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helps us determine now why routine statistical methods can break down
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1. Introduction

A Bayesian network whose graph is a tree all of whose inner nodes represent
variables which are not directly observed defines an important class of models,
containing both phylogenetic tree models and hidden Markov models. Inference
for this model class tends to be challenging and often needs to employ fragile
numerical algorithms. In [40] we established a useful new coordinate system to
analyze such models when all of the variables are binary. This reparametrization
enabled us not only to address various identifiability issues but also helped us
to derive exact formulas for the maximum likelihood estimators given that the
sample proportions were in this model class.

However, as well as making identifiability issues more transparent and open
to systematic analysis, this new coordinate system can be also used to analyze
the global structure of tree models. In particular it enables us to obtain the
full description of these models in terms of implicit polynomial equations and
inequalities. Knowing this full semi-algebraic description is extremely useful
when used in conjunction with the identifiability structure as discussed in [40].
We explain in Section 3 how this study impacts the stability of the maximum
likelihood and Bayesian estimation procedures within the class of phylogenetic
test models. It is also helpful in the construction of tree diagnostics and model
selection procedures within this class.

This paper builds on the results in [12] where some partial understanding
of the analytic approach to the maximum likelihood estimation was presented.
The problem here is that routinely fitted phylogenetic models often violate the
inequality constraints defining the model. One effect of this phenomenon is
then that the maximum likelihood estimators (MLEs) usually lie on to the
boundaries of the parameter space (see Section 3 for an example). In a full
Bayesian analysis it will make the ensuing inference about probabilities highly
sensitive to the settings of prior distributions on the parameters (see [32], [33]).
This, in turn, automatically interferes with the appropriate functioning of model
selection algorithms. For example Bayes Factor scores will be highly influenced
again by priors. On the other hand more classical methods like for example AIC
or BIC algorithms, when used routinely, misbehave because many of the MLEs
will lie on the boundary of the feasible region since usual dimension counting
penalties are implicitly too large (see [38]). For these and other reasons explained
in more detail in Section 3 the inequality conditions are of considerable practical
importance.

This paper is part of an explosion of work which apply techniques in alge-
braic geometry to study and develop statistical methodologies. The particular
geometric study of tree models was first introduced by Lake [21], and Cavender
and Felsenstein [9]. This research was initially focused on so called phylogenetic
invariants. These are algebraic relationships expressed as a set of polynomial
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equations over the observed probability tables which must hold for a given phy-
logenetic model to be valid. We note that these algebraic techniques have also
been embraced by computational algebraic geometers [2][17][37] enhancing sta-
tistical and computational analysis of such models [7] (see also [1] and references
therein).

The main technical deficiency of using phylogenetic invariants alone in this
way is that they do not give a full geometric description of the statistical model.
However, the additional inequalities obtained as the main result of this paper
complete this description. Where and how these inequality constraints can help-
fully supplement an analysis based on phylogenetic invariants is illustrated by
the simple example given below.

Example 1.1. Let T be the tripod tree in Figure 1 where we use the convention
that observed nodes are depicted by black nodes. The inner node represents a

b

bc

b

b

X1

X2

X3
H

Fig 1. The graphical representation of the tripod tree model.

binary hidden variable H and the leaves represent binary observable variables
X1, X2, X3. The model is given by all probability distributions pα for α ∈ {0, 1}3
such that

pα = θ
(H)
0

3∏
i=1

θ
(i)
αi|0 + θ

(H)
1

3∏
i=1

θ
(i)
αi|1,

where θ(H)
i = P(H = i) for i = 0, 1 and θ

(i)
j|k = P(Xi = j|H = k) for i = 1, 2, 3

and j, k = 0, 1. The model has full dimension over the space of observed marginal
distributions (X1, X2, X3) and consequently there are no non-trivial equalities
defining it. However, it is not a saturated model since not all the marginal
probability distributions over the observed vector (X1, X2, X3) lie in the model
class. For example Lazarsfeld and Henry [23, Section 3.1] showed that the second
order moments of the observed distribution must satisfy

Cov(X1, X2)Cov(X1, X3)Cov(X2, X3) ≥ 0.

Together with many other constraints we derive later, this constraint, which
clearly impacts the inferences we might want to make (see Section 3), is not
acknowledged through the study of phylogenetic invariants. Therefore inference
based solely on these invariants is incomplete. For example naive estimates de-
rived through these methods can be infeasible within the model class in a sense
illustrated later in this paper.
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This example and the discussion of some inferential issues discussed above
motivated the closer investigation of the semi-algebraic features associated with
the geometry of binary tree models with hidden inner nodes. The main problem
with the geometric analysis of these models is that in general it is hard to obtain
all the inequality constraints defining a model explicitly even for very simple ex-
amples (see [15, Section 4.3], [18, Section 7]). Despite this, some results can be
found in the literature. A binary naive Bayes model was studied by Auvray et
al. [3]. There are also some partial results for general tree structures on binary
variables given by Pearl and Tarsi [27] and Steel and Faller [36]. The most impor-
tant applications in biology involve variables that can take four values. Recently
Matsen [24] gave a set of inequalities in this case for group-based phylogenetic
models (additional symmetries are assumed) using the Fourier transformation
of the raw probabilities. Here we provide a simpler and more statistically trans-
parent way to express the constrained space.

The semialgebraic description we obtain here also has an elegant mathemat-
ical structure. For example [8] gave an intriguing correspondence between, on
the one hand, a correlation system on tree models and on the other distances
induced by trees where the length between two nodes in a tree is given as a sum
of the length of edges in the path joining them. The new coordinate system for
tree models that we introduced in [40] enables us to explore in detail this re-
lationship between probabilistic tree models (also called the tree decomposable
distributions in [27]) and tree metrics and extend these results.

It has been known for some time that the constraints on possible distances be-
tween any two leaves in the tree imply some additional inequality constraints on
the possible covariances between the binary variables represented by the leaves.
These inequalities, given in (16), follow from the four-point condition ([29], Def-
inition 7.1.5) together with some other simple non-negativity constraints. By
using our new parametrization we are able to show in this paper that these two
types of inequality constraints cannot be sufficient to describe the model class.
Thus any probability distribution in the model class must satisfy many other
additional constraints involving higher order moments. Using our methods we
are able to provide the full set of the defining constraints in Theorem 4.7. This
is given by a list of polynomial equations and inequalities which describe the
set of all probability distributions in the model.

The paper is organized as follows. In Section 2 we briefly introduce gen-
eral Markov models. We then proceed to describe a convenient new change of
coordinates for these models given in [40]. In the new coordinate system the
parametrization of the model has an elegant product form. We use this to ob-
tain the full semi-algebraic description of a simple naive Bayes model. In Section
3 we discuss various ways in which an awareness of these implicit inequalities
can enrich a statistical analysis of this model class. In Section 4 we state our
main theorem and illustrate how it can be used. In Section 5 we discuss these
results for a simple quartet tree model.
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2. Tree models and tree cumulants

We begin by defining and reviewing a new coordinate system for tree models
and demonstrate how it can be used to provide a better understanding of this
model class. We list the main results from our previous paper [40] and link it to
the results presented in the next sections.

Parametrizations based on moments are one way of providing a structured
model a structure more amenable to an algebraic analysis (see [4], [14]). This ap-
proach has proved particularly effective in the presence of hidden data (see [31])
since then the analysis of a particular marginal distributions over a subset of the
observed variables can be specified as a function of the joint moments contain-
ing that subset only. On the other hand when a model class is defined by a set
of conditional independences further insight may be provided by reparametriz-
ing to otherfunctions of these moments to elegantly represent this additional
underlying structure. This functions typically resemble cumulants.

One useful property of standard cumulants is that joint cumulants always
vanish whenever the random vector under analysis can be split into two inde-
pendent subvectors. Here we exploit analogous property using a reparametriza-
tion customized to the topology of a particular tree. These tree cumulants are
introduced in [40]. They vanish only if some of the edges in the defining tree
model are missing. This corresponds to the marginal independence of the leaves
of two connected components of the induced forest. The property follows from
a more general result in [39, Proposition 4.3] and partly explains the elegant
product-like structure of the resulting parametrization in Proposition 2.3.

In this paper we assume that random variables are binary taking values either
0 or 1. We consider models with hidden variables, i.e. variables whose values are
never directly observed. The vector Y has as its components all variables in the
graphical model, both those that are observed and those that are hidden. The
subvector of Y of observed variables is denoted by X and the subvector of hidden
variables by H. A (directed) tree T = (V,E), where V is the set of vertices (or
nodes) and E ⊆ V × V is the set of edges of T , is a connected (directed) graph
with no cycles. A rooted tree is a directed tree that has one distinguished vertex
called the root, denoted by the letter r, and all the edges are directed away from
r. A rooted tree is usually denoted by T r. For each v ∈ V by pa(v) we denote
the node preceding v in T r. In particular pa(r) = ∅. A vertex of T of degree one
is called a leaf. A vertex of T that is not a leaf is called an inner node.

Let T denote an undirected tree with n leaves and let T r = (V,E) denote
T rooted in r ∈ V . A Markov process on a rooted tree T r is a sequence {Yv :
v ∈ V } of random variables such that for each α = (αv)v∈V ∈ {0, 1}V its joint
distribution satisfies

pα(θ) = θ(r)
αr

∏
v∈V \r

θ
(v)
αv|αpa(v)

, (1)

where θ(r)
αr = P(Yr = αr) and θ

(v)
αv|αpa(v)

= P(Yv = αv|Ypa(v) = αpa(v)). Since

θ
(r)
0 + θ

(r)
1 = 1 and θ(v)

0|i + θ
(v)
1|i = 1 for all v ∈ V \ {r} and i = 0, 1 then the set of

parameters consists of exactly 2|E|+1 free parameters: we have two parameters:
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θ
(v)
1|0 , θ(v)

1|1 for each edge (u, v) ∈ E and one parameter θ(r)
1 for the root. We denote

the parameter space by ΘT = [0, 1]2|E|+1 and the Markov process on T r by M̃T .
Remark 2.1. The reason to omit the root r in the notation is that this model
does not depend on the rooting and is equivalent to the undirected graphical
model given by global Markov properties on T . To prove this note that T r is a
perfect directed graph and hence by [22, Proposition 3.28] parametrization in
(1) is equivalent to factorization with respect to T . Since T is decomposable this
factorization is equivalent to the global Markov properties by [22, Proposition
3.19].

Let ∆2n−1 = {p ∈ R2n :
∑
β pβ = 1, pβ ≥ 0} with indices β ranging

over {0, 1}n be the probability simplex of all possible distributions of X =
(X1, . . . , Xn) represented by the leaves of T . We assume now that all the in-
ner nodes represent hidden variables. Equation (1) induces a polynomial map
fT : ΘT → ∆2n−1 obtained by marginalization over all the inner nodes of T

pβ(θ) =
∑
H
θ(r)
αr

∏
v∈V \r

θ
(v)
αv|αpa(v)

, (2)

where H is the set of all α ∈ {0, 1}V such that the restriction to the leaves of T
is equal to β. We let MT = fT (ΘT ) denote the general Markov model over the
set of observable random variables (c.f. [29, Section 8.3]).

