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Abstract

We describe and implement a novel methodology for Monte Carlo sim-
ulation of one-dimensional killed diffusions. The proposed estimators
represent an unbiased and efficient alternative to current Monte Carlo
estimators based on discretization methods for the cases when the finite-
dimensional distributions of the process are unknown. For barrier option
pricing in finance, we design a suitable Monte Carlo algorithm both for
the single barrier case and the double barrier case. Results from numerical
investigations are in excellent agreement with the theoretical predictions.

1 Introduction

Many important problems can be reduced to the computation of the expected
value, say ν, of a functional of a diffusion processX . In this paper, we will derive
and implement efficient and unbiased methods for Monte Carlo evaluation of ν
when analytical expressions for the finite -dimensional distributions of X are
not available and the value of the functional depends on barriers (either a single
barrier or double barriers).
We consider a one-dimensional diffusion process X :

dXt = μ(Xt)dt+ σ(Xt)dWt; X0 = x0, (1)
0 ≤ t ≤ T

where {Wt : 0 ≤ t ≤ T } is a standard Brownian Motion and the drift μ and the
diffusion coefficient σ are presumed to satisfy the usual conditions that guarantee
the existence of a weakly unique global solution of (1) (see e.g. Chapter 5 of
Oksendal, 1998).
Let H := (a, b) be an open interval of R such that X0 = x0 ∈ H . We are
interested in the computation of:

ν := E
[
h(XT )I{τ>T} | X0 = x0

]
(2)
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where T > 0 is a fixed time, τ is the first exit time of X from the set H and
h(·) is a measurable function.
In mathematical finance, the problem of the computation of (2) arises in many
contexts, e.g. in barrier options pricing (e.g. Merton, 1973; Reiner and Ru-
binstein, 1991) or in structural credit risk modeling (e.g. Black and Cox, 1976;
Longstaff and Schwarz, 1995). Analytic computation of (2) is only possible for
a limited collection of simple models. For example, in the Black-Scholes case,
Reiner and Rubinstein (1991) derived an explicit formula for the price of sin-
gle barrier options of European style. Recently Davydov and Linetsky (2001)
extended these results to asset processes driven by CEV diffusions. However in
general we have to approximate (2) by Monte Carlo methods.

1.1 Background

In principle, when using Monte Carlo simulation, many trajectories of X are
generated and the value of the functional is evaluated at each sample path. Av-
eraging over all paths provides then an unbiased estimator of ν which converges
to the true value as the number of iterations increases. When the transition den-
sities of X are not known, common practice introduces some kind of discrete
approximation X̃ of the process X . From the discrete approximation, suitable
estimates for expected functions can be derived. The simplest and most popular
of these methods is the Euler discretization which approximates (1) by means
of:

X̃iΔ = X̃(i−1)Δ + μ(X̃(i−1)Δ)Δ + σ(X̃(i−1)Δ)
√

Δεi; X̃0 = x0, (3)
(i = 1, 2, . . . , n)

where n = T/Δ and {εi}i=1,2,...,n are i.i.d. standard normal random variables.
Discretization methods introduce bias in the simulation which tends to 0 as n
tends to ∞ (for fixed T ). Using discretization schemes which are sufficiently
fine to ensure bias reduction to acceptable levels may be very computation-
ally expensive. A related problem concerns the optimal allocation of the total
computational budget between the number of time steps and the number of
simulation trials. Moreover, when dealing with functionals involving barriers,
the discretization scheme is subject to two sources of error: one error arising
from the actual approximation of (1) by its discretized counterpart, and the
other from the use of a discrete exit time instead of a continuous one. In fact
Gobet (2000) proved, under rather general conditions, that in the case of killed
diffusions the Euler scheme converges weakly at a rate of 1/

√
n in contrast to

1/n which is customary for sufficiently smooth payoff functions. A widely used
technique consists of interpolating the discretized process (3) into a continuous
Euler scheme by means of Brownian bridges; i.e. for any i = 1, 2, . . . , n and for
any t ∈ [t(i−1)Δ, tiΔ) set
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X̃t = X̃(i−1)Δ + μ(X̃(i−1)Δ)(t− (i− 1)Δ) + σ(X̃(i−1)Δ)(Wt −W(i−1)Δ) (4)

The idea here is to produce a realisation of the process (3) generating
X̃Δ, X̃2Δ, . . . , X̃nΔ. Then for any two points X̃(i−1)Δ and X̃iΔ, we sample a
[0, 1]-uniformly distributed random variable and compare it with the crossing
probability of the corresponding Brownian bridge. Schemes based on Brownian
bridge interpolation of the Euler trajectories can be succesfully applied to many
simulation probelms. Asmussen and Glynn (2007) apply analogous ideas to the
exact simulation of reflected Brownian motion with drift and to the approxi-
mation of reflected diffusions. These methods improve the rate of convergence
of the discrete Euler scheme; in particular Gobet shows that the weak error is
now of order n−1. However, when n is large, the use of (4) for Monte Carlo
simulation of ν can be computationally expensive involving the simulation of a
very large number of uniform random variables at each iteration of the Monte
Carlo algorithm.

1.2 A new approach

We will describe and implement a new method for Monte Carlo estimation of ν.
Our method is designed to deal with those cases when the family of transition
densities of the process X is not available. In fact it improves the performances
of Monte Carlo algorithms based on discretization methods in two directions.

• The Monte Carlo estimator is simulated exactly, so no bias is introduced
in the simulation. Because of this, we call our method the Exact Monte
Carlo method.

• There is no trade-off between accuracy of the estimation and computa-
tional effort. The higher the level of approximation required, the larger
the computational efficiency advantage gained by use of the exact algo-
rithm.

