illustrating how control
- interpreted in a Kalman �lter way - can be used to explain two sorts of causal
models of processes: one based on a model of the oil market and the other for
forecasting the e¤ects of di¤erent educational programmes.

2 Dynamic Linear models

In our judgment the power of the Kalman �lter to model in a business envi-
ronment only became fully apparent when the recurrences were reinterpreted
by Bayesians as a full probabilistic description of a Gaussian process. This was
�rst mooted in a seminal paper by [12]. From a technical point of view this
paper simply took the Kalman �lter and assumed all variables in the system
were Gaussian. Thus in their notation the univariate Dynamic Linear Model
(DLM) was given by and observation equation

Yt = F t(xt)�t + vt (1)

and a system equation
�t = Gt�t�1 +wt (2)

where the observational and system errors fvt;wt : t = 1; 2; 3; : : :g independent
Gaussian distributions with zero mean observation variance Vt and system error
covariance matrix W t: Use the usual convention that yt denotes the vector of
observations (y1; y2; : : : ; yt). The row vector F t(xt) was a vector of known
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coe¢ cients as a function of a vector of covariates xt. When these recurrence
relationships are adjoined to a prior which sets �0 v N(m0; C0) then it is easily
seen that conditional on the parameters of fF t(xt); Gt; Vt;W tg the general
recurrences could then be written as �tjyt � N(mt; Ct) and Ytjyt�1 � N(ft; Qt)

mt = Gtmt�1 +At (yt � ft)
Ct = GtCt�1G

T
t +Wt �AtQtA

T
t

where ft = F tGtmt�1;and [Do we need a vector form of this!!]

At = [GtCt�1G
T
t +Wt]F

T
t Q

�1
t

Qt = F t

�
Ct +AtQtA

T
t

�
F T
t + Vt

Although technically trivial these distributional assumptions made the Kalman
�lter recurrences apply to relationships between conditional means in a full con-
tinuous discrete time possibly non -stationary stochastic process. This was a
philosophical leap which led to many rami�cations and which are still being
worked through 40 years on.
The �rst and perhaps the most important use of this augmentation was a

practical one. Until this point, for largely technical reasons - most statistical
methodology had been performed on long time series which were assumed to
either be stationary or whose �rst or second di¤erences were stationary. At
least within a business domain these classes of models were of a rather limited
use. The majority of interesting time series were being continually interrupted
by exogenous shocks which often not only disturbed the development but also
the generating process of the series in fundamental ways. There was often do-
main knowledge to explain these disruptions and drive hypotheses about their
consequences, but there was no seamless way in which the usual time series
technology could be combined with this knowledge to produce formal adapta-
tions of the models. Furthermore current simple business time series models
based on ideas associated with exponential smoothing and were so fundamen-
tally non-stationary in their description did not interface well with Box-Jenkins
model formulations where non stationarity could only be accommodated indi-
rectly through di¤erencing.
However the distributional analogues of the Kalman recurrences were ideally

suited to address business series of this type. To begin with the speci�cation
of a process through a recurrence meant that disruptive events and controlled
interventions could easily be dealt with within this formalism. A shock would
change the state mean vector, possibly its variance and also possibly the data
generation after the event through a modi�cation of fF t(xt); Gt; Vt;W tg after
the time of the shock. Furthermore advances in subjective probabilistic Bayesian
inference gave a formal framework within which this expert judgement could be
accommodated into the system. And note in particular that there is nothing in
the DLM framework which gives special status to stationarity. The outworkings
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of these advantages have continued to be vigorously exploited in an enormous
number of di¤erent domains by many di¤erent authors. More formally these
ideas are �nally �nding their application in the description of causal models:
a current research domain for many working on the interface of arti�cial in-
telligence Bayesian inference and social and business modeling. We wills ee
examples of these causal models later in the paper.
The links with Bayesian inference were profound partly because the new

formulation emphasized the forecasting rather than parameter estimation. Of
course problems of hyperparameter estimation within the componentsfF t(xt); Gt; Vt;W tg
is just as hard or harder than their Box - Jenkins analogues. and until the
advent of numerical methods was a signi�cant challenge even in the simplest
processes. Indeed the fact that some of these parameters are unidenti�able or
almost unidenti�able continues to present interesting challenges. However even
here there are some advantages in the Kalman �lter parametrisation. First
in a very large class of structural models [Harvey][29], both F t(xt); Gt can be
treated as known, the latter often being a matrix all of whose entries are either
0 or 1. Second for a univariate series and �xed F t(xt); Gt;W tV