A semialgebraic set in Rd is a finite union of sets given by a finite number
of polynomial equations and inequalities. Since ΘT is a semialgebraic set and
fT is a polynomial map then by [5, Proposition 2.2.7] MT is a semialgebraic
set as well. Moreover, if f is a polynomial isomorphism from ∆2n−1 to another
space then f(MT ) is also a semialgebraic set. The semialgebraic description of
f(MT ) in f(∆2n−1) gives the semialgebraic description of MT .

The idea behind tree cumulants was to define a polynomial isomorphism from
∆2n−1 to the space of new coordinates KT . We defined a partially ordered set
(poset) of all the partitions of the set of leaves induced by removing edges of the
given tree T . Then tree cumulants are given as a function of probabilities induced
by a Möbius function on the poset. The details of this change of coordinates are
given in Appendix A and are illustrated below.

The tree cumulants are given by 2n − 1 coordinates: n means λi = EXi for
all i = 1, . . . , n and a set of real-valued parameters {κI : I ⊆ [n] where |I| ≥ 2}.
Each formula for κI is expressed as a function of the higher order central mo-
ments of the observed variables. These formulas are given explicitly in equation
(19) of Appendix A. Since the change of coordinates is a polynomial isomor-
phism then by [5, Proposition 2.2.7] the image of MT in the space of tree
cumulants, denoted by Mκ

T , is a semialgebraic set. In this paper we provide
the full semialgebraic description of Mκ

T , i.e. the complete set of polynomial
equations and inequalities involving the tree cumulants which describesMκ

T as
the subset of KT , for subsequent use in a statistical analysis of the model class.

Example 2.2. Consider the quartet tree model, i.e. the general Markov model
given by the graph in Figure 2. The tree cumulants are given by 15 coordinates:
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Fig 2. A quartet tree

λi for i = 1, 2, 3, 4 and κI for I ⊆ [4] such that |I| ≥ 2. Denoting Ui = Xi−EXi

we have κij = EUiUj = Cov(Xi, Xj) for 1 ≤ i < j ≤ 4 and

κijk = E (UiUjUk)

for all 1 ≤ i < j < k ≤ 4 which we note is a third order central moment.
However in general tree cumulants of higher order cannot be equated with their
corresponding central moments but only expressed as functions of them. These
functions are obtained by performing an appropriate Möbius inversion. Thus for
example from equation (19) in Appendix A we have that

κ1234 = E (U1U2U3U4)− E (U1U2) E (U3U4) .

Note that since the observed higher order central moments can be expressed as
functions of probabilities, tree cumulants can also be expressed as functions of
these probabilities.

Let Xî = (X1, X2, X3, X4) \ {Xi} for i = 1, 2, 3, 4. From [39, Proposition
4.3] it follows in particular that, like for the joint cumulant, κ1234 = 0 when-
ever Xi ⊥⊥ Xî for any i = 1, 2, 3, 4 or (X1, X2) ⊥⊥ (X3, X4). However, in general,
κ1234 6= 0 for example if (X1, X3) ⊥⊥ (X2, X4) and hence tree cumulants differ
from classical cumulants. Vanishing of the tree cumulants corresponds to an
edge being missing in the particular defining tree. This generalizes for other
trees and gives a heuristic explanation for the nice product-like parametrization
presented in Proposition 2.3 below. We explain this now formally.

Let T r = (V,E) and let ΩT denote the set of parameters with coordinates
given by µ̄v for v ∈ V and ηu,v for (u, v) ∈ E. Define a reparametrization map
fθω : ΘT → ΩT as follows:

ηu,v = θ
(v)
1|1 − θ

(v)
1|0 for every (u, v) ∈ E and

µ̄v = 1− 2λv for each v ∈ V,
(3)

where λv = EYv is a polynomial in the original parameters θ. To see this let
r, v1, . . . , vk, v be a directed path in T . Then

λv = P(Yv = 1) =
∑

α∈{0,1}k+1

θ
(v)
1|αkθ

(vk)
αk|αk−1

· · · θ(r)
αr . (4)
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It can be easily checked that if Var(Yu) > 0 then ηu,v = Cov(Yu, Yv)/Var(Yu).
Hence ηu,v is just the regression coefficient of Yv with respect to Yu.

The parameter space ΩT is given by the following constraints:

−1 ≤ µ̄r ≤ 1, and for each (u, v) ∈ E
−(1 + µ̄v) ≤ (1− µ̄u)ηu,v ≤ (1− µ̄v)
−(1− µ̄v) ≤ (1 + µ̄u)ηu,v ≤ (1 + µ̄v).

(5)

In Appendix A we show that there is a polynomial isomorphism between
∆2n−1 and the space of tree cumulants KT giving the following diagram, where
the dashed arrow denotes the induced parametrization.

ΘT

fθω

��

fT // ∆2n−1

fpκ

��

ΩT

fωθ

OO

ψT //______ KT

fκp

OO
(6)

One motivation behind this change of coordinates is that the induced parametriza-
tion ψT : ΩT → KT has a particularly elegant form.

Proposition 2.3 ([40], Proposition 4.1). Let T be an undirected tree with n
leaves. Assume that T is trivalent which here means that all of its inner nodes
have degree at most three. Let T r = (V,E) be T rooted in r ∈ V . Then Mκ

T is
parametrized by the map ψT : ΩT → KT given as λi = 1

2 (1− µ̄i) for i = 1, . . . , n
and

κI =
1
4

(
1− µ̄2

r(I)

) ∏
v∈int(V (I))

µ̄deg(v)−2
v

∏
(u,v)∈E(I)

ηu,v for I ⊆ [n], |I| ≥ 2 (7)

where the degree is taken in T (I) = (V (I), E(I)); int(V (I)) denotes the set of
inner nodes of T (I) and r(I) denotes the root of T r(I).

Proposition 2.3 has been formulated for trivalent trees. However it can be
easily extended to the general case as explained in [40, Section 4].

This result enabled us to completely understand identifiability of tree models
extending results in [10]. In particular [40, Theorem 5.4] identifies the cases when
the model is identified up to label switching. This condition is rather technical
and here we usually would recommend the use of the sufficient condition that
all the covariances between the leaves are nonzero. Further results focus on
the geometry of the unidentified space in the case when the identifiability fails.
More importantly, [40, Corollary 5.5] gives us formulae for parameters given a
probability distribution in the case when identifiability holds. This result gives
us a closed-form formulae for MLEs in certain special cases (see Corollary 3.1).

To illustrate our technique we next obtain the full semialgebraic description of
the tripod tree model. This result is not new (see e.g. [3], [30] and a special case
given by [26, Theorem 3.1]). However this allows us not only to unify notation
but also to introduce the strategy we use to prove the general case. We begin
with a definition.
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Definition 2.4. Let A be a 2 × 2 × 2 table. The hyperdeterminant of A as
defined by Gelfand, Kapranov, Zelevinsky [19, Chapter 14] is given by

DetA = (a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

011a
2
100)

− 2(a000a001a110a111 + a000a010a101a111 + a000a011a100a111

+ a001a010a101a110 + a001a011a110a100 + a010a011a101a100)
+ 4(a000a011a101a110 + a001a010a100a111).

If
∑
aijk = 1 then treating all entries formally as joint cell probabilities

(without positivity constraints) we can simplify this formula using the change
of coordinates to central moments. The reparametrizations in Appendix A are
well defined for this extended space of probabilities and we have that

DetA = µ2
123 + 4µ12µ13µ23, (8)

which can be verified by direct computations.
From the construction of tree cumulants (c.f. Appendix A) it follows that

κI = µI for all I ⊆ [n] such that 2 ≤ |I| ≤ 3. Henceforth, for clarity, these
lower order tree cumulants will be written as their more familiar corresponding
central moments.

Proposition 2.5 (The semialgebraic description of the tripod model). Let M3

be the general Markov model on a tripod tree T rooted in any node of T . Let P
be a 2 × 2 × 2 probability table for three binary random variables (X1, X2, X3)
with central moments µ12, µ13, µ23, µ123 (equivalent to the corresponding tree
cumulants) and means λi, for i = 1, 2, 3. Then P ∈ M3 if and only if one of
the following two cases occurs:

(i) µ123 = 0 and at least two of the three covariances µ12, µ13, µ23 vanish.
(ii) µ12µ13µ23 > 0 and

|µjk|
√

DetP − µ123µjk ≤ (1− µ̄i)µ2
jk,

|µjk|
√

DetP + µ123µjk ≤ (1 + µ̄i)µ2
jk

(9)

for all i = 1, 2, 3 where by j, k we denote elements of {1, 2, 3} \ i.

The proof is given in Appendix B.
All the points satisfying (i) correspond to submodels ofM where some of the

observed variables are independent of each other.

3. Inferential issues related to the semialgebraic description

There are at least three reasons why the implicit inequality constraints of this
model class can have a critical impact on a statistical analysis of this model class.
First, used in conjunction with other geometric techniques these inequalities help
us determine, whether or not the likelihood associated with a given tree model
has multiple local maxima. Second, it gives us the basis for developing simple
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model diagnostics which complement those associated with implicit algebraic
constraints. Finally, an awareness of whether these constraints are active for
given data set enables us to identify when standard numerical methods might
fail both for estimation and model selection across different candidate trees. We
consider and illustrate all these issues below.

Proposition 2.5 and Theorem 4.7 give explicit descriptions of tree models as
subsets of the probability simplex and hence also as submodels of the multino-
mial model. The literature on constrained multinomial models (see [13] for a
review) gives many examples of what may go wrong in this case. If the multi-
way marginal table of observed random variables is sampled at random then its
likelihood will be given as the multinomial likelihood constrained to the model.
The unconstrained multinomial likelihood is of course a very well-behaved func-
tion. In particular it is log-concave and its unique maximum is given by the
sample proportions p̂ as long as all the entries of p̂ are nonzero. However, after
constraining to the model this function may become much more complicated.

We know that unidentifiability of parameters causes estimation problems
associated for example with multiple local maxima of the likelihood and the
posterior density. However, because the constraints on the model do not define a
convex region, the likelihood will not necessarily have a unique maximum in the
constrained space (see Figure 4). So even if we use ways of cleverly accounting for
the aliasing caused by unidentifiability we can still be left with other multiple
local solutions induced by the violations of the constraints. This in turn can
make estimation schemes unstable. The discussion below complements results
presented in [12].