We shall see that the exact algorithm approach is actually highly computation-
ally efficient, often requiring less computing effort than rather crude discretiza-
tion methods.
Our approach builds on recent advances in exact simulation of diffusions. The
main idea was introduced by Beskos et al. (2006a). Subsequently it has been
further developed in Beskos et al. (2007) and applied to inference for discretely
observed diffusion processes (Beskos et al., 2006b) and particle filter estimation
for diffusions (Fearnhead et al., 2006). Currently there are three versions of the
Exact Algorithm: EA1, EA2 and EA3. For simplicity, in the present paper we
will focus on the basic one (EA1) although generalisations to EA2 and EA3 are
possible. In particular the generalisation to EA2 will be presented in Section 4.
The paper is organised as follows. In Section 2.1 we define the class of diffusions
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of interest. In Section 2, after some preliminaries, we state the mathematical
results that justify the Monte Carlo procedure. In Section 3 we describe in
details the Exact Monte Carlo algorithm. In Section 4 we introduce some further
probabilistic constructions supporting more general versions of our algorithm. In
Section 5 we report the results of a numerical study comparing the performance
of our Monte Carlo estimator with the Monte Carlo estimators generated by (3)
and (4). We end in Section 6 with some comments and concluding remarks.

2 Theoretical framework

2.1 The model

In this subsection, we describe the class D of one-dimensional diffusion processes
(1) for which the Exact Monte Carlo method can be applied. We introduce the
transformed process Y := {Yt; 0 ≤ t ≤ T } defined by

Yt = η(Xt) =
∫ Xt

z

1
σ(u)

du (5)

where z can be any element of the state space of X . Assuming that σ is nowhere
0 and continuously differentiable, by Ito’s formula, the process Y satisfies the
SDE:

dYt = α(Yt)dt+ dWt; Y0 = η(x0) = y0 (6)

where α(u) =
μ(η−1(u))
σ(η−1(u)) − 1

2σ
′ (
η−1(u)

)
and η−1 denotes the inverse transforma-

tion. Let C = C([0, T ] ,R) be the set of the continuous functions from [0, T ] to
R, C the σ−algebra generated by the cylinder subsets of C and {Ct : t ∈ [0, T ]}
the corresponding filtration. We denote by ω = {ωs : 0 ≤ s ≤ T } the generic
element of C. Let Q denote the probability measure induced by the process Y
in (6) on (C, C) and W the corresponding measure induced by the Brownian
motion with starting point y0. We introduce the following conditions on Y :

B0 Q << W and Girsanov representation holds:

dQ

dW
(ω) = exp

{∫ T

0

α(ωt)dωt − 1
2

∫ T

0

α2(ωt)dt

}
(7)

B1 The drift function α is C1 (differentiable with continuity)

B2 The function (α2 + α
′
)/2 is bounded

Conditions B0 −B2 define the class D of diffusions (1) of interest:

D := {X : η(X) satisfies conditions B0-B2}
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2.2 Preliminaries

Roughly speaking, the Exact Algorithm 1 (EA1) (Beskos et al., 2006a) exploits
a transformation of the likelihood ratio (7) to allow a rejection sampling on the
path space C in order to simulate from the (unknown) diffusion measure Q. B1
and B2 permit the Girsanov ratio to be bounded by an explicit and everywhere
finite function of ωT , which in turn permits an appropriate rejection sampling
algorithm to be constructed. This construction is described in details Beskos
and Roberts (2005), Beskos et al. (2006a) and Beskos et al. (2006b). Explicit
links between B1 and B2 and the Conditions 1-3 in Beskos and Roberts (2005)
(pp. 2425-2426) are provided in Appendix 2. EA1 returns as output a partial
exact representation of the diffusion path, i.e. a collection of points of the
trajectory of Y , including the (given) starting point at time 0 and the ending
point at time T . We call it Skeleton of the process and we represent it as:

S1 := {(t0, y0) , (t1, y1) , . . . , (tm, ym)} (8)

where 0 = t0 < t1 < · · · < tm = T . Before stating the relevant results on EA1
we fix some preliminary notation. Let W(s,x;t,y) be the probability measure of
a Brownian bridge starting at time s at location x and finishing at time t at
location y. We also introduce the following representation of the exit times: for
any measurable set B ⊂ R

τB := inf {t ∈ [0, T ] : ωt /∈ B}

under the convention inf {∅} = +∞. We will denote by qW(s, x; t, y; l1, l2) the
exit probability of the (s, x) → (t, y) Brownian bridge from a given set (l1, l2)
under the condition x, y ∈ (l1, l2):

qW(s, x; t, y; l1, l2) := W(s,x;t,y)
(
τ(l1,l2) ≤ T | x, y ∈ (l1, l2)

)
(9)

2.3 EA1 results

The following theorem brings together the relevant results from Beskos et al.
(2006a). It states the conditions on (6) that allow the application of EA1 and
it characterises the conditional law of the process Y given the Skeleton.

Theorem 1
Under conditions B0 −B2 we can apply EA1 to simulate a Skeleton (8) of the
process Y . For any event B ∈ C:

Q(B) = ES1

[
WS1(B)

]
(10)

where WS1 :=
⊗m

i=1 W(ti−1,yi−1;ti,yi).
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Therefore the conditional law of the process Y given the Skeleton is the product
law of Brownian bridges connecting the points of the Skeleton. This implies
that, by conditioning on S1, we reduce the problem of the simulation from an
unknown probability measure Q to the problem of the simulation from Brownian
bridge measures. The following result provides a simple application of this
construction.