�1
t - the last

being a noise to signal ratio, the observation variance Vt can be estimated using
an inverse gamma conjugate prior and the series can then still be updated in
closed form, the one step ahead forecast distributions now having a student t
distribution. Finally there are expedient choices of the matrix W tV

�1
t which

chooses these from a one dimensional subclass parametrized by a single para-
meter ( or a small number) of discount factors which in special cases correspond
to proven exponential smoother models [29]: The process can then be mixed
over these parameters - see below - or be estimated by very fast numerical tech-
niques. Alternatively we can simply estimate using fast MCMC or particle �lter
methods, whenever more structured covariance structures are posited. So uni-
variate Gaussian series are relatively straightforward to implement and there is
a great deal of code now available to help the user to implement these methods.
An excellent review of more recent developments stemming from this stream of
research can be found in [29] and other work on distributional Kalman �lters
from a somewhat di¤erent perspective in [7]
One �nal advantage of this type of Bayesian use of the Kalman �lter is that

the forecasting issues were much more easily addressed and provided a degree
of �exibility to address the problem at hand. In a business setting a forecasting
model often required the selection of an appropriate act. Within the Bayesian
formalism this act simple demanded that the expectation of a suitable utility
function should be maximized. So estimation could be customised to a given
purpose immediately within this framework..
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3 Closed form recurrences for Non Gaussian ana-
logues of Kalman �lters

Although the assumption that the distribution of all variables in the system
were Gaussian led to an elegant analysis it was also recognised by Harrison and
Stevens [12] that there were many scenarios where such an assumption was un-
tenable even for univariate series. A simple extension to a wider class of models
which still retained closure was the class of mixture models called Multiprocess
models (Class 1). These simply assumed that one of a �xed number of Gaussian
distriibutions governed the process: it was just that the modeler was uncertain
which one was correct. Working within the Bayesian framework the modeler
then simply assign a prior probability to each model and made predictions us-
ing the corresponding mixture of Gaussian densities. And of course both the
component Gaussian distributions and their probabilities could be calculated in
closed form. Interestingly many particle �lter methods of time series analysis
are based on this simple idea, albeit with considerable extra �nesse. Class 2
Multiprocess models were also introduced at this time which gave a sequen-
tial approximate method which even allowed for models fF t(xt); Gt; Vt;W tg
to change within a restricted class but at any time. There is now an excellent
recent review of these mixture methods given in [10].
Of course modeling with mixtures of Gaussian distributions is not universally

applicable. However in settings which were not time series there were interesting
closed form recurrences for posterior distributions and their one step ahead
predictives which we might have hoped would translate into recurrences on
time series for �tjyt and Ytjyt�1: However within the usual formulation this is
usually impossible. This is because, except in a few exceptional circumstances
- Bather identi�ed these very early on - the adding on of independent errors
in the system equation destroyed most natural conjugacy. So in most cases if
we insist on using this type of additive formulation of the distributional �lter
then we have to fall back on to numerically intense and approximate methods
to study this class.
However some re�ection suggests that whilst in engineering and physical

applications the system error has a clear meaning, in for example a business
environment where a state � might represent something like the true level of
desirability of a product, then adding an error may not be the only way - and
possibly not even the natural way - of increasing uncertainty from one time
period to the next. Next suppose we assume that each the distribution of each
observation Yt is independent of everything else given the vector of parameters
�t, thus formally that Yt q Y t�1;�t�1j�t, t = 1; 2; : : : ; n Notice that this is a
property of the original Gaussian Kalman �lter above. Then the only feature we
will ever be able to observe directly and is the observed series unambiguous the
joint mass function or density p(yT ) of the observations Y T up to any future
time T , since