If the unconstrained multinomial maximum likelihood estimator given by the
sample proportions does not satisfy some of the inequalities then the MLE of
the given tree model will always lie on the boundary of the parameter space
ΘT . Of course if all the inequalities hold but some of the equalities do not then,
in principle, it is not such a serious problem as the estimates will typically lie
in the interior of the parameter space. However if there are even the smallest
perturbations of the model class we are likely to be drawn outside the feasible
region. This is a phenomenon observed in many applied analyzes of these models
(see, e.g. [12]). This occurs even in the simple tripod tree above where the
feasible region accounts for only 8% of ∆7. Of course simply sampling from the
tree model itself will not identify this potential difficulty since such samples will
automatically not violate the constraints in any significant way. But if the tree
only approximately holds then we begin to encounter certain difficulties.

Since the tripod tree model M3 is of full dimension there are no non-trivial
phylogenetic invariants and so the feasible regions of the model class are purely
associated with inequality constraints and so particularly straightforward. In
Figure 3 we depict these constraints as they apply to the second order moments
of the three observed variables given some typical values of the other parameters.
For example there are four components corresponding to four possible choices
of signs for covariances satisfying µ12µ13µ23 ≥ 0.

We can now give an explicit illustration of the type of multimodality that
can be induced in this context. The likelihood function ` : ΘT → R for the
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Fig 3. The space of all possible covariances µ12, µ13, µ23 for the tripod tree model in the case
when λ1 = λ2 = λ3 = 1

2
and µ123 is equal to 0, 0.005 and 0.02 (from left to right).

Fig 4. The multinomial likelihood and a submodel of the saturated model given by four disjoint
regions. The four local maxima are obtained on boundaries of these regions.

tripod tree model can be also treated as a function on ∆7 by `(θ) = `(p(θ)) in
which case it will be denoted by `(p). Since we understand the parametrization
p : ΘT → ∆7 of M3 then understanding `(p) gives us automatically under-
standing of `(θ). The advantage is that in this setting `(p) is just obtained as
the multinomial likelihood function `(p) = `(p;x) =

∏
p
xijk
ijk constrained to the

model as explained above. If p̂ lies in the model classM3 then `(p) has a unique
maximum and the maxima of `(θ) can be obtained by mapping back p̂ to the
parameter space ΘT by using [40, Equation (3)]. This result generalizes.

Corollary 3.1. Let T be a phylogenetic tree with n leaves and let MT be the
corresponding tree model. If p̂ ∈MT then [40, Corollary 5.5] gives the formulae
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θ
(r)
1 θ

(1)

1|0 θ
(1)

1|1 θ
(2)

1|0 θ
(2)

1|1 θ
(3)

1|0 θ
(3)

1|1
1 0.4658 0.3371 0.5524 1.0000 0.0000 0.4159 0.0745
2 0.5342 0.5524 0.3371 0.0000 1.0000 0.0745 0.4159
3 0.4771 0.0000 0.9167 0.6369 0.4216 0.1468 0.3775
4 0.5229 0.9167 0.0000 0.4216 0.6369 0.3775 0.1468

Table 1
Results of the EM algorithm.

for the maximum likelihood estimators.

We have however argued that usually p̂ /∈ MT . In this case there is poten-
tially more than one local maximum of the constrained multinomial likelihood
function. Let p̂ the sample proportions for some observed data on three binary
random variables. We have three possible scenarios:

(i) p̂ ∈M3 and then `(p) is unimodal.
(ii) p̂ /∈M3 and `(p) is multimodal but there exists only one global maximum.
(iii) p̂ /∈M3 and `(p) has multiple global maxima.

The situation in (iii) raises an interesting question related to the model iden-
tifiability. For every data point satisfying (iii) we are not able to identify the
parameters using the maximum likelihood estimation.

Of course from the numerical point of view the situation in (ii) and (iii)
may describe equally bad scenarios since in both cases the algorithms become
unstable even for arbitrary large sample sizes. Thus suppose that a sample of
size 10000 has been observed[

x000 x001 x100 x101

x010 x011 x110 x111

]
=
[

2069 16 2242 331
2678 863 442 1359

]
. (10)

By direct computations we check that all the constraint in Proposition 2.5 hold
apart from µ12µ13µ23 ≥ 0 and hence p̂ does not lie in M3. The corresponding
parameters will lie on the boundary of the parameter space. We performed the
following simulation. We sampled uniformly from ΘT = [0, 1]7 the starting pa-
rameters for the EM algorithm and noted the results of the EM approximation.
For 100 iterations the procedure found four different isolated maxima given in
Table 1.

Up to label switching on the inner node these are two distinct maximizers
of the log-likelihood function `(θ) corresponding to rows 1, 3. The value of the
log-likelihood function, computed as

∑
ijk xijk log pijk, is equal to −18387 and

−18917 respectively. Both points correspond to somewhat degenerate tripod tree
models where one of the observed variables is functionally related to the hidden
variable. For example the first point lies on the submodel given by X1 ⊥⊥ X3|X2.
We performed a similar analysis for other data points for which only µ12µ13µ23 ≥
0 fails and three different EM maximizers were often found. In every case the
maximizers corresponded to degenerate submodels. In conjunction with [40,
Theorem 5.4] we can also easily construct data for which the likelihood function
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`(θ) is maximized over an infinite number of points. This for example holds
for any data such that the constrained multinomial likelihood is maximized
over a point such that p0ij = λp1ij for some λ and each i, j = 0, 1. In this case
µ12 = µ13 = 0 and the MLEs form a set of a positive dimension by [40, Theorem
5.4].

We note that the whole discussion above remains valid for more general
tree models. The conditional independence properties of tree models imply
that, since any three leaves are separated by an inner node, the correspond-
ing marginal distributions form a tripod tree model. Demanding that tripod
tree constraints must be satisfied by all triples of observed random variables
cuts out all but a small proportion of the probability simplex. Furthermore by
Theorem 4.7 we know that, in addition, many other constraints involving higher
order moments will also apply. Therefore, the types of issues we illustrated above
become increasingly critical for inference on trees, which in practical applica-
tions are of a much higher dimension. Thus real-world data will typically satisfy
all the constraints defining the model very rarely. This, in turn, tends to result
in multimodality of the likelihood function and MLEs lying on the boundary of
the parameter space.

By acknowledging the existence of the inequality constraints we have already
demonstrated how graphical methods can be used to identify why and where
the fitted tree model might be flawed. Most naively, when samples are very large
we could calculate the sample moments and notice which inequality constraints
are active on the data set presented. When these lie outside these regions then
we have strong information that the fitted tree model is inappropriate and we
can expect there to be problems with both estimation - as illustrated above -
and model selection. Slightly more sophisticatedly we could also compare the
model MLE: constrained as it is by these inequalities, with the MLE in the
saturated model. Likelihood ratio statistics can then be used to measure the
extent of the model inaccuracy. Of course this comparison can be performed
directly. However, then we lose the geometrical insight as to exactly why and
how the model is failing. This insight will be helpful in guiding us in identifying
alternative models that might better explain the data. We note that the likeli-
hood ratio statistics for a constrained multinomial model against the saturated
model in general will not asymptotically have the χ2 distribution (see e.g. [11]).
If the constrains are linear then the underlying distribution is called the chi-bar
squared distribution (see [13]). The situation is however much more complicated
for tree models since here the constraints define a union of non-convex bodies.

Inequalities are also relevant for the model choice. Suppose that the sufficient
statistic does not satisfy some inequalities for each of the models under analysis.
Then asymptotic model selection techniques like BIC can mislead. The effective
parameter size will be miscounted because at least some of the MLEs will lie of
the boundary of the space (see e.g. [28], [38]). Model selection based on Bayes
factors will also tend to be unrobust. Since the estimates lie on the boundary the
marginal likelihood for each of the models depends heavily on the tail behavior
of the prior distribution on that boundary. See [33] and [32] for explanations of
why this is so. For example a standard choice of a prior distribution for con-
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ditional distributions in tree models is the Dirichlet distribution. However, for
different choices of its prior parameters the Bayes factors generated by the prior
tails can be very different. Note that within the Bayesian paradigm the sampling
of the tripod tree is straightforward once we recognize the constraint structure
using a simple importance sampler generating samples from ∆7 and rejecting if
they do not satisfy the defining inequalities. Of course this is not the only way
of specifying a prior density for selecting between the saturated model and the
tree model. However our suggestion is very simple to implement and its inferen-
tial consequences are more transparent than more conventional methods using
default priors within the conventional probabilitistic parametrization, where the
selection can be highly dependent on the tails of priors of the hidden variable.

4. Explicit Expression of Implied Inequality Constraints

In this section we discuss the geometric of general tree models. First, we use
some links to tree metrics to provide a simple set of algebraic constraints on
the model space. Then in Theorem 4.7 we provide the complete semialgebraic
description for this model class.

Let T be a general undirected tree with n leaves and T r = (V,E) is the tree
T rooted in r ∈ V . Before stating the main theorem of the paper we first show
how to obtain an elegant set of necessary constraints onMT . In this section we
assume that µ̄2

r 6= 1 and ηu,v 6= 0 for all (u, v) ∈ E. By Remark 4.3 in [40] this
implies that µ̄2

v 6= 1 for all v ∈ V . Since Var(Yu) = 1
4 (1 − µ̄2

u) the correlation
between Yu and Yv is defined as ρuv = 4µuv√

(1−µ̄2
u)(1−µ̄2

v)
. This gives

ρuv = ηu,v

√
1− µ̄2

u

1− µ̄2
v

= ηv,u

√
1− µ̄2

v

1− µ̄2
u

. (11)

Lemma 4.1. For any i, j ∈ [n] let E(ij) be the set of edges on the unique path
joining i and j in T . Then

ρij =
∏

(u,v)∈E(ij)

ρuv (12)

for each probability distribution in Mκ
T such that all the correlations are well

defined.

Proof. By (7) applied to T (ij) we have µij = 1
4 (1− µ̄2

r)
∏

(u,v)∈E(ij) ηu,v, where
r is the root of the path between i and j and hence

ρij =

√
1− µ̄2

r

1− µ̄2
i

√
1− µ̄2

r

1− µ̄2
j

∏
(u,v)∈E(ij)

ηu,v.

Now apply (11) to each ηu,v in the product above to show (12).
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The above equation allows us to demonstrate an interesting reformulation of
our problem in term of tree metrics (c.f. [29, Section 7]) which we explain below
(see also Cavender [8]).

Definition 4.2. A function δ : [n] × [n] → R is called a tree metric if there
exists a tree T = (V,E) with the set of leaves given by [n] and with a positive
real-valued weighting w : E → R>0 such that for all i, j ∈ [n]

δ(i, j) =
{ ∑

e∈E(ij) w(e), if i 6= j,

0, otherwise.