Corollary 1
Let S1 be the Skeleton of Y generated by EA1. Then, for any l1 < y0 < l2:

Q
(
τ(l1,l2) > T

)
= ES1

[
m∏

i=1

(
1 − qW (ti−1, yi−1; ti, yi; l1, l2)

)
I{yi∈(l1,l2)}

]
(11)

Proof:
For any i = 1, 2, . . . ,m, let Ci be the set of continuous functions on [ti−1, ti] and
Ci the corresponding σ−algebra. We define the following events:

Bi := {ωt ∈ (l1, l2); ti−1 ≤ t ≤ ti} ∈ Ci

Then
{
τ(l1,l2) > T

}
= B1 ×B2 × · · · ×Bm so that from (10) and the definition

of WS1 :

Q
(
τ(l1,l2) > T

)
= ES1

[
m∏

i=1

W(ti−1,yi−1;ti,yi)(Bi)

]

= ES1

[
m∏

i=1

(
1 − qW (ti−1, yi−1; ti, yi; l1, l2)

)
I{yi∈(l1,l2)}

]

�

2.4 Crossing probability of the Brownian bridge

2.4.1 One-sided crossing probability

We recall the problem of the evaluation of the crossing probability (9) for Brow-
nian motion. Let us assume l1 = −∞. It turns out that for any l2 ∈ R:

qW(s, x; t, y;−∞, l2) = exp
(
−2

(l2 − y)(l2 − x)
t− s

)
(12)

An analogous result holds for the lower barrier case l2 = +∞. Expression (12)
can be easily derived from the Bachelier-Levy construction which provides an
explicit formula for the crossing probability of a slope boundary for the Brownian
motion (see e.g. Lerche, 1986).
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2.4.2 Two-sided crossing probability

The problem of determining the two-sided crossing probability of the Brownian
bridge is more challenging than the one-sided problem. Although it has been ex-
tensively studied in literature (see e.g. Bertoin and Pitman, 1994), a closed form
expression is not available. In fact available representations are given in terms
of an infinite sum. Nevertheless here we state a convergence result (Proposition
1) which will allow us to construct a suitable Monte Carlo algorithm for the
double barrier case. Our approach relies on classical results of Doob (1949) and
Anderson (1960). For a recent reference, see also Pötzelberger and Wang (2001).
In the Appendix, while proving Proposition 1, we will give a brief account of
these constructions. Before stating the proposition we need some additional
notation. For any j ∈ N we introduce the two functions:

Pj(s, x; t, y; l1, l2) := pj(s, x; t, y; l2 − l1, l1) + pj(s, x; t, y; l2 − l1, l2)
Qj(s, x; t, y; l1, l2) := qj(s, x; t, y; l2 − l1, l1) + qj(s, x; t, y; l2 − l1, l2)

where

pj(s, x; t, y; δ, l) = e−
2

t−s [jδ+(l−x1)][jδ+(l−y)]

qj(s, x; t, y; δ, l) = e−
2j

t−s [jδ2−δ(l−x)]

Furthermore we need the two sequences of real numbers:

nk (s, x; t, y; l1, l2) =
k∑

j=1

[Pj (s, x; t, y; l1, l2) −Qj (s, x; t, y; l1, l2)] (13)

nk (s, x; t, y; l1, l2) = nk−1 (s, x; t, y; l1, l2) + Pk (s, x; t, y; l1, l2) (14)

Proposition 1
For any −∞ < l1 < l2 < +∞, as k → ∞

nk (s, x; t, y; l1, l2) ↑ qW(s, x; t, y; l1, l2) (15)
nk (s, x; t, y; l1, l2) ↓ qW(s, x; t, y; l1, l2) (16)

Proof:
In the Appendix.

�
This result suggests that we can construct two sequences {nk} and {nk} con-
verging from below and from above respectively to the (unknown) probability
qW. Crucially, given the parameters of the Brownian bridge (s, x, t, y) and the
values of the barriers (l1, l2), nk and nk can be easily evaluated for each k ∈ N.
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3 The Exact Monte Carlo algorithm

3.1 General setting

After setting up the theoretical framework, we turn to the description of the
Monte Carlo algorithm. In the first place we notice that since the function η
(5) is monotone increasing we can express expectation (2) under the measure Q

of the transformed process Y as

ν = EQ

[
h′(ωT )I{τH′>T}

]
(17)

with h′(·) = h
(
η−1 (·)), H ′ := (a′, b′), a′ = η(a) and b′ = η(b). Assuming

X ∈ D, Theorem 1 ensures that we can apply EA1 to simulate a Skeleton S1

(8) of Y . Our simulation strategy will then consist of three main steps:

Step 1 : we simulate a Skeleton S1 of Y (EA1)

Step 2 : given S1, we simulate an unbiased estimator of ν in (2)

Step 3 : we simulate the Monte Carlo estimator by repeating and averaging.

Under the measure Q, we can define the two unbiased estimators of ν,

Plain vanilla: φ := φ(ω) = h′(ωT )I{τH′>T} (18)

Rao-Blackwellised: ψ := ψ (S1) = EQ [φ | S1] (19)

generating the Monte Carlo estimators:

ν̃ =

∑N
j=1 φ

(j)

N
; ν̂ =

∑N
j=1 ψ

(j)

N

where
{
φ(j)

}
j=1,2,...,N

and
{
ψ(j)

}
j=1,2,...,N

are sequences of i.i.d copies of (18)
and (19). We will focus on the problem of the simulation of ν̃ and ν̂ (step 2 )
given the Skeleton. Instead for the simulation of the Skeleton and the issues
related to the implementation of EA1 (step 2 ) we refer to Beskos et al. (2006a).