p(yT ) =
TQ
t=2
p(ytjyt�1)p(y1)
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where

p(y1;�1) = p(y1j�1)p(�1) (3)

p(yt;�tjyt�1) = p(ytj�t)p(�tjyt�1)

so that in particular from marginalisation we have what we need, viz

p(y1) =

Z
p(y1;�1)d�1

p(ytjyt�1) =

Z
p(yt;�tjyt�1)d�t

Some authors e.g. [3] have even demanded that a Bayesian model is solely
de�ned by what it can predict p(yT ). Certainly the only parameters that are
unidenti�able are ones which appear in this joint density: everything else about
the model cannot be learned about from the data. Since any model will give
us fp(ytj�t); t = 1; 2; : : :g and p(�tjyt) can be obtained by conditioning out yt
from p(yt;�tjyt�1) it follows that to develop a recurrence that fully speci�es
p(yT ) the system equation only needs to de�ne how we obtain p(�tjyt�1) from
p(�t�1jyt�1) t = 1; 2; : : :. Of course the linear system equation 2 does this, or
indeed any such a system equation whose states are any invertible function of �.
But this type of description also speci�es a lot of other information about the
sample paths of the states which are unobservable conditional on the densities
given above. It will also typically lose conjugacy so the convenient closed form
of the recurrences is lost. Are there classes of process for which this can be
speci�ed directly where the closed form of recurrences is retained?
The answer to this question is a¢ rmative for a useful class of problem and

have been well developed now for process which drift or have a steady evolution
[29]. The power steady models [24], [17], .,[13] use the idea of increasing the
temperature of a joint density at each time step by specifying that

p(�tjyt�1) _
�
p(�t�1jyt�1)

	k
(4)

for some 0 < k � 1 where the proportionality constant is uniquely determined
because

R
p(�tjyt�1)d�t = 1 have proved particularly useful in a number of

scenarios. This type of direct speci�cation of the state transition conditionals
does not specify the full joint distribution of states and observations. However
those parts of the joint distributions of the states not determined in the evolution
are not identi�able and irrelevant to the observed process.
These evolutions have a number of advantages. They give the same steady

state recurrences as the conventional Steady DLM [29].but usually also ad-
mit conjugate evolutions when the analogous non-time varying problem has
this property, with statistics replaced by familiar exponentially weighted mov-
ing average analogues which makes them accessible and interpretable to many
users. So links with other distributional forms of demonstrably useful classes of
smoothers are formalised in this way. In a multivariate setting logical constraints
will be preserved with time as well as all independences and many conditional
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independences existing from the previous time slice, and various characterisa-
tions of this type of process exist. Finally the evolution can be characterised [?],
[26]: has an invariant decision based, or using linear shrinkages of either Kull-
back Leibler distances or local DeRobertis distances see Freeman and Smith
discussed below. Of course they are not universally appropriate and the class
does not admit an obvious continuous time analogue.
These methods have recently found new applications when modeling very

high dimensional non-Gaussian time series because its closed form makes fast
computation, needed for model selection and estimation feasible see for example
[?], [22], [2] and [23] an example outlined below.

4 Bayesian Networks and Space Dynamic Graph-
ical Models

It has long been recognized that the structure of a distributional Kalman �lter
over n time periods, whether its observations are univariate or multivariate
can be expressed as a Bayesian Network de�ned on a sequence of vectors Y T ,
(Y 1;Y 2; : : : ;Y T ) and �

T , (�1;�2; : : : ;�T ) : Thus it is straightforward to check
that the conditional independences explicit in the general distributional Kalman
�lter can be written in the form