Let now d : V × V → R be a map defined as

d(k, l) =
{
− log(ρ2

kl), for all k, l ∈ V such that ρkl 6= 0,
+∞, otherwise

then d(k, l) ≥ 0 because ρ2
kl ≤ 1 and d(k, k) = 0 for all k ∈ V since ρkk = 1.

If K ∈ Mκ
T then by (12) ρ2

ij =
∏
e∈E(ij) ρ

2
e and we can define map d(T ;K) :

[n]× [n]→ R

− log(ρ2
ij) = d(T ;K)(i, j) =

{ ∑
(u,v)∈E(ij) d(u, v), if i 6= j,

0, otherwise.
(13)

This map is a tree metric by Definition 4.2. In our case we have a point in
the model space defining all the second order correlations and d(T ;K)(i, j) for
i, j ∈ [n]. The question is: What are the conditions for the “distances” between
leaves so that there exists a tree T and edge lengths d(u, v) for all (u, v) ∈ E
such that (13) is satisfied? Or equivalently: What are the conditions on the
absolute values of the second order correlations in order that ρ2

ij =
∏
e∈Eij ρ

2
e

(for some edge correlations) is satisfied? We have the following theorem.

Theorem 4.3 (Tree-Metric Theorem, Buneman [6]). A function δ : [n]× [n]→
R is a tree metric on [n] if and only if for every four (not necessarily distinct)
elements i, j, k, l ∈ [n],

δ(i, j) + δ(k, l) ≤ max {δ(i, k) + δ(j, l), δ(i, l) + δ(j, k)} .

Moreover, a tree metric defines the tree uniquely.

This theorem gives us a set of explicit constraints on the distributions in a
tree model. Since δ(i, j) = log(−ρij) the constraints in Theorem 4.3 translate
in terms of correlations to

− log(ρ2
ijρ

2
kl) ≤ −min{log(ρ2

ikρ
2
jl), log(ρ2

ilρ
2
jk)}.

Since log is a monotone function we obtain

min

{
ρ2
ikρ

2
jl

ρ2
ijρ

2
kl

,
ρ2
ilρ

2
jk

ρ2
ijρ

2
kl

}
= min

{
µ2
ikµ

2
jl

µ2
ijµ

2
kl

,
µ2
ilµ

2
jk

µ2
ijµ

2
kl

}
≤ 1 (14)
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for all not necessarily distinct leaves i, j, k, l ∈ [n]. Hence using the relation
between correlations and tree metrics given in [8] we managed to provide a set
of simple semialgebraic constraints on the model. Furthermore, later in Theorem
4.7 we show that these constraints are not the only active constraints on the
model MT . Before we present this theorem it is helpful to make some simple
observations about the relationship between correlations and probabilistic tree
models.

Since ρuv can have different signs we define a signed tree metric as a tree
metric with an additional sign assignment for each edge of T .

Lemma 4.4. Let T be a tree with set of leaves [n]. Suppose that we have a map
σ : [n]× [n]→ {−1, 1}. Then there exists a map s0 : E → {−1, 1} such that for
all i, j ∈ [n]

σ(i, j) =
∏

(u,v)∈E(ij)

s0(u, v) (15)

if and only if for all triples i, j, k ∈ [n] σ(i, j)σ(i, k)σ(j, k) = 1.

The proof is given in Appendix B.
The following proposition gives a set of simple constraints on probability

distribution in tree models. This may be particularly useful in practice since it
involves only computing pairwise margins of the data and it enables us to check
if a data point may come from a phylogenetic tree model.

Proposition 4.5. Let P ∈ ∆2n−1 be a probability distribution. If P ∈ MT for
some tree T with n leaves then

0 ≤ min
{
µikµjl
µijµkl

,
µilµjk
µijµkl

}
≤ 1 (16)

for all (not necessarily distinct) i, j, k, l ∈ [n] whenever µij , µkl 6= 0.

Proof. Lemma 4.4 implies that for all i, j, k ∈ [n] necessarily µijµikµjk ≥ 0.
This in particular implies that µikµjl

µijµkl
≥ 0 for all i, j, k, l ∈ [n]. By taking the

square root in (14) these constraints can be combined to give the inequalities in
(16).

In Theorem 4.7 we show that (16) provides the complete set of inequality
constraints onMT that involve only second order moments in their expression.
The fact that additional constraints involving higher order moments exist is
illustrated in the following simple example.

Example 4.6. Consider the tripod tree model in Proposition 2.5. Let K be
a point in KT given by λi = 0.15 for i = 1, 2, 3, µij = 0.0625 (or equivalently
ρij = 0.49) for each i < j and µ123 = 0.0526. This point lies in the space of tree
cumulants KT which can be checked by mapping back the central moments to
probabilities, since the resulting vector [pα] lies in ∆7.

Clearly K satisfies all the tree metric constraints in (16). The equation (12)
is satisfied with ρhi = 0.7 for each i = 1, 2, 3. We now show that despite this
K /∈Mκ

T . For if K ∈Mκ
T then we could find µ̄h and ηh,i satisfying constraints
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in (5) so that (21) held. Using the formulas in Corollary 5.5 in [40] it is easy to
compute that µ̄h = 0.86 and ηh,i ≈ 0.98. However, K is not in the model since
these parameters do not lie in ΩT . Indeed,

(1 + µ̄h)ηh,i ≈ 1.8228 > (1 + µ̄i) = 1.7

and hence (5) is not satisfied.
The consequence of the fact that the parameters do not lie in ΩT is that this

parametrization does not lead to a valid assignment of conditional probabilities
to the edges of the tree. For example with the values given above we can cal-
culate that the induced marginal distribution for (Xi, H) would have to satisfy
P(Xi = 0, H = 1) = −0.0043 which is obviously not a consistent assignment for
a probability model. Thus there must exist other constraints involving observed
higher order moments that need to hold for a probability model to be valid. We
note that for the tripod tree these were given by Proposition 2.5.

In Appendix C we prove the following theorem which gives the complete set
of constraints which have to be satisfied by tree cumulants to lie in MT in the
case when T is a trivalent tree. Let P ∈ ∆2n−1 be the probability distribution
of the vector (X1, . . . , Xn) then for any i, j, k ∈ [n] let P ijk denote the 2× 2× 2
table of the marginal distribution of (Xi, Xj , Xk).

Theorem 4.7. Let T = (V,E) be a trivalent tree with n leaves. Let MT ⊆
∆2n−1 be the model defined as an image of the parametrization in (2). Suppose
P is a joint probability distribution on n binary variables. Then P ∈MT if and
only if the following conditions hold:

(C1) For each edge split A|B (c.f. Definition A.1) of the set of leaves of T
whenever we have four nonempty subsets (not necessarily disjoint) I1, I2 ⊆
A, J1, J2 ⊆ B then

κI1J1κI2J2 − κI1J2κI2J1 = 0.

(C2) For all 1 ≤ i < j < k ≤ n the corresponding marginal distribution P ijk

lies in the tripod model.
(C3) for all I ⊆ [n] if there exist i, j ∈ I such that µij = 0 then κI = 0

(C4) for any i, j, k, l ∈ [n] such that there exists e ∈ E inducing a split A|B
such that i, j ∈ A and k, l ∈ B we have

(2µikµjl)2 ≤ (
√
µ2
jlDetP ijk ± µjlµijk)(

√
DetP ikl ∓ µikl).

Moreover, if µij 6= 0 for all i, j ∈ [n] then the constraints in Proposition 4.5 are
the only constraints involving only second order moments.

Theorem 4.7 has been formulated for trivalent trees. Any tree with degrees
of some nodes higher than three can be realized as a submodel of a trivalent
tree model as explained in [40, Section 4]. Including degree two nodes does not
change anything in the induced marginal distribution. This result is well known
(see e.g. [40, Lemma 2.1]).
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α I pα λI κI
0000 ∅ 163837

1417176
1 0

0001 4 100735
1417176

1
2

0

0010 3 48167
708588

1
2

0

0011 34 45955
708588

253
972

5
486

0100 2 85507
1417176

1
2

0

0101 24 76007
1417176

251
972

2
243

0110 23 36559
708588

85
324

1
81

0111 234 35531
708588

2489
17496

4
2187

1000 1 41255
708588

1
2

0

1001 14 37315
708588

253
972

5
486

1010 13 73199
1417176

43
162

5
324

1011 134 75355
1417176

1271
8748

5
2187

1100 12 43471
708588

829
2916

25
729

1101 124 44171
708588

8107
52488

20
6561

1110 123 97063
1417176

1405
8748

10
2187

1111 1234 130547
1417176

130547
1417176

40
59049

Table 2
Moments and tree cumulants for a probability assignment in MT , where T is the quartet

tree.

A natural question arises for how large trees it is feasible to verify the con-
straints defining the model. The equality constraints in (C1) can be expressed
directly in the raw probabilities and they are easy to check even for relatively
large trees. This follows from Theorem 4 in [2] explained in more details in
Appendix D. Checking the other constraints requires only computing

(
n
2

)
co-

variances between the observed variables and
(
n
3

)
third order central moments.

In particular in practice there is no need of changing the coordinates from the
raw probabilities to tree cumulants which can be quite complicated even for
relatively small trees.

5. Example: The quartet tree model

We can check that the point K ∈ KT provided in Table 2 satisfies all the
constraints in Theorem 4.7. It is convenient to provide the numbers as rationals
so that the equalities can be checked exactly. To check (C1) note for example
that

κ13κ24 − κ14κ23 =
5

324
· 2

243
− 5

486
· 1

81
= 0,

κ123κ134 − κ1234κ13 =
10

2187
· 5

2187
− 40

59049
· 5

324
= 0.
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α I pα λI κI
0000 ∅ 163837

1417176
1 0

0001 4 83213
1417176

1
2

0

0010 3 10999
177147

1
2

0

0011 34 11519
177147

1009
2916

70
729

0100 2 105785
1417176

1
2

0

0101 24 52489
1417176

97
324

4
81

0110 23 6875
177147

95
324

7
162

0111 234 8515
177147

4285
17496

56
2187

1000 1 13834
177147

1
2

0

1001 14 7226
177147

283
972

10
243

1010 13 61777
1417176

139
486

35
972

1011 134 51137
1417176

6113
26244

140
6561

1100 12 13760
177147

293
972

25
486

1101 124 3088
177147

3749
17496

40
2187

1110 123 13445
1417176

1805
8748

35
2187

1111 1234 278965
1417176

278965
1417176

560
59049

Table 3
Moments and tree cumulants of the given probability assignment not in MT .