3.2 Plain vanilla Monte Carlo estimator

We recall that, by construction, the Skeleton (8) provides a realization of ωT

under Q, namely ωT ≡ ym. Therefore, after generating the Skeleton, the simula-
tion of φ requires only the simulation of the indicator variable in (18) according
to
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Q
(
I{τH′>T} = 1 | S1

)
= Q (τH′ > T | S1) (20)

=
m∏

i=1

[
1 − qW (ti−1, yi−1; ti, yi; a′, b′)

]
I{yi∈H′}

where the second equality follows from Corollary 1. Simulation from (20) in-
volves the generation of independent events, say {Ei}i=1,2,...,m, of probabili-
ties

{
qW (ti−1, yi−1; ti, yi; a′, b′)

}
i=1,2,...,m

. These events are in fact the crossing
events of the Brownian bridges selected by S1. If any Ei occurs we set φ ≡ 0,
otherwise φ ≡ h′(ym). The basic structure of the algorithm is outlined in Algo-
rithm 1.

Algorithm 1 Plain vanilla Monte Carlo algorithm

1. Call EA1 and simulate the Skeleton S1 = {(t0, y0) , (t1, y1) , . . . , (tm, ym)}.

2. Evaluate I(S1) =
∏m

1 I{yi∈H′}.
If I(S1) = 0 go to 5.
Otherwise go to 3.

3.1. Set i = 1.
3.2. Simulate the event Ei w.p. qW (ti−1, yi−1; ti, yi; a′, b′).

If I{Ei} = 1 goto 5.
Else if i = m goto 4.

3.3. Set i = i+ 1 and goto 3.2.

4. Output φ = h′(ym).

5. Output φ = 0.

6. Repeat 1-5 a sufficiently large number N of times and output

ν̂ = (1/N)
∑N

j=1 φ
(j).

In the single barrier case, the procedure is straightforward since we have a
closed-form expression (12) for the crossing probability of the Brownian bridge.
In the double barrier case, crossing probabilities are not available in closed form.
Therefore in order to generate the crossing events we shall resort to an iterative
algorithm which exploits the result of Proposition 1. Our simulation method
resembles the convergence series method described in Devroye (1986) (p. 156).
The steps of the procedure are reported in the pseudo-code of Algorithm 2 where
we have adopted the following convenient notation:
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ni,k := nk (ti−1, yi−1; ti, yi; a′, b′)
ni,k := nk (ti−1, yi−1; ti, yi; a′, b′) (i = 1, 2, . . . ,m; k ∈ N)

Algorithm 2 Subroutine to simulate the indicator variable I{Ei} (2 barriers)

3.2.1. Sample U ∼ Unif[0, 1]. Set k = 1.

3.2.2. Evaluate ni,k and ni,k.
If U > ni,k go to 3.2.3.
If U < ni,k go to 3.2.4.
Else set k = k + 1 repeat 3.2.2.

3.2.3. Set k = Ni and output I{Ei} = 0.

3.2.4. Set k = Ni and output I{Ei} = 1.

Clearly, for any i = 1, 2, . . . ,m, the efficiency of the sampling scheme in Al-
gorithm 2 is strictly connected to the behaviour of the random variable Ni

representing the number of times we need to repeat the control until a decision
is taken. The following proposition guarantees that, for any i = 1, 2, . . . ,m, Ni

has finite moments of every order.

Proposition 2
Let Mi(α) be the moment generating function of Ni. Then, for any i =
1, 2, . . . ,m, there exists εi ∈ R such that for any α ∈ (−εi,+εi):

Mi(α) <∞

Proof:
We prove the proposition for an arbitrary i ∈ {1, 2, . . . ,m}. For the construction
of the algorithm, for any k = 1, 2, . . . :

Pr(Ni > k) = Pr(U ∈ (ni,k,min {1, ni,k}) ≤ ni,k − ni,k

Thus:
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Mi(α) = E(eαNi) =
∞∑

k=0

e(k+1)α (Pr(Ni > k) − Pr(Ni > k + 1))

≤
∞∑

k=0

e(k+1)αPr(Ni > k) = eα
∞∑

k=0

ekαPr(Ni > k)

= eα + eα
∞∑

k=1

ekαPr(Ni > k) ≤ eα + eα
∞∑

k=1

ekα(ni,k − ni,k)

Mi(α) is finite for those values of α for which it converges the infinite series:

∞∑
k=1

ekα(ni,k − ni,k) =
∞∑

k=1

e
− 2k

Δi
[kδ2

i +δi(b
′−x2)−δi(b

′−x1)−Δi
2 α]

+
∞∑

k=1

e
− 2k

Δi
[kδ2

i −δi(a
′−Si)+δ(a′−Si−1)−Δi

2 α]

where Δi = ti − ti−1. It is now clear that it exists a neighborhood (−εi,+εi)
of 0 such that, if α ∈ (−εi,+εi) the two series on the right hand side converge;
that is Mi(α) is finite in (−εi,+εi).

�
It is worth remarking that in practice the algorithm performs surprisingly well.
In fact, for any i = 1, 2, . . . ,m, Ni is typically very small since the two sequences
{nk}k=1,2,... and {nk}k=1,2,... converge to qW faster than exponentially. In the
numerical example we will present in Section 5 we have verified that in the most
of cases the algorithm comes to a decision after one or two iterations.