Y t q Y t�1;�t�1j�t, t = 1; 2; : : : ; n

�t q Y t�1;�t�2j�t�1, t = 2; 3; : : : ; n

These are exactly the conditional independences of a valid BN whose DAG is

Y 1 Y 2 Y t�1 Y t Y t+1 Y n

" " " " " "
�1 ! �2 ! � � � ! �t�1 ! �t ! �t+1 ! � � � ! �n

Various useful non-distributional results can be proved about any process whose
distributions respect this dependence structure simply by evoking the d sepa-
ration theorem [18],[16] that are much more obscure when proved in other ways.
For example writing b�t = (�1; : : :�t�2;�t+2; : : :�n) ; bY t = (Y 1; : : :Y t�2;Y t+2; : : :Y n)
it can immediately be proved that

�t q
�b�t; bY t

�
j(�t�1;�t+1)

which in turn gives a framework for understanding retrospective analyses of
parameters using non-Gaussian forms of standard DLM�s.
Conditional independence models have a close relationship to the speci�ca-

tion of model classes through the factorisations exhibited in their joint densities
- see e.g. [4] - and in turn the distributional forms of system and observation
equation link directly to factorisation formulae. Through this connection it can
be seen that Gaussian Kalman �lters with their fast algorithms for calculat-
ing were the forerunners of the fast propagation algorithms on decomposable

8



CRiSM Paper No. 10-13, www.warwick.ac.uk/go/crism

Gaussian Bayesian networks using Junction trees [2], [14]. Thought of in this
way the states of a Kalman �lter correspond to the separators on the junction
tree of the Bayesian Network given above. Interesting there have also been de-
velopments of second order recurrences over trees see for example Lauritzen and
[11] which exactly correspond to extensions of Kalman�s original work.
This recognition of the link between state space time series and graphical

models provoked the development of dynamic Bayesian Networks [5], These can
be seen as a distributional Kalman �lter with added conditional independences
over the state transitions and time constant parametersfF t(xt); Gt; Vt;W tg. In
the usual Gaussian form of this model the conditional independences can simply
be expressed in terms of collections of zeros in the transition matrix G and the
state error covariance matrix W . One highly popular class of models is the 2
time slice dynamic model 2TDM ,[6], [15]. A very simple example of this class
with bivariate states �t = (�1;t; �2;t), t = 1; 2; : : : ; n and univariate observations
given below. This embodies the conditional independences

Yt q Y t�1;�t�1; �2;tj�1;t, t = 1; 2; : : : ; n

�1;t q Y t�1;�t�2j�t�1, t = 2; 3; : : : ; n

�2;t q Y t�1;�t�2; �1;t�1j�2;t�1, t = 2; 3; : : : ; n

and is depicted below, or more conventionally simply by the third fourth and
�fth column of this BN.

Yt�1 Yt Yn
" " "

� � � ! �1;t�1 ! �1;t �! � � � ! �1;n
% % % %

: : : ! �2;t�1 ! �2;t �! � � � ! �2;n

At least in its linear form here we could simply specify this as a distribution
Kalman �lter with

G =

�
g11 g12
0 g22

�
;W =

�
W1 0
0 W2

�
There are many examples of the use of somewhat more complicated two time
slice models than the one illustrated above (see e.g. [15]).Here the challenge is
to learn the values of the hyperparameters. Even in the simple example above
the likelihood over the hyperparameters (g11; g12; g22;W1;W2; V ) is known to
be an unpleasant function and tends to be rather �at except when sample sizes
are large. So even in this simple example estimation is hard. The technicians
in this area tend to use an approximate sequential algorithm here, because all
formal closure is lost within this class.
The necessity for estimating hyperparameters fF t(xt); Gt; Vt;W tg tends to

cause a lack of closure. We have discussed earlier some partial solutions to
these problems when the series is univariate. But problems are particularly
acute problem once observations are multivariate where all but the most sym-
metric model su¤er from this de�ciency so to implement these models often
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very sensitive numerical techniques and sequential approximations need to be
applied.
However a partial solution to these problems using as stochastic version

of graphical modeling techniques to piece together many univariate Gaussian
Kalman �lters - explicitly regression dynamic linear models, so that - at least
conditional on a few discount parameters governing noise to signal ratios of
the component models - recurrences of these multivariate models are all exact.
These are called Multiregression Dynamic Model (MDM), [20], [21]. This has a
di¤erent conditional independence structure where the probabilities or regres-
sion parameters are linked directly to parents of each component in the time se-
ries. The simple typical MDM on a 4 - vector time series Y t = (Yt(1); Yt(2); Yt(3); Yt(4))
, t = 1; 2; : : : is given below