To check (C2) verify for example that DetP 123 = 25
531441 and

((1± µ̄1)µ23 ∓ µ123)2 = { 1369
4782969

,
289

4782969
}

((1± µ̄2)µ13 ∓ µ123)2 = { 30625
76527504

,
9025

76527504
}

((1± µ̄3)µ12 ∓ µ123)2 = { 7225
4782969

,
4225

4782969
}

and hence

DetP 123 ≤ min
{(

(1± µ̄σ(i))µσ(j)σ(k) ∓ µijk
)2} =

289
4782969

is satisfied.
From the point of view of the original motivation a different scenario is of

interest. Imagine that we have K ∈ KT such that all the equalities in (C1) are
satisfied, i.e. all the phylogenetic invariants hold. If one of the constraints in
(C2)-(C5) does not hold then K /∈ Mκ

T . This shows that the method of phylo-
genetic invariants as commonly used can lead to spurious results. For example
consider sample proportions and the corresponding tree cumulants as in Table
3. It can be checked that for this point all the equations in (C1) are satisfied.
However it is not in the model space. Using the formulae in Corollary 5.5 [40] it
is simple to confirm that the point mapping to K satisfies θ(4)

1|1 = 67
54 > 1. This

cannot therefore be a probability and so θ /∈ ΘT .

imsart-ejs ver. 2010/09/07 file: semiREDUCED-EJS.tex date: April 11, 2011



CRiSM Paper No. 11-11, www.warwick.ac.uk/go/crism

P. Zwiernik, J.Q. Smith/Geometry of the binary models on trees 20

6. Discussion

The new coordinate system proposed in [40] provides a better insight into the
geometry of phylogenetic tree models with binary observations. The product
form of the parametrization is useful and has already enabled us to obtain the
full geometric description of the model class. One of the interesting implications
of this result for phylogenetic tree models is that we could consider different
simpler model classes containing the original one in such a way that the whole
evolutionary interpretation in terms of the tree topologies remains valid. If we
are interested only in the tree we could consider the model defined only by a
subsets of constraints in Theorem 4.7 involving only covariances. The cost of
this reduction is that the conditional independencies induced by the original
model no longer hold which in turn affects the interpretation of the model. We
note that this approach is in a similar spirit to that employed to motivate the
MAG model class introduced in [34].

This work has encouraged us to use this reparametrization to estimate models
within Bayesian framework. We are currently investigating how the inferential
instabilities presented in this paper influence the analysis of data sets.
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Appendix A: Change of coordinates

In this section we index raw probabilities with subsets of [n] instead of {0, 1}n. We
identify I ⊆ [n] with α ∈ {0, 1}n such that αi = 1 only if i ∈ I. We first change
our coordinates from the raw probabilities p = [pI ]I⊆[n] to the non-central moments

λ = [λI ]I⊆[n], where λI = E(
∏
i∈I Xi). This is a linear map fpλ : R2n → R2n with

determinant equal to one, where the components λI of the vector λ = fpλ(p) are
defined by

λI =
∑
J⊇I

pJ for any I ⊆ [n]. (17)

In particular λ∅ = 1 for all probability distributions. So the image fpλ(∆2n−1) is
contained in the hyperplane defined by λ∅ = 1. Moreover from (17) it follows that
the λ’s are just marginal probabilities. The linearity of the expectation implies that
the central moments can be expressed in terms of non-central moments. Define µI =
E(
∏
i∈I Ui), where Ui = Xi − EXi. Then

µI =
∑
J⊆[n]

(−1)|J|λI\J
∏
i∈J

λi for I ⊆ [n]. (18)

Using these equations we can transform coordinates from the non-central moments
λ = [λI ] to another set of variables given by all the means λ1, . . . , λn and central
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moments [µI ] for I ⊆ [n]. The polynomial map fλµ : R2n → Rn × R2n is an identity
on the first n coordinates corresponding to the means λ1, . . . , λn and is defined on the
remaining coordinates using the equations (18). Let Cn = (fλµ ◦ fpλ)(∆2n−1). This is
contained in a subspace of Rn × R2n given by

µ∅ = 1 and µ1 = · · · = µn = 0.

Since fλµ is invertible (see Appendix A.1 in [40]) it provides a change of coordinates
from the non-central moments to a coordinate system on Cn given by λ1, . . . , λn to-
gether with µI for all I ⊆ [n] such that |I| ≥ 2. Note that the Jacobian of fλµ ◦ fpλ :
∆2n−1 → Cn is constant and equal to one.

The final change of coordinates requires some combinatorics.

Definition A.1. Let T = (V,E) be a tree with n leaves. An edge split is a partition
of [n] into two non-empty sets induced by removing an edge e ∈ E and restricting [n]
to the connected components of the resulting graph. By an edge partition we mean
any partition B1| · · · |Bk of the set of leaves of T induced by removing a subset of E.
Each Bi is called a block of the partition.

Let ΠT denote the partially ordered set (poset) of all tree partitions of the set of
leaves. The ordering in this poset is induced from the ordering in the lattice Πn of all
partitions of [n] (see Example 3.1.1.d [35]). Thus for π = B1| · · · |Br and ν = B′1| · · · |B′s
we have π ≤ ν if every block of π is contained in one of the blocks of ν. The poset ΠT

has a unique minimal element 1|2| · · · |n induced by removing all edges in E and the
maximal one with no edges removed which is equal to a single block [n]. The maximal
element is denoted by 1̂ and the minimal one is denoted by 0̂.

For any poset Π a Möbius function mΠ : Π × Π → R can be defined in such a
way that mΠ(π, π) = 1 for every π ∈ Π, mΠ(ν, π) = −

∑
ν≤δ<π mΠ(ν, δ) for ν < δ

in Π and is zero otherwise (c.f. [35, Section 3.7]). Let T (W ), for W ⊂ V , denote the
minimal subtree of T containing W in its set of vertices. Then ΠT (W ) is the poset of
all multisplits of the set of leaves of T (W ) induced by edges of T (W ). The Möbius
function on ΠT (W ) will be denoted by mW and the Möbius function on ΠT will be

denoted by m. Let 0̂W and 1̂W denote the minimal and the maximal element of ΠT (W )

respectively.
Consider a map fµκ : Rn × R2n → Rn × R2n where the coordinates in the domain

are denoted by λ1, . . . , λn and µI for I ⊆ [n] and let the coordinates of the image
space be denoted by λ1, . . . , λn and κI for I ⊆ [n]. The map is defined as the identity
on the first n coordinates corresponding to λ1, . . . , λn and

κI =
∑

π∈ΠT (I)

mI(π, 1̂I)
∏
B∈π

µB for all I ⊆ [n], (19)

where by convention κ∅ = µ∅. Let KT = fµκ(Cn). Note that for any I ⊆ [n] such that
|I| ≤ 3, κI = µI . In particular KT is contained in the subspace of Rn × R2n given by

κ∅ = 1, κ1 = . . . = κn = 0

The map fµκ : Cn → KT is a polynomial isomorphism with a polynomial inverse
fκµ. It therefore gives a change of coordinates to a coordinate system on KT given
by λ1, . . . , λn and κI for |I| ≥ 2. The exact form of the inverse map is given by the
Möbius inversion formula (c.f. Section 3.2, [40])

µI =
∑

π∈ΠT (I)

∏
B∈π

κB for all I ⊆ [n], |I| ≥ 2. (20)
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Note that after restriction to ∆2n−1, fpλ(∆2n−1) and Cn respectively all fpλ, fλµ
and fµκ are polynomial maps with polynomial inverses (c.f. [40], Appendix A). This
therefore implies that there is a polynomial isomorphism between ∆2n−1 and KT .

Appendix B: Proofs

Proof of Proposition 2.5. By Remark 2.1M3 does not depend on the rooting. There-
fore, we can assume that T is rooted in h. In this case Proposition 2.3 implies that
Mκ

3 is given by λi = 1
2
(1− µ̄i) for i = 1, 2, 3 and

µij = 1
4
(1− µ̄2

h)ηh,iηh,j for all i 6= j ∈ {1, 2, 3} and

µ123 = 1
4
(1− µ̄2

h)µ̄hηh,1ηh,2ηh,3,
(21)

subject to constraints in (5).
Denote the subset of KT given by constraints (i),(ii) by M. We need to show

that M = Mκ
3 . First we prove that Mκ

3 ⊆ M. Let K = ψT (ω) for some ω ∈ ΩT
with coordinates given by µ̄h and µ̄i, ηh,i for i = 1, 2, 3. We consider two cases. Either
(1−µ̄2

h)ηh,1ηh,2ηh,3 is zero or not. In the first case µ123 = 0 and at least two covariances
vanish and hence (i) holds.

Now we show that if (1− µ̄2
h)ηh,1ηh,2ηh,3 6= 0 then (ii) holds. From (21)

µ12µ13µ23 =
(

1

4
(1− µ̄2

h)
)3

(ηh,1ηh,2ηh,3)2 > 0. (22)

To show that K satisfies (9) we can simply substitute for the corresponding moments
using (21). After trivial reductions we then obtain that

|ηh,i| ± µ̄hηh,i ≤ (1± µ̄i)

which is equivalent to (5). Therefore, since by hypothesis (5) holds, we also have that
Mκ

3 ⊆M.
To show M ⊆ Mκ

3 we prove that for K ∈ M a parameter ω in (21) exists which
satisfies the constraints defining ΩT and K = ψT (ω). Let P be the probability distri-
bution corresponding to K. First consider the points satisfying (i). If all three covari-
ances vanish for this point then taking ηh,1 = ηh,2 = ηh,3 = 0 and µ̄2

h = 1 we obtain
a valid choice of parameters in (21) and their values satisfy (5). When one covariance
is non-zero, say µ12 6= 0, then if a choice of parameters exists it must satisfy µ̄2

h 6= 1,
ηh,1, ηh,2 6= 0 and ηh,3 = 0. Such a choice of parameters will exist if we can ensure that
µ12 = (1− µ̄2

h)ηh,1ηh,2. This follows from Corollary 2 in [20] which states that if only
µ12 6= 0 then there always exists a choice of parameters for model X1 ⊥⊥ X2|H, where
H is hidden.

Consider case (ii) now. Since µ12µ13µ23 > 0 then in particular DetP > 0. Set

µ̄2
h =

µ2
123

DetP
and η2

h,i = DetP
µ2
jk

for i = 1, 2, 3. It follows that ( 1
4
(1 − µ̄2

h))2η2
h,iη

2
h,j = µ2

ij

for i, j = 1, 2, 3 and ( 1
4
(1−µ̄2

h))2µ̄2
hη

2
h,1η

2
h,2η

2
h,3 = µ2

123. This coincides with (21) modulo
the sign. It can be easily shown that µ12µ13µ23 > 0 implies that there exist a choice
of signs for ηh,i for i = 1, 2, 3 such that

1

4
(1− µ̄2

h)ηh,iηh,j = µij
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for all 1 ≤ i < j ≤ 3 as in (21). For example set sgn(ηh,i) = sgn(µjk) and use the
fact that by our assumption sgn(µij) = sgn(µik)sgn(µjk). This choice of signs already
determines the sign of µ̄h so that

1

4
(1− µ̄2

h)µ̄hηh,1ηh,2ηh,3 = µ123

holds.
It remains to show that parameters set in this way satisfy the constraints defining

ΩT . First note that since 0 < 4µ12µ13µ23 ≤ DetP then µ̄2
h ∈ (0, 1) as required. From

Appendix D in [40] we know that if (ηh,1, ηh,2, ηh,3, µ̄h) is one choice of parameters then
there exists only one alternative choice and it is (−ηh,1,−ηh,2,−ηh,3,−µ̄h). For a fixed
i = 1, 2, 3 it is easily checked that (ηh,i, µ̄h) satisfies (5) if and only if (−ηh,i,−µ̄h) does.