3.3 Rao-Blackwellised Monte Carlo estimator

Expanding the conditional expectation in (19) we obtain:

ψ = h′(ym)
m∏

i=1

[
1 − qW (ti−1, yi−1; ti, yi; a′, b′)

]
I{yi∈H′} (21)

Expression (21) shows that the simulation of ψ requires the analytical evaluation
of the crossing probabilities of Brownian bridges. As we are aware, this is
possible only in the single barrier case. So, assuming for example an upper
barrier (a′ = −∞), from (12), we obtain:

ψ = ψ (S1) = h′ (ym)

[
m∏

i=1

(
1 − exp

(
−2

(b′ − yi)(b′ − yi−1)
ti − ti−1

))
I{yi∈(−∞,b′)}

]

(22)
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In this context the simulation of ψ requires only the simulation of S1 and the
evaluation of expression (22). Repeating the procedure and averaging give an
estimate of ν̂. The final Algorithm 3 turns out to be very simple. Unfortunately,
in the double barrier case, Rao-Blackwellisation is not feasible since we are not
able to evaluate analytically crossing probabilities in (21).

Algorithm 3 Rao-Blackwellised Monte Carlo Algorithm (upper barrier)

1. Call EA1 and simulate the Skeleton S1.

2. Evaluate ψ = ψ (S1) according to (22) .

3. Repeat 1-2 a sufficiently large number N of times and output

ν̂ = (1/N)
∑N

j=1 ψ
(j)

We point out that, if available, the Rao-Blackwellised estimator is preferable to
the plain vanilla. In fact, by Jensen inequality:

Var (ψ) ≤ Var (φ) (23)

which implies that under a quadratic loss function, for fixed N , ν̂ is more ef-
ficient than ν̃. Furthermore, the simulation of ν̂ is computationally less de-
manding than the simulation of ν̃. In fact at each iteration of the Monte Carlo
algorithm the simulation of ψ involves only the simulation of the Skeleton, while
the simulation of φ involves the simulation of the Skeleton and the simulation
of φ from Q|S1.

4 More general constructions

4.1 Exact Monte Carlo via a truncation of the drift

We consider now the problem of the Monte Carlo estimation of ν (17) given a
family of diffusion processes (6) satisfying B0 and the following two conditions:

B1∗ The drift function α is differentiable on the closure H
′
of H ′

B2∗ The function (α2 + α
′
)/2 is bounded on H

′

Under the conditions above, by truncating the drift function α at the barriers
a′ and b′ and using smoothing techniques, it is possible to define a process Ỹ :

dỸt = α̃(Ỹt)dt+ dWt, Ỹ0 = y0 (24)

12



CRiSM Paper No. 07-26, www.warwick.ac.uk/go/crism

that satisfies the desirable conditions C0 − C2 (Section 2.1) and such that, for
any u ∈ H ′, α̃ (u) ≡ α (u). We denote by Q̃ the measure induced by the process
Ỹ on the measurable space (C, C).

Theorem 2
Let us consider the two processes Y and Ỹ with SDEs (6) and (24). If α ≡ α̃ for
each u ∈ H ′ and the function φ : C → R is measurable with respect to CT∧τH′
then:

EQ [φ(ω)] = EQ̃ [φ(ω)]

Proof:
By Girsanov Theorem, the Radon-Nikodym derivative of Q with respect to Q̃

is given by

MT (ω) =
dQ

dQ̃
(ω) =

e
R T
0 α(ωs)dωs− 1

2

R T
0 α2(ωs)ds

e
R

T
0 α̃(ωs)dωs− 1

2

R
T
0 α̃2(ωs)ds

By the measurability assumption on φ and the martingale property of {Mt, Ct}0≤t≤T

we have:

EQ [φ(ω)] = EQ̃ [φ(ω)MT (ω)] = EQ̃

[
EQ̃

[
φ(ω)MT (ω) | CT∧τH′

]]
= E

Q̃

[
φ(ω)E

Q̃

[
MT (ω) | CT∧τH′

]]
= E

Q̃

[
φ(ω)MT∧τH′

]

Since on the interval [0, T ∧ τH′ ) the two drift functions α and α̃ coincide, it
turns out that MT∧τH′ = 1, Q̃-almost surely . The conclusion then follows.

�

In our framework, since φ(ω) = h′(ωT )I{τH′>T} is clearly CT∧τH′ -measurable,
Theorem 2 implies that

ν = EQ

[
h′(ωT )I{τH′>T}

]
= E

Q̃

[
h′(ωT )I{τH′>T}

]
(25)

Therefore we can simulate an unbiased estimator of ν by applying the Exact
Monte Carlo method to the auxiliary process Ỹ (satisfying conditions C0 −
C2). This strategy is particularly powerful when we deal with a double barrier
problem. In fact in that case H ′ is a bounded interval and we just need to
ensure that the drift α ”behaves well” in a compact set H

′
. This is naturally

satisfied by most models. In the single barrier case on the contrary we should
still assume boundedness of α on one side (either (−∞, b′] or [a′,+∞)).