Yt(1) ! Yt(3)
% #

Yt(2) ! Yt(4)

Here the graph means the following: fYt(1)gt�1 and fYt(2)gt�1 are assumed to
be mutually independent time series governed by a DLM fYt(3)gt�1 is also
a DLM fF t(y

t(1);yt(2)); Gt; Vt;W tg but where F t(y
t(1);yt(2)) is alone is

a function of the observations of the two seriesfYs(1)gs�t and fYs(2)gs�t up
to and including observations at time t. Finally fYt(4)gt�1 is also a DLM
fF t(y

t(2);yt(3)); Gt; Vt;W tg but where F t(y
t(2);yt(3)) is a function of the

observations of fYs(1)gs�t and fYs(2)gs�t but not fYt(1)gt�1.
What is a surprising and useful property of these processes is that if the

state vectors f�0(1);�0(2);�0(3);�0(4)gof each of the 4 series are assume to be
mutually independent at time 0 then f�t(1)jyt;�t(2)jyt;�t(3)jyt;�t(4)jytgwill
also be independent for all t = 1; 2; : : :. This in turn means that the one step
ahead Kalman Filter recurrences for each of the component series after observing
.and process are closed and it is these vectors of parameters which are each given
their own independent dynamic process are also valid. This gives a rich class
of dynamic graphical models, whose graphs can be naturally interpreted in
terms of dependence structures and whose time series structure is very easy to
analyse: see for example Queen (2009) for a simple example of these, and series
B paper for a continuous analogue. The class of models is particularly suitable
for modelling series with a fast dynamic over the components: for example when
a high value of Yt(1) and Yt(2) has a tendency trigger almost instantaneously a
high value in Yt(3) which in turn tends to trigger a high value of Yt(4) in the
example above.
Because of the Kalman recurrences, in the example above conditional on the

hyperparameters, the conditional predictive densities
�
yt(1)jyt�1; yt(2)jyt�1; yt(3)j

�
yt�1; yt(1); yt(2)

�
; yt(4)j

�
yt�1; yt(2); yt(3)

�	
are each Gaussian. However the joint distribution of ytjyt�1 certainly is not
which explains why this class of processes does not su¤er the same problem as
the usual multivariate analogues of the distributional Kalman �lter. However
if the functions F t(y

t(1);yt(2));F t(y
t(2);yt(3)) are functions of these series

only through the values of (yt(1); yt(2)) and (yt(2); yt(3)) and are polynomial,
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for example

F t(y
t(1);yt(2)) = (1; yt(1)yt(2))

F t(y
t(2);yt(3)) = (1; yt(2); yt(3))

respectively then all the joint moments of this one step ahead predictive to any
order are trivial to calculate using standard results in probability theory [21].
Of course, because of the potential complexity of these joint predictive densities,
retrospective analyses are extremely complex to perform accurately. But for one
step ahead forecasting these processes are simple to analyse.