Therefore we can assume that ηh,i =
√

DetP
|µjk|

> 0. In this case µ̄h = sgn(µjk) µ123√
DetP

. It

follows that (5) is satisfied if and only if (9) holds.

Proof of Lemma 4.4. First assume that the map s0 : E → {−1, 1}, given in the state-
ment of the lemma, exists. This induces a map s : V ×V → {−1, 1} such that s(k, l) =∏

(u,v)∈E(kl)
s0(u, v). For any triple i, j, k there exists a unique inner node h which is the

intersection of all three paths between i, j, k. By the above equation the choice of signs
for all (u, v) ∈ E gives s(i, h), s(j, h) and s(k, h). Since s(i, j) = s(i, h)s(j, h) and the
same for the two other pairs, we get that s(i, j)s(i, k)s(j, k) = s2(i, h)s2(j, h)s2(k, h) =
1 and the result follows since by construction σ(i, j) = s(i, j) for all i, j ∈ [n].

Now we prove the converse implication. Whenever there is a path E(uv) in T such
that all its inner nodes have degree two then a sign assignment satisfying (15) exists if
and only if there exists a sign assignment for the same tree but with E(uv) contracted
to a single edge (u, v). Hence we can assume that the degree of each inner node is at
least three.

We use an inductive argument with respect to number of hidden nodes. First we
will show that the theorem is true for trees with one inner node (star trees) denoted
by h. In this case we will use induction with respect to number of leaves. It can easily
be checked directly that the theorem is true for the tripod tree. Assume it works
for all star trees with k ≤ m − 1 leaves and let T be a star tree with m leaves.
By assumption for any three leaves i, j, k: σ(i, j)σ(i, k)σ(j, k) = 1. If we consider a
subtree with (1, h) deleted then by induction assumption we can find a consistent
choice of signs for all remaining edges. A choice of a sign for (1, h) consistent with (15)
exists if for all i ≥ 2 σ(1, i) = s0(1, h)s0(i, h). This is true if either σ(1, i)s0(i, h) = 1
for all i or σ(1, i)s0(i, h) = −1 for all i. Assume it is not true, i.e. there exist two
leaves i, j such that σ(1, i)s0(i, h) = 1 and σ(1, j)s0(j, h) = −1. Then in particular
since σ(i, j) = s0(i, h)s0(j, h) we would have that σ(1, i)σ(1, j)σ(i, j) = −1 which
contradicts our assumption.

If the number of the inner nodes is greater than one then pick an inner node h
adjacent to exactly one inner node. Let h′ be the inner node adjacent to h and let I
be a subset of leaves which are adjacent to h. Choose one i ∈ I and consider a subtree
T ′ obtained by removing all leaves in I and the incident edges apart from the node i
and the edge (h, i). By the induction, since h has degree two in the resulting subtree,
we can find signs for all edges of T ′. Set s0(h, h′) = 1 then s0(h, i) = s(h′, i) which
identifies s0(h, i). Similarly it can be showed that there exists a choice of signs for all
remaining edges (i′, h). The result follows since the choice of i ∈ I was arbitrary.
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Appendix C: The proof of the main theorem

Let K ∈ KT have coordinates given by λi for i = 1, . . . , n and κI for I ⊆ [n] such
that |I| ≥ 2. Let KJ , J ⊆ [n], denote the projection onto the coordinates given by λi
for i ∈ J and κI , I ⊆ J , |I| ≥ 2. Directly from the definition of MT it follows that
K ∈Mκ

T if and only if KI ∈Mκ
T (I) for all I ⊆ [n].

Let M denote the subset of KT defined by constraints in (C1)-(C4). We need to
show that M =Mκ

T . We divide the proof into series of lemmas.

Lemma C.1. The inclusion Mκ
T ⊆M holds.

Proof. Since the rooting is not relevant by Remark 2.1, we choose an arbitrary inner
node as the root node. Let K ∈Mκ

T and hence K = ψT (ω) for some ω ∈ ΩT .
To show that the equations in (C1) hold let A|B be an edge split and let e = (w,w′)

be the edge inducing this split. By T \ e we denote the graph obtained from T by
removing the edge e. We assume that w lies in the same connected component of T \ e
as A and w′ lies in the second component of T \ e. For every non-empty I ⊆ A and
J ⊆ B from Proposition 2.3

κIJ = 1
4
(1− µ̄2

r(IJ))
∏
v∈int(V (Iw′)) µ̄

deg(v)−2
v

∏
v∈int(V (Jw))

µ̄
deg(v)−2
v ·

·ηw,w′
∏

(u,v)∈E(Iw)
ηu,v

∏
(u,v)∈E(Jw′) ηu,v.

From this it easily follows that for any non-empty I1, I2 ⊆ A and J1, J2 ⊆ B,
κI1J1κI2J2 − κI1J2κI2J1 = 0 if and only if

(1− µ2
r(I1J1))(1− µ2

r(I2J2)) = (1− µ2
r(I1J2))(1− µ2

r(I2J1)). (23)

However (23) is always true. We consider two cases: either r(AB) ∈ V (Aw) or r(AB) ∈
V (Bw′). If r(AB) ∈ V (Aw) then r(I1J1) = r(I1w), r(I1J2) = r(I1w), r(I2J1) =
r(I2w) and r(I2J2) = r(I2w). Hence in this case (23) holds. The case r(AB) ∈ V (Bw′)
follows by symmetry. Therefore the equations in (C1) always hold.

To show that K satisfies (C2) consider the projection Kijk for each i, j, k ∈ [n]. By
Corollary 2.2 in [40] Mκ

T (ijk) is equal to the tripod tree model. Since Kijk ∈Mκ
T (ijk)

then by Proposition 2.5 (C2) must hold. To show that K satisfies (C3) let i, j ∈ [n] be
such that µij = 0. Let I ⊆ [n] be such that i, j ∈ I and assume that κI(ω) 6= 0. Then
by (7) in particular µ2

r(I) 6= 1 and ηu,v 6= 0 for all (u, v) ∈ E(I). By Remark 4.3 in

[40] this implies in particular that µ̄2
r(ij) 6= 1. From this, again by (7), it follows that

µij 6= 0 and we get a contradiction. Hence if µij = 0 then κI = 0 for all I such that
i, j ∈ I.

To show that K satisfies (C4) let i, j, k, l ∈ [n] be the four leaves mentioned in the
condition. Let u and v be two inner nodes such that u separates i from j, v separates
k from l and {u, v} separates {i, j} from {k, l}. In other words u, v are the only inner
nodes of degree three in T (ijkl). By Lemma 2.1 in [40] T (ijkl) gives the same model
as the quartet tree with four leaves i, j, k, l and two inner nodes u, v. Moreover, by
Remark 2.1, MT (ijkl) does not depend on the rooting so we can assume that the tree
is rooted in u. Since Kijkl ∈MT (ijkl) then for some parameter choices

µik =
1

4
(1− µ̄2

u)ηu,iηu,vηv,k, µjl =
1

4
(1− µ̄2

u)ηu,jηu,vηv,l

µijk =
1

4
(1− µ̄2

u)µ̄uηu,iηu,jηu,vηv,k, µikl =
1

4
(1− µ̄2

u)µ̄vηu,iηu,vηv,kηv,l.
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Substitute these equations into (C4). There are then two cases to consider: µuv ≥ 0,
µuv < 0. Laborious but elementary algebra shows that the condition in (C4) is equiv-
alent to (5) applied to (1− µ̄2

u)ηu,v and hence (C4) holds by definition. Consequently
Mκ

T ⊆M.

To show the opposite inclusion is a bit more complicated. We consider two separate
cases. Let K ∈ M. We construct a point ω0 ∈ R|V |+|E| such that ω0 ∈ ΩT and
ψT (ω0) = K, i.e. ω0 is such that, for all I ⊆ [n] such that |I| ≥ 2, κI can be written
in terms of the parameters in ω0 as in (7).

Lemma C.2. Let K be such that µij 6= 0 for all i, j ∈ [n]. If K ∈M then K ∈Mκ
T .

Proof. We set squares of values of all the parameters in terms of the observed moments
using Corollary 5.5 in [40]. We will show that the equations in (7) must hold for their
modulus values. We will then need to ensure there is at least one assignment of signs
for a set of parameters such that all (7) hold exactly. Finally we will show that the
parameter vector ω0 defined in this way lies in ΩT .

For each inner node h of T let i, j, k ∈ [n] be separated by h in T . By (C2) we have
that µijµikµjk > 0 and hence also that DetP ijk > 0. Now set

(µ̄0
h)2 =

µ2
ijk

DetP ijk
. (24)

We show that (C1), which K satisfies by assumption, implies that the value of (µ̄0
h)2

does not depend on the choice of i, j, k. It suffices to show that if k is replaced by

another leaf k′ such that i, j, k′ are separated by h in T then
µ2
ijk

DetP ijk
=

µ2
ijk′

DetP ijk
′ . Since

h has degree three in T then there exists an edge e ∈ E inducing a split A|B such that
i, j ∈ A and k, k′ ∈ B. From (C1) it follows that

µikµjk′ = µik′µjk, µijkµik′ = µijk′µik, µijkµjk′ = µijk′µjk (25)

and consequently

DetP ijkµijµik′µjk′ = DetP ijk
′
µijµikµjk (26)

which implies that

µ2
ijk

DetP ijk
=

µ2
ijkµijµik′µjk′

DetP ijkµijµik′µjk′
=

µ2
ijk′µijµikµjk

DetP ijk′µijµikµjk
=

µ2
ijk′

DetP ijk′

as required.
For terminal edges (v, i) of T such that i ∈ [n] let j, k ∈ [n] be any two leaves of T

such that v separates i, j, k. Set

(η0
v,i)

2 =
DetP ijk

µ2
jk

. (27)

As in the previous case it is straightforward to check that, given (C1), this value does
not depend on the choice of j, k. For example if instead of k we have k′ and v separates
i, j, k′ in T then there exists an edge split such that {i, j} and {k, k′} are in different
blocks. By (25) we can show that