13
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4.2 Exact Monte Carlo via the Exact Algorithm 2

We replace condition B2 with the following less restrictive condition:

B2∗∗ For all u ∈ R, (α2 + α
′
)/2 is bounded below and it is bounded above

either on (−∞, u) or on (u,+∞)

We assume without loss of generality that the function (α2 + α
′
)/2 is bounded

on the intervals {(u,+∞)}u∈R. EA2 was introduced by Beskos et al. (2006a).
A crucial difference between it and EA1 lies in the fact that it outputs a richer
structure than S1 (8). In fact in addition to the starting point (0, y0) and the
ending point (T, yT ) of the diffusion path, it includes also its minimum and the
time at which this minimum is achieved, say (t∗, y∗). It is convenient to choose
a representation of S2 which takes into account this underlying structure:

S2 := {(t0, y0) , (t1, y1) , . . . , (tm1 , ym1) , . . . , (tm2 , ym2)} (26)

where 0 = t0 < t1 < · · · < tm1 = t∗ < · · · < tm2 = T so that the minimum can
be easily identified as (tm1 , ym1) ≡ (t∗, y∗). We denote by Q−y∗ the probability
measure induced by the process Y − y∗ := {Yt − y∗ : 0 ≤ t ≤ T } on (C, C) and
W

(s,x;t,y)
+ the probability measure of a 3-dimensional Bessel bridge from (s, x)

to (t, y). Furthermore we will denote crossing probabilities as follows:

qW+(s, x; t, y; l1, l2) := W
(s,x;t,y)
+

(
τ(l1,l2) ≤ T | x, y ∈ (l1, l2)

)
The following result is the analogous of Theorem 1 and it can be derived from
the construction presented in Beskos et al. (2006a)

Theorem 3
Under conditions C0, C1 and B2∗∗ we can apply EA2 to simulate a Skeleton
S2 (26) of the process Y . For any event A ∈ C:

Q − y∗(A) = ES2

[
W

S2
+ (A)

]

where WS2
+ =

⊗m2
i=1 W

(ti−1,yi−1−y∗;ti,yi−y∗)
+ .

Theorem 3 justifies the following suitable representation of the crossing proba-
bility of the process Y .

Corollary 2
Let S2 be the Skeleton of Y generated by EA2. Then, for any l1 < y0 < l2:

Q
(
τ(l1,l2) > T

)
= ES2

[
I{y∗>l1}

m2∏
i=1

(
1 − qW+

(
ti−1, y

∗
i−1; ti, y

∗
i ;−∞, l∗2

))
I{Ci}

]

(27)

where, for any i = 1, 2, . . . ,m2, y
∗
i := yi − y∗, l∗2 := l2 − y∗ and Ci := {yi < l2}.

14
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Proof:
From Theorem 3 we derive the following representation:

Q
(
τ(l1,l2) > T

)
= Q − y∗

(
τ(l∗1 ,l∗2) > T

)
= ES2

[
W

S2
+

(
τ(l∗1 ,l∗2) > T

)]

where we have set l∗1 = l1 − y∗. Proceeding as in the proof of Corollary 1, for
any i = 1, 2, . . . ,m2, we define the events:

B∗
i = {ωt ∈ (l1 − y∗, l2 − y∗) ; ti−1 ≤ t ≤ ti}

so that
{
τ(l1−y∗,l2−y∗) > T

}
= B∗

1 × · · · ×B∗
m2

. Therefore by definition of W
S2
+

we have

W
S2
+

(
τ(l1−y∗,l2−y∗) > T

)
=

m2∏
i=1

W
(ti−1,y∗

i−1;ti,y
∗
i )

+ (B∗
i ) (28)

=
m2∏
i=1

(
1 − qW+

(
ti−1, y

∗
i−1; ti, y

∗
i ; l∗1, l

∗
2

))
I{yi∈(l1,l2)}

Now, if {y∗ ≤ l1} ≡ {ym1 ≤ l1}, (28) is clearly null in agreement with (27); if on
the contrary {y∗ > l1}, (27) follows from (28) using the positivity of the Bessel
process.

�

Now, substituting appropriately in (27), we obtain the following probability:

Q (τH′ > T | S2) = I{y∗>a′}
m2∏
i=1

(
1 − qW+

(
ti−1, y

∗
i−1; ti, y

∗
i ;−∞, b∗

))
I{yi<b′}

(29)

where we have set b∗ = b′−y∗. Analytical evaluation of (29) is not feasible, since
a closed-form formula for the crossing probability qW+ of the Bessel bridge is
not available. Consequently we are not able to simulate the Rao-Blackwellised
estimator ψ (19) and the corresponding Monte Carlo estimator ν̂. However in
the lower barrier case (b∗ = +∞):

Q (τH′ > T | S2) = I{y∗>a′}

so that the simulation of the plain vanilla estimator φ (18) is immediate. On
the contrary, when b∗ is finite (either in the upper barrier or in the double bar-
rier case) the simulation of φ involves the generation of events of probabilities

15
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{
qW+

(
ti−1, y

∗
i−1; ti, y

∗
i ;−∞, b∗

)}
i=1,2,...,m2

. To this end we have defined an ap-
propriate algorithm, similar in the spirit to Algorithm 2. The algorithm is based
on the following result. For any k ∈ N, let

n∗
k(s, x; t, y; l) =

1 − nk (s, x; t, y; 0, l)

1 − exp
{
−2 xy

t−s

} (30)

n∗
k(s, x; t, y; l) =

1 − nk (s, x; t, y; 0, l)

1 − exp
{
−2 xy

t−s

} (31)

where {nk} and {nk} are defined by (13) and (14).