5 Causal models and controlled Kalman Filters

Over the last �fteen years or so, there have been enormous activity on the study
of causation using probabilistic graphical models. However much of the recent
work, often associated with medicine and science, have tended to focus attention
on cross sectional models where causation acts over a single time point. More
recently interest has refocused back on to the proper domain of expression of
causal relationships: the area of multivariate time series.
Many authors and particularly Pearl[19] and Dawid see e.g. have come to

realise that one of the most e¤ective ways of modeling causation is through its
relation to controls. But within the Kalman �lter formulation of process this has
always been the way causality has been described. Thus for example in causal
models of the movement of a missile, where states represent the acceleration in
di¤erent coordinates an action to change this vector by manipulating the system
error to re�ect the control whilst leaving the other elements of the system -
describing the environment and measurement errors - intact.
This expressiveness of extending an the description of an uncontrolled time

series to one which was manipulated was recognized [12] very early in the study
of distributional forms of Kalman �lters Furthermore by West and Harrison
(1982) had developed these methods formally so they could be applied to a
wide class of business time series models which were subjected to many di¤erent
types of control or subjected to many di¤erent types of external shocks.
Within certain markets where supply is demand led and passes through cer-

tain agents causal structures are a little more subtle. However here by appro-
priately de�ning states, it is still possible to use the structure of Kalman �lters
to model causal relationships. Thus suppose we have a commodity can pass
along the routes in the graph given below where f1; 2; 3g are drillers, f4; 5; 6g
are re�ners and f7; 8; 9g distributors and suppose for simplicity that it takes
exactly 1 time period to transport the commodity from a node to one leading
from it.

11



CRiSM Paper No. 10-13, www.warwick.ac.uk/go/crism

1 ! 4 ! 7
& %

2 ! 5 ! 8
%

3 ! 6 ! 9

The typical information we have available at any one time is the total amount
of the commodity at some subset of the traders. The trick here is to label as
states the source to sink paths that a commodity might pass along. Here the
index at each start time t of these would be f147; 157; 158; 257; 258; 368; 369g :
If we could observe take a snap shot of the commodity at a given time t - with
error we would take an observation then we obtain a Kalman �lter but - because
of the transport delays - with some of the information hidden for up to 2 time
periods. The recurrences of the standard Kalman �lter are then slightly adapted
but nevertheless stay in closed form. In a demand led market the economy will
require the sums of the commodity to change stochastically through re�ners
By using this type of parametrisation The e¤ect of a causal change here,

like the closing of a well, the withdrawal of a re�ner can now be modelled in
terms of its e¤ects on the �ows from well to distributor. Thus if well 1 were to
close then the �ows indexed by 147; 157; 158 would all be set to zero. and these
amounts would then need to be compensated by increased �ows from the other
two wells. so that the continued demands will be satis�ed. The appropriate
choice of these models will depend on context but are discussed in [27] and L�s
thesis. The point is here that the �exibility of the Kalman �lter where states
can be variously de�ned allows for causal e¤ects where there are systematically
delays in the reaction of the process: something that is not possible using usual
graphical machinery. So this represents yet another albeit indirect application
of Kalman�s technology.
Our �nal example brie�y previews a recent development on modelling high

dimensional discrete time series on trees. Although this class of models of a
very complex and structured domain lie at the end of a chain of development of
ideas discussed here, it uses all the ideas so far attributed as having their root
in Kalman�s work. These are:

1. the creative supplementation of an observed process with states whose
evolution can be well de�ned.

2. the exploitation of conditional independences between states to obtain
closed form conjugate updating.

3. the use of power steady forms of evolution and Multiprocess modelling to
generalise these the give closed form Kalman like recursions.

4. the exploitation of the explanatory power of the Kalman �lter to extend
its domain so that it applies equally well to domain where there is control
or disruption.

12
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To illustrate this type of model consider the following problem where stu-
dents take a sequence of yearly courses where pass rates are supposed to be
comparable but where students are thrown out of the programme if they fail
two consecutive exams, and that each student attends one course a year. In-
terest is on the development of the programme over the years, the di¤erences
in the success rates in the di¤erent courses on o¤er and to forecast the e¤ects
of changes of teaching programmes and syllabi might cause. The tree below
represents a very simple three year programme like this where vertices with a +
superscript represent a student passing their last course. In any year we observe
the numbers who pass or fail each year for each of the 6 categories of student
labelled by the interior vertices of the tree.�

0; 1�; 1
+; 2+�; 2�; 2

+
	

which are respectively, the starting students, those who have failed the �rst
year, those who have passed Year 1, those having failed Year 1 passed Year 2,
those who passed Year 1 but failed Year 2 and those who passed in their �rst
two years. The leaves label the di¤erent possible educational records. Assume
that students in a given �xed year are exchangeable within these categories. We
would now like to treat the problem as a yearly time series on the vector of the
probability of a student passing in each category in each given year.

out 3+

- "
out 2+� out 3+

- " " %
1� 2� 3�

% % %
0 ! 1+ ! 2+ ! 3+

The edges of the graph above can be labeled by these probabilities therefore
which in Kalman �lter terms will de�ne our states. The set of possible models on
the tree above might include di¤erent hypotheses that some of the 6 probabilities
can be partitioned so that interior vertices in the same cluster in the partition
have the same pass probabilities. The factorization of the probabilities of the
tree means that all these component probabilities associated with each given
partition, after complete sampling at each year, remain independent year on
year: a typical exploitation to conditional independences induced by the Kalman
state space de�nition we have used. Allowing a steady drift over time for each
of the cluster probabilities and giving them independent beta distributions and
placing a prior distribution on each possible cluster hypotheses allows us to
update the probabilities of the next year�s student performance as a Class 1
steady Mixture Model. This is a hybrid of two of the models discussed above
and exploits Kalman �lter closed form analyses. Class 2 Multiproces models can
also be modi�ed to this context to allow transitions over time from one partition
to another.. Finally, if we are interested in investigating whether changing a
syllabus has made a course less easy to pass than others in its current cluster,
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we simply need to extend this distribution Kalman �lter into a controlled model
where we replace the variable labeled by the interior vertex by a new controlled
one: i.e. augment the distribution after control locally at its given time and
state whilst retaining the distribution of the other states: just as we do in a
controlled Kalman �lter.
Because these procedures or all closed form analyses of large student pro-

grams with hundreds of courses can still be studied using this model class. For a
detailed discussion of this type of model see Freeman and Smith (2011), Freeman
and Smith (2010) and Freeman(2010).

6 Conclusions

The impact of Kalman has been and continues to be enormous. In particu-
lar we believe that his brilliant concept of separating states from observation
and utilizing Markov properties, to better explain the process, better estimate
the process and better embed the models into more complex domains admit-
ting shocks and controlled interventions will have an enduring in�uence on the
construction of forecasting models well into the future.

References

[1] Atwell and Smith(1991) "A Bayesian forecasting model for sequential bid-
ding" J.of Forecasting, 10, 565 - 577

[2] R.G.Cowell,A.P. Dawid,S.L. Lauritzen and D.J.Spiegelhalter (1999) "Prob-
abilistic Networks and Expert Systems" Springer

[3] Dawid, A.P. (1992) "Prequential analysis, stochastic complexity and
Bayesian inference" Bayesian Statistics 4 (Eds Bernardo et al) Oxford Uni-
versity Press 109 -125

[4] Dawid, A.P., Studený, M., 1999. "Conditional products: an alternative
approach to conditional independence". In Heckerman, D., Whittaker, J.
(Eds.), Arti�cial Intelligence and Statistics 99 Morgan Kaufmann Publish-
ers, S. Francisco, 32�40

[5] Dahlhaus, R. and Eichler, M. (2003), Causality and graphical models for
time series. In: P. Green, N. Hjort, and S. Richardson (eds.), Highly struc-
tured stochastic systems. University Press, Oxford, pp. 115-137.

[6] Dean,T. and Kanazawa, K. (1988) Probabilistic Temporal Reasoning, Proc.
AAAI-88, AAAI, 524-528

[7] Durbin, J. and Koopman,S. J. (2001) " Time Series Analysis by State Space
Methods" Oxford University Press

14



CRiSM Paper No. 10-13, www.warwick.ac.uk/go/crism

[8] Eichler, M. (2006), Graphical modelling of dynamic relationships in mul-
tivariate time series. In: M. Winterhalder, B. Schelter, J. Timmer (eds),
Handbook of Time Series Analysis, Wiley-VCH, Berlin, pp. 335-372.

[9] Eichler, M. (2007), Granger-causality and path diagrams for multivariate
time series. Journal of Econometrics 137, 334-353

[10] Fruthwirth-Schnatter, S. (2006) "Finite Mixture and Markov Switching
Models" , Springer Verlag, New York,

[11] Goldstein, M. and Woo¤, D. (2007) "Bayesian Linear Statistic: Theory and
Methods" Wiley

[12] Harrison, P.J. and Stevens, C.F. (1976) "Bayesian forecasing"(with discus-
sion) J.R.Statist .Soc B, 38, 205 -247

[13] Ibrahim, J.G. and Chen, M.H.(2000) "Power prior distributions for regres-
sion models" Statistical Science, 15, 46 -60

[14] Jensen F.V. and Nielsen, T.D. (2007) "Bayesian Networks and Decision
Graphs"(2nd edition) Springer Verlag, New York

[15] Koeller, D. and Lerner, U. (1999) Sampling in Factored Dynamic Systems
in �Sequential Monte Carlo Methods in Practice�

[16] Lauritzen S.L. (1996) "Graphical models". Oxford Science Press, Oxford,
1st edition.

[17] Peterka, V. (!981) "Bayesian system identi�cation". In: Trends and
Progress in System Identi�cation, P. Eykho¤, Ed., p. 239-304. Pergamon
Press, Oxford

[18] Pearl,J. (1988) Probabilistic Reasoning in Intelligent Systems San Mateo:
Morgan Kau¤man

[19] Pearl,J. (2000). Causality. models, reasoning and inference. Cambridge Uni-
versity Press, Cambridge.

[20] Queen, C.M. and Smith, J.Q. (1992). "Symmetric Dynamic Graphical
Chain Models". Bayesian Statistics 4. J.M. Bernardo, J.O. Berger, A.P.
Dawid, A.F.M. Smith (Eds.). Oxford University Press, 741-751.

[21] Queen, C.M., and Smith, J.Q. (1993). "Multi-regression dynamic models".
J.R. Statist. Soc. B, Vol.55, No.4, 849-870.

[22] Queen, C.M., Smith, J.Q. & James, D.M. (1994). "Bayesian Forecasts in
markets with overlapping structures". Int. J. of Forecasting, 10, 209-233.

[23] Rigat, F. and Smith, J.Q. (2009) "Non-parametric dynamic time series
modelling with applications to detecting neural dynamics" The Annals of
Applied Statistics (to appear)

15



CRiSM Paper No. 10-13, www.warwick.ac.uk/go/crism

[24] Smith, J.Q.(1979) "A generalisation of the Bayesian steady forecasting
model" J.R.Statist. Soc . B 41, 375 -87

[25] Smith, J.Q. (1981)."Search E¤ort and the Detection of Faults" B.J. of Mah.
and Stat. Psy, 34, 34, 181 -193

[26] Smith, J.Q. (1992). "A comparison of the characteristics of some Bayesian
forecasting models". International Statistical Reviews, 60,1, 75-87.

[27] Smith, J.Q. and Figueroa-Quiroz, L.J. (2007) "A Causal Algebra for Dy-
namic Flow Networks" in "Advances in Probabilistic Graphical Models"
Eds P. Lucas, J.A.Gamez, and A. Salmeron, Springer, 39 -54

[28] P. Spirtes, C. Glymour and R. Scheines (1993). Causation, Prediction, and
Search. Springer-Verlag, New York.

[29] West, M. and Harrison, P.J.(1997) "Bayesian Forecasting and Dynamic
Models" Springer.

16


	Introduction
	Dynamic Linear models
	Closed form recurrences for Non Gaussian analogues of Kalman filters
	Bayesian Networks and Space Dynamic Graphical Models
	Causal models and controlled Kalman Filters
	Conclusions