DetP ijk

µ2
jk

=
µikDetP ijk

µik′µjk′µjk
=

DetP ijk
′

µ2
jk′

.
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For inner edges (u, v) ∈ E let i, j, k, l ∈ [n] be any four leaves such that u separates
i from j, v separates k from l and {u, v} separates {i, j} from {k, l}. Set

(η0
u,v)2 =

µ2
il

µ2
ij

DetP ijk

DetP ikl
(28)

which is well-defined since µ2
ij and DetP ikl are strictly positive. We now show that

this value does not depend on the choice of i, j, k, l. By symmetry it suffices to show
that we obtain the same value if instead of l we took another leaf l′ such that u, v are
the only degree three nodes in T (ijkl′). Since v has degree three then there must exist
an inner edge separating i, j, k from l, l′. From (C1) it follows that

µil′µkl′DetP ikl = µilµklDetP ikl
′
, µilµkl′ = µil′µkl

and hence
µ2
il

µ2
ij

DetP ijk

DetP ikl
=
µil′µkl′

µil′µkl′

µ2
il

µ2
ij

DetP ijk

DetP ikl
=
µ2
il′

µ2
ij

DetP ijk

DetP ikl′

as required.
We now show that with the choice of parameters satisfying (24), (27) and (28) the

modulus of equations (7) hold. First consider the case I = {i, j}. Label the inner nodes
of E(ij) by v1, . . . , vk beginning from the node adjacent to i. For each s = 1, . . . , k let
is denote a leaf such that vs separates i, j, is in T . By Remark 2.1 we can choose any
rooting. We assume that the root r(ij) of this path is in v1. We now proceed to check
that

µ2
ij =

(
1

4
(1− (µ̄0

r(ij))
2)
)2 ∏

(u,v)∈E(ij)

(η0
u,v)2 = (29)

=
(

1

4
(1− (µ̄0

r(ij))
2)
)2

(η0
v1,u)2

(
k∏
s=2

(η0
vs−1,vs)

2

)
(η0
vk,v)2.

Since v1 separates i, j, i1 by construction, from (24) we therefore have

1

4
(1− (µ̄0

v1)2) =
µijµii1µji1
Det(P iji1)

.

Now substitute this equation and all the set values in (27), (28) into the right hand
side of (29). Use the fact that vk separates i, j, ik in T and is−1, is are the only degree
three nodes in T (iis−1jis). Since (v1, i) and (vk, j) are the only terminal edges we
obtain (

µijµii1µji1
Det(P iji1)

)2

· DetP iji1

µ2
ji1

·

(
k∏
s=2

µ2
iis

µ2
iis−1

DetP ijis−1

DetP ijis

)
· DetP ijik

µ2
jik

(30)

It can now be checked that all the expressions with hyperdeterminants cancel out and
the formula reduces to µ2

ij as required.
Now we need to show that for every I = {i, j, k}

µ2
ijk =

(
1

4
(1− µ̄0

r(ijk))
2)
)2

(µ̄0
w)2

∏
(u,v)∈E(ijk)

(η0
u,v)2, (31)
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where by w we denote the node separating i, j and k. Assume that T (ijk) is rooted
somewhere on the path between i and j. Using (29) the right hand side of (31) can be
rewritten as

µ2
ij(µ̄

0
w)2

∏
(u,v)∈E(wk)

(η0
u,v)2. (32)

Number the degree three nodes in E(wk) by v1, . . . , vl and let is denote a leaf such
that the inner nodes of T (ijkis) of degree three are exactly vs−1 and vs, where v0 = w.
By an exactly analogous argument as in the case above we obtain∏

(u,v)∈E(wk)

(η0
u,v)2 =

µ2
ii1

µ2
ij

DetP ijk

DetP iki1
·

(
l∏

s=2

µ2
is−1is

µ2
is−2is−1

DetP is−2is−1k

DetP is−1isk

)
DetP il−1ilk

µ2
il−1il

,(33)

where i0 = i. It can be easily checked that all the hyperdeterminants apart from the
term DetP ijk cancel out. Moreover all the covariances apart from the term µ−2

ij cancel

out as well. Hence (33) is equal to DetP ijk

µ2
ij

. Now, by using the definition of (µ̄0
w)2 in

(24), it can be easily checked that (32) is equal to µ2
ijk as required.

So far we have confirmed only that the squares of parameters in ω0 satisfy required
equations at least for the tree cumulants up to the third order. Next, we show that
there exists a consistent choice of signs for these parameters such that the equations are
satisfied exactly. Let σ(i, j) = sgn(µij). Since by assumption µij 6= 0 for all i, j ∈ [n]
then the conditions in (C2) imply that σ(i, j)σ(i, k)σ(j, k) = 1 for all triples i, j, k ∈ [n].
Hence by Lemma 4.4 there exists a choice s0(u, v) ∈ {−1,+1} for all (u, v) ∈ E such
that σ(i, j) =

∏
(u,v)∈E(ij)

s0(u, v) for all i, j ∈ [n]. For any two nodes k, l ∈ V we define

s(k, l) =
∏

(u,v)∈E(kl)
s0(u, v). A choice of signs for the parameters can be obtained

as follows. For each edge (u, v) ∈ E we set sgn(η0
u,v) = s0(u, v) and, for each inner

node v, set sgn(µ̄0
v) = sgn(µijk)s(v, i)s(v, j)s(v, k) where i, j, k are any three leaves of

T separated by v.
Assume now that the choice of the signs of the parameters, induced by s0(u, v) for

(u, v) ∈ E, has been made. This choice of signs gives

µ̄0
v = s(v, i)s(v, j)s(v, k)

µijk√
DetP ijk

, (34)

η0
v,i = s(v, i)

√
DetP ijk

|µjk|
, (35)

η0
u,v = s0(u, v)

∣∣∣∣ µilµij
∣∣∣∣
√

DetP ijk

DetP ikl
. (36)

Note that in particular with this choice of signs sgn(η0
u,v) = s0(u, v) for all (u, v) ∈ E

and sgn(µ̄0
v) = sgn(µijk)

∏
(u,v)∈E(ijk)

s0(u, v). Since (29) holds it follows that

|µij | =
1

4
(1− (µ̄0

r(ij))
2)

∏
(u,v)∈E(ij)

|η0
u,v|.

Now multiply both sides by s(i, j) =
∏

(u,v)∈E(ij)
s0(u, v) to get

µij = s(i, j)|µij | =
1

4
(1− (µ̄0

r(ij))
2)

∏
(u,v)∈E(ij)

s0(u, v)|η0
u,v| = (37)

=
1

4
(1− (µ̄0

r(ij))
2)

∏
(u,v)∈E(ij)

η0
u,v. (38)
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Similarly from (31) we have that

|µijk| =
1

4
(1− (µ̄0

r(ijk))
2)|µ̄0

w|
∏

(u,v)∈E(ijk)

|η0
u,v|.

Multiply both sides by sgn(µijk) and use the fact that (
∏

(u,v)∈E(ijk)
s0(u, v))2 = 1 to

get

µijk =
1

4
(1− (µ̄0

r(ijk))
2)

|µ̄0
w| sgn(µijk)

∏
(u,v)∈E(ijk)

s0(u, v)

 ∏
(u,v)∈E(ijk)

s0(u, v)|η0
u,v| =

=
1

4
(1− (µ̄0

r(ijk))
2)µ̄0

w

∏
(u,v)∈E(ijk)

η0
u,v

as desired.
We now show (7) for |I| ≥ 4 by induction. Let (u, v) ∈ E be any edge splitting I

into two subsets I1 and I2 such that |I1|, |I2| ≥ 2 and u is the node closer to I1. Let
i ∈ I1 and j ∈ I2 then by (C1)

κI1I2 =
κI1jκiI2
κij

.

By induction we can assume that κI1j , κiI2 and κij have form as in (7). Moreover,∏
(u,v)∈E(iI2)

ηu,v
∏

(u,v)∈E(I1j)
ηu,v∏

(u,v)∈E(ij)
ηu,v

=
∏

(u,v)∈E(I)

ηu,v,

∏
h∈N(iI2)

µ̄deg h−2
h =

∏
h∈N(vI2)

µ̄deg h−2
h ,

∏
h∈N(I1j)

µ̄deg h−2
h =

∏
h∈N(I1u)

µ̄deg h−2
h .

Using this we can write

κI1I2 =
1

4

(1− µ̄2
r(iI2))(1− µ̄2

r(I1j)
)

(1− µ̄2
r(ij))

∏
h∈N(I)

µ̄deg h−2
h

∏
(u,v)∈E(I)

ηu,v. (39)

The root of T (I) is either in T (I1u) or in T (vI2). In the first case r(I1j) = r(I) and
r(iI2) = r(ij). In the second case r(I1j) = r(ij) and r(iI2) = r(I). Hence in both cases

(1− µ̄2
r(iI2))(1− µ̄2

r(I1j)
)

(1− µ̄2
r(ij))

= (1− µ̄2
r(I))

and (39) has the required form given by (20). It follows that K = ψT (ω0).
It now remains to show that the parameters defined in (34), (35) and (36) define a

parameter vector ω0 which lies in ΩT . Since, by (C2), µ2
ijk ≤ DetP ijk for all i, j, k ∈ [n]

for all inner nodes h we have µ̄0
h ∈ [−1, 1] as required. For a terminal edge (v, i)

consider the marginal model induced by T (ijk), where j, k are any two leaves such
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that v separates i, j, k in T . From Proposition 2.5 constraints (C2) and (C3) imply
that ηv,i is a valid parameter. To show that (36) satisfies (5) write

(1± µ̄0
u)η0

u,v =

(
1± s(u, i)s(u, j)s(u, k)

µijk√
DetP ijk

)
s(u, v)

∣∣∣∣ µilµij
∣∣∣∣
√

DetP ijk

DetP ikl
.

Now substitute this together with the expressions for µ̄0
u and µ̄0

v given by (34) into
(5). First assume s(u, v) = 1. Then s(u, k) = s(v, k), s(v, i) = s(u, i) and (5) becomes(√

DetP ijk ± s(u, i)µijk
) ∣∣∣∣ µilµij

∣∣∣∣ ≤ (√DetP ikl ± s(v, l)µikl
)
.

By multiplying both sides by a positive expression |µjl|(
√

DetP ijk ∓ s(u, i)µijk) we
obtain

4µ2
ikµ

2
jl ≤

(√
DetP ijk ± s(u, l)µjlµijk

)(√
DetP ikl ∓ s(v, l)µikl

)
.

However, s(u, l) = s(v, l) hence this is satisfied by (C5). It is easily calculated that
the case s(u, v) = −1 leads to the same constraint. This finishes the proof of Lemma
C.2.

Lemma C.3. The inclusion M⊆Mκ
T holds.