Proposition 3
For any b∗ > 0, i ∈ {1, 2, . . . ,m2}, as k → +∞:

n∗
k

(
ti−1, y

∗
i−1; ti, y

∗
i ; b∗

) ↑ 1 − qW+(ti−1, y
∗
i−1; ti, y

∗
i ;−∞, b∗)

n∗
k

(
ti−1, y

∗
i−1; ti, y

∗
i ; b∗

) ↓ 1 − qW+(ti−1, y
∗
i−1; ti, y

∗
i ;−∞, b∗)

Proof:
For any l∗ > 0, i ∈ {1, 2, . . . ,m2}, using the representation of a Bessel bridge as
a Brownian bridge conditioned to be positive:

1 − qW+(ti−1, y
∗
i−1; ti, y

∗
i ;−∞, l∗) =

1 − qW
(
ti−1, y

∗
i−1; ti, y

∗
i ; 0, l∗

)
1 − qW

(
ti−1, y∗i−1; ti, y

∗
i ; 0,∞)

whereas, by Bachelier-Levy formula

1 − qW
(
ti−1, y

∗
i−1; ti, y

∗
i ; 0,∞)

= 1 − exp
{
−2

y∗i−1y
∗
i

ti − ti−1

}
(32)

Furthermore as a consequence of (15) and (16), as k → +∞:

1 − nk

(
ti−1, y

∗
i−1; ti, y

∗
i ; 0, l∗

) ↓ 1 − qW(ti−1, y
∗
i−1; ti, y

∗
i ; 0, l∗)

1 − nk

(
ti−1, y

∗
i−1; ti, y

∗
i ; 0, l∗

) ↑ 1 − qW
(
ti−1, y

∗
i−1; ti, y

∗
i ; 0, l∗

)
(33)

so that combining (32) and (33), the conclusion follows.

�
The simulation from probabilities qW+ in (29) is analogous to the simulation
from qW in the double barrier case, as described in Algorithm 2. Namely we
simulate a [0, 1]-uniformly distributed random variable and we compare it step-
wise with couples of values (n∗k, n

∗
k) (k increasing) until a decision is taken. In

this way we can simulate the crossing event from (29) and, consequently, the
plain vanilla estimator (18).
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5 Numerical example

To test our algorithm we consider the following model:

dYt = sin (Yt)dt+ dWt Y0 = y0,

0 ≤ t ≤ T

It is easy to verify that Y satisfies conditions B0 − B2 for the Exact Monte
Carlo algorithm. Let us suppose that we want to evaluate

ν = E
(
YT I{τ>T} | Y0 = y0

)
(34)

where, as usual, τ = inf {t ≥ 0 : Yt /∈ H} with H = (a, b) ⊂ R such that y0 ∈ H .
Since we don’t know the law at time T of the killed diffusion it is clear that the
explicit computation of ν is not possible and we resort to Monte Carlo methods
to estimate ν. In this simulation study, we investigate the performance of the
estimator of ν produced by the Exact Monte Carlo method (hereafter E1).

The plots in Figure 1 propose a comparison between E1 and the estimators
based on the continuous Euler scheme (E2) and on the discrete Euler scheme
(E3). In particular, given a Monte Carlo sample sufficiently large (106), for dif-
ferent choices of the starting point y0 and the barriers’ values a and b, we have
computed the estimates of E1 (dotted line) and the estimates produced by E2
and E3 for different discretization intervals. Then we have plotted the values
of E2 (cross) and E3 (circle) versus the number of discretization intervals.
As we expected, the values of E2 and E3 converge to E1 as the number of
discretization interval increases. Indeed it was shown by Gobet (2000) that, for
killed diffusions, the weak approximation error of Euler schemes decreases to 0
as the number of discretization intervals increases. When the Monte Carlo sam-
ple size is large enough, Monte Carlo error is negligible and the estimated values
are affected mainly by the discretization error. In this context the distance be-
tween the values of E2 and E3 and the dotted line is a good representation
of the (weak) discretization error affecting the Euler schemes and their conver-
gence to the dotted line reflects the theoretical convergence of the corresponding
expected values. Furthermore, according to the conclusions of Gobet, we notice
that the estimates based on the continuous Euler scheme show better conver-
gence than the estimates based on the discrete Euler scheme.
Comparing the performances of E2 and E3 along the four plots, we observe that
both in the single barrier case (plots 1 and 2) and in the double barriers case
(plots 3 and 4) Euler-based estimators behave very poorly when the starting
point of the process is other than 0 (plots 2 and 4). Moreover in these cases,
E2 converges to the E1 value from below while E3 converges from above. The
reasons why Euler schemes behave in this way deserves further attention from
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both an empirical and a theoretical point of view.

In practical applications, there is an interest in the comparison between the
computational times of the Exact Monte Carlo method and the Euler-based
methods. However such comparison is not straightforward since Euler schemes
are subjected to a trade-off between computational time and discretization error:
i.e, as the estimates of E2 and E3 converge to the dotted line, the time needed
to produce them increases. In each plot of Figure 1, we have marked with solid
line those values of E2 and E3 whose computational time was greater than the
computational time needed for the estimate of E1. In these cases our algorithm
is both more accurate and more efficient.

6 Conclusions

In this paper we have developed and implemented a novel Monte Carlo method
for the estimation of the expected value of a class of functionals of diffusion
processes. In particular we considered functionals involving barriers. In these
cases the estimation of the expected value is typically challenging. In fact, it
is common practice to discretize the underlying diffusion and run Monte Carlo
simulation on the discretized process. This clearly introduces a bias in Monte
Carlo simulation. Such bias can be reduced only at the cost of a larger computa-
tional effort. In comparison, our method turns out to be unbiased and efficient
as our simulation study for the sine model demonstrated.
The application of the Exact Algorithm to the multidimensional case is limited
to unit diffusion coefficient SDEs whose drift can be expressed as the gradient
of a potential (Langevin-type diffusions) (Beskos et al., 2007). In this context
the Exact Algorithm returns a Skeleton that gives rise to a factorization of
the conditional process in term of the product of multidimensional independent
Brownian bridges. For rectangular “killing” regions, a straightforward Multi-
variate Exact Monte Carlo algorithm for the barrier problem can be constructed
by simulating the crossing events for each of the components of the Brownian
bridges. For more general killing regions, the simulation of crossing events of
the Brownian bridges is a challenging and open problem. Interesting proposals
in this direction can be found in Lépingle (1995), Gobet (2001) and Bossy et al.
(2004) for the related problem of the approximation of a reflected multidimen-
sional diffusion.
The methodology presented in this paper suggests several further developments
and ideas for future research.
A major objective is to extend the algorithm to larger classes of diffusion pro-
cesses as well as to other time-continuous processes such as jump-diffusion pro-
cesses, Levy processes or stochastic volatility processes. Some relatively minor
extensions of the basic exact Monte Carlo algorithm have been proposed in Sec-
tion 4. We are currently working on more substantial generalizations of the
algorithm including Monte Carlo simulation of jump-diffusion processes with
state dependent intensity.
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We have concentrated here on the (Monte Carlo) barrier problem. This is es-
pecially relevant in option pricing for the evaluation of barrier and lookback
options and in credit risk modeling for the evaluation of defaultable derivatives.
However we believe that there is a wide range of other relevant Monte Carlo
problems arising in finance to which the Exact Monte Carlo framework can be
successfully applied. For instance current work involves Monte Carlo estimation
of the Greeks.
At last even though the results from our simulation study are promising, it is
worth to carry out a more comprehensive numerical simulation. In particular
the efficiency of our method in comparison with Euler-based methods need to
be investigated in more details.
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Appendix 1

Brownian bridge two-sided crossing probability (proof of Proposition
1):
Let W be the standard Brownian motion and W (s,x;t,y) be the (s, x) → (t, y)
Brownian bridge. It is well known that, for any δ > 0:

W (0,x;δ,y)
u

d= x+
u

δ
(y − x) +

δ − u√
δ
W u

δ−u
; 0 ≤ u ≤ δ

from which we can derive:

pW(s, x; t, y; l1, l2) = Pr [l1(u) < Wu < l2(u), u ≥ 0]

where we have set

l1(u) :=
l1 − y√
t− s

u+
l1 − x√
t− s

l2(u) :=
l2 − y√
t− s

u+
l2 − x√
t− s

Now, under the usual convention that inf {∅} = ∞, we define the following
stopping times:

τ∗ = inf {u ≥ 0 : Wu ≤ l1(u) or Wu ≥ l2(u)}

and

τj,1 = inf {u ≥ τj−1,2 : Wu ≤ l1(u)}
τj,2 = inf {u ≥ τj−1,1 : Wu ≥ l2(u)} (j = 1, 2, . . . )

under the convention τ0,1 = τ0,2 = 0. Let us define the following related events:

A := {τ∗ <∞}
A1 := {τ1,1 < τ1,2} ; A2 := {τ1,2 < τ1,1}
Aj,n := {τj,n <∞} (j = 1, 2, . . . ;n = 1, 2)

Using reflecting properties of Brownian motion, it is possible to show (see e.g.
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Anderson, 1960, Theorem 4.1) that for any j ∈ N:

Pr(A2j−1,2) = pj(s, x; t, y; δ, l2); Pr(A2j−1,1) = pj(s, x; t, y; δ, l1)
Pr(A2j,2) = qj(s, x; t, y; δ, l2); Pr(A2j,1) = qj(s, x; t, y; δ, l1)

with δ = l2 − l1. Straightforward probabilistic arguments lead to the following
results:

(i) {Aj,1} ↓ ∅ ; {Aj,2} ↓ ∅
(ii) A = A2 �A1 = A1,2 ∪A1,1

(iii) A2 =
⊔+∞

j=1 (A2j−1,2 −A2j,2) ; A1 =
⊔+∞

j=1 (A2j−1,1 −A2j,1)

(iv) for any j = 1, 2, . . . : Aj,2 ∩Aj,1 = Aj+1,2 ∪Aj+1,1

where with the symbol � we denote the disjoint union. Finally we can write:

qW(s, x1; t, x2; l1, l2) = Pr(A) = Pr(A2) + Pr(A1)

=
+∞∑
j=1

[(Pr(A2j−1,2) − Pr(A2j,2)) + (Pr(A2j−1,1) − Pr(A2j,1))]

=
+∞∑
j=1

[Pj (s, x; t, y; l1, l2) −Qj (s, x; t, y; l1, l2)]

= lim
k→∞

nk (s, x; t, y; l1, l2)

where we have used (ii) and (iii). From (i), for any j = 1, 2, . . .

P r(A2j−1,2) − Pr(A2j,2) + Pr(A2j−1,1) − Pr(A2j,1) ≥ 0

so that {nk}k=1,2,... is increasing, proving (15). On the other side, from (ii) and
(iv), the sequence {nk}k=1,2,... (14) can be written in the following way:

n1 (s, x; t, y; l1, l2) = Pr(A1,2 ∪A1,1) + Pr(A1,2 ∩A1,1)
= Pr(A) + c1 = q∗ (s, x; t, y; l1, l2) + c1

nk (s, x; t, y; l1, l2) = nk−1 (s, x; t, y; l1, l2) + (ck − ck−1)
= Pr(A) + ck = qW (s, x; t, y; l1, l2) + ck

where {ck = Pr(A2k−1,2 ∩A2k−1,1)}k=1,2,... is decreasing such that limk→∞ ck =
0. Therefor for any k = 1, 2, . . .

qW (s, x; t, y; l1, l2) + ck ≥ qW(s,x;t,y;l1,l2) + ck+1
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and

lim
k→+∞

nk (s, x; t, y; l1, l2) = Pr(A) + lim
k→∞

ck = Pr(A) = qW (s, x; t, y