Proof. Let K ∈ M be a tree cumulant and let Σ = [µij ] ∈ Rn×n be the matrix of all
covariances between the leaves. We say that an edge e ∈ E is isolated relative to K if
µij = 0 for all i, j ∈ [n] such that e ∈ E(ij). By Ê ⊆ E we denote the set of all edges

of T which are isolated relative to K. By T̂ = (V,E \ Ê) we denote the forest obtained

from T by removing edges in Ê and we call it the K-forest. We define relations on Ê
and E \ Ê. For two edges e, e′ with either {e, e′} ⊂ Ê or {e, e′} ⊂ E \ Ê write e ∼ e′ if
either e = e′ or e and e′ are adjacent and all the edges that are incident with both e
and e′ are isolated relative to K. Let us now take the transitive closure of ∼ restricted
to pairs of edges in Ê to form an equivalence relation on Ê. This transitive closure is
constructed as follows. Consider a graph with nodes representing elements of Ê and
put an edge between e, e′ whenever e ∼ e′. Then the equivalence classes correspond
to connected components of this graph. Similarly, take the transitive closure of ∼
restricted to the pairs of edges in E \ Ê to form an equivalence relation in E \ Ê. We

will let [Ê] and [E \Ê] denote the set of equivalence classes of Ê and E \Ê respectively
(for details see Section 5 in [40]).

Again we show that there exists ω0 ∈ ΩT such that ψT (ω0) = K. Set η0
u,v = 0

for all (u, v) ∈ Ê and µ̄0
v = 0 for all inner nodes of T with degree zero in T̂ . It then

follows that (1 ± µ̄u)ηu,v = 0 satisfies (5) for all (u, v) ∈ Ê and µ̄0
v ∈ [−1, 1] for all

v ∈ V̂ and hence these parameters satisfy constraints defining ΩT . If I ⊆ [n] is such

that E(I) ∩ Ê 6= ∅ then κI = 0 by (C3). Hence in this case we can assert that

κI =
1

4
(1− (µ̄0

r(I))
2)
∏

v∈N(I)

(µ̄0
v)deg(v)−2

∏
(u,v)∈E(I)

η0
u,v

simply because both sides of this equation are zero. By Remark 5.2 (iv) in [40] every

connected component of T̂ is a subtree which is either an inner node or a tree with the
set of leaves contained in [n]. Denote the connected subtrees which are not inner nodes

imsart-ejs ver. 2010/09/07 file: semiREDUCED-EJS.tex date: April 11, 2011



CRiSM Paper No. 11-11, www.warwick.ac.uk/go/crism

P. Zwiernik, J.Q. Smith/Geometry of the binary models on trees 30

by T1, . . . , Tk and their sets of leaves by [nl] for l = 1, . . . , k. For every l = 1, . . . , k and
all i, j ∈ [nl] we have that µij 6= 0. Hence for each Tl applying Lemma C.2 we have

K [nl] ∈ MTl . If I ⊆ [n] is such that E(I) ∩ Ê = ∅ then I ⊆ [nl] for some l = 1, . . . , k.
Since K [nl] ∈MTl then there exists a choice of parameters such that κI can be written
as (7). Therefore K ∈MT and we are done.

The proof that M = Mκ
T follows from Lemma C.1 and Lemma C.3. It suffices to

show that, given that all covariances are non-zero, the only constraints ofM involving
only second order moments are (16). In the formulation of the main result the only such
constraints are all the equations in (C1) involving only covariances and the positivity
constraints in (C2). By the four-point condition (c.f. (14)) the inequalities

min

{(
µikµjl
µijµkl

)2

,

(
µilµjk
µijµkl

)2
}
≤ 1

for all not necessarily distinct i, j, k, l ∈ [n] uniquely define the underlying tree metric
and hence they are equivalent to all the equations in (C1) involving only second order
moments. The inequalities

min

{
µikµjl
µijµkl

,
µilµjk
µijµkl

}
≥ 0

are equivalent to µijµikµjk ≥ 0 for all i, j, k ∈ [n]. However, the two above sets of
inequalities are exactly equivalent to (16). �

Appendix D: Phylogenetic invariants

In a seminal paper Allman and Rhodes [2] identified equations defining the general
Markov MT in the case when T is a trivalent tree. In this section we relate their
results to ours. To introduce their main theorem we need the following definition.

Definition D.1. Let X = (X1, . . . , Xn) be a vector of binary random variables and
let P = (pγ)γ∈{0,1}n be a 2× . . .× 2 table of the joint distribution of X. Let A|B form
a split of [n]. Then the flattening of P induced by the split is a matrix

PA|B = [pαβ ], α ∈ {0, 1}|A|, β = {0, 1}|B|,

where pαβ = P(XA = α,XB = β). Let T = (V,E) be a tree. In particular, for edge
partitions the induced flattening is called an edge flattening and we denote it by Pe,
where e ∈ E is the edge inducing the split.

Note that whenever we implicitly use some order on coordinates indexed by {0, 1}-
sequences we always mean the order induced by the lexicographic order on {0, 1}-
sequences such that 0 · · · 00 > 0 · · · 01 > . . . > 1 · · · 11. This gives in particular the
ordering of rows and columns of flattenings.

Theorem D.2 (Allman, Rhodes [2]). Let T r be a trivalent tree rooted in r andMT be
the general Markov model on T r as defined by (2). Then the smallest algebraic variety,
i.e. a subset of a real space defined by a finite set of polynomial equations, containing
the general Markov model is defined by vanishing of all 3 × 3-minors of all the edge
flattenings of T r together with the trivial polynomial equation

∑
α
pα = 1.
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Note that the result includes the case of the tripod tree model since in this case
each edge flattening of the joint probability table is a 2× 4 table so there are no 3× 3
minors and hence there are no non-trivial polynomials vanishing on the model.

Just as edge flattenings of probability tables we can define edge flattenings of
(κI)I⊆[n] where κ∅ = 1 and κi = 0 for all i ∈ [n] (c.f. Appendix A). Let e be an

edge of T inducing a split A|B ∈ ΠT such that |A| = r, |B| = n − r. Then N̂e is

a 2r × 2n−r matrix such that for any two subsets I ⊆ A, J ⊆ B the element of N̂e
corresponding to the I-th row and the J-th column is κIJ . Let Ne denote its submatrix
given by removing the column and the row corresponding to empty subsets of A and
B. Here the labeling for the rows and columns is induced by the ordering of the rows
and columns for Pe (c.f. Definition D.1), i.e. all the subsets of A and B are coded as
{0, 1}-vectors and we introduce the lexicographic order on the vectors with the vector
of ones being the last one.

The following result allows us to rephrase the equations in Theorem D.2 in terms
of our new coordinates.

Proposition D.3. Let T = (V,E) be a tree and let P be a probability distribution of
a vector X = (X1, . . . , Xn) of binary variables represented by the leaves of T . If e ∈ E
is an edge of T inducing a split A1|A2 then rank(Pe) = 2 if and only if rank(Ne) = 1.

Proof. Let Pe = [pαβ ] be the matrix induced by a split A1|A2. We will show that
rank(Pe) = rank(De) where De = [dIJ ] is a block diagonal matrix with 1 as the first
1× 1 block (i.e. d∅∅ = 1, d∅J = 0, dI∅ = 0 for all I ⊆ A1, J ⊆ A2) and the matrix Ne
as the second block. It will then follow that rank (Pe) = 2 if and only if rank (Ne) = 1.

First note that the flattening matrix Pe can be transformed to the flattening of the
non-central moments just by adding rows and columns according to (17) and then to
the flattening of the central moments Me = [µIJ ] such that I ⊆ A1, J ⊆ A2 using
(18). It therefore suffices to show that rank(Me) = rank(De).

Let I ⊆ A1, J ⊆ A2. Then for each π ∈ ΠT (IJ) there is at most one block containing
elements from both I and J . For if this were not so then removing e would increase
the number of blocks in π by more than one which is not possible. Denote this block
by (I ′J ′) where I ′ ⊆ I, J ′ ⊆ J . Note that by construction we have either both I ′, J ′

are empty sets if π ≥ A1|A2 in ΠT (IJ) or both I ′, J ′ 6= ∅ otherwise. We can rewrite
(20) as

µIJ =
∑

π∈ΠT (IJ)

(
κI′J′

∏
I⊇B∈π

κB
∏

J⊇B∈π

κB

)
. (40)

We have dI′J′ = κI′J′ and it can be further rewritten as

µIJ =
∑
I′⊆I

∑
J′⊆J

uII′dI′J′vJ′J

where uII′ =
∑

π∈ΠT (I\I′)

∏
B∈π κB and vJ′J =

∑
π∈ΠT (J\J′)

∏
B∈π κB . Setting

uII′ = 0 for I ′ * I, vJ′J = 0 for J ′ * J we can write these coefficients in terms
of a lower triangular matrix U and an upper triangular matrix V . Since by construc-
tion uII = 1 for all I ⊆ A1 and vJJ = 1 for all J ⊆ A2 we have detU = detV = 1.
Therefore, Me has the same rank as De.

The proposition shows that the vanishing of all 3×3 minors of all the edge flattenings
of P and the trivial invariant

∑
pα = 1 are together equivalent to the vanishing all

imsart-ejs ver. 2010/09/07 file: semiREDUCED-EJS.tex date: April 11, 2011



CRiSM Paper No. 11-11, www.warwick.ac.uk/go/crism

P. Zwiernik, J.Q. Smith/Geometry of the binary models on trees 32

2× 2 minors of all edge flattenings of κ = (κI)I∈[n]≥2 . An immediate corollary follows
which gives the equations in (C1) in Theorem (4.7).

Corollary D.4. Let T = (V,E) be a trivalent tree. Then the smallest algebraic variety
containing Mκ

T is defined by the following set of equations. For each split A|B induced
by an edge consider any four (not necessarily disjoint) nonempty sets I1, I2 ⊆ A,
J1, J2 ⊆ B and the induced equation κI1J1κI2J2 − κI1J2κI2J1 = 0.

In [16] Eriksson noted that some of the invariants usually prove to be better in dis-
criminating between different tree topologies than the others. His simulations showed
that the invariants related to the four-point condition were especially powerful. The
binary case we consider in this paper can give some partial understanding of why
this might be so. Here, the invariants related to the four-point condition are the only
ones which involve second order moments (c.f. Section 4). Moreover, the estimates of
the higher-order moments (or cumulants) are sensitive to outliers and their variance
generally grows with the order of the moment. Let µ̂ be a sample estimator of the
central moments µ and let f be one of the polynomials in Theorem D.4 but expressed
in terms of the central moments. Then using the delta method we have

Var(f(µ̂)) ' ∇f(µ)tVar(µ̂)∇f(µ).

Consequently, in this loose sense at least, the higher the order of the central moments
(or equivalently the higher the order of the tree cumulants) the higher the variability
of we might expect the invariant to exhibit (see [25, Section 4.5]).
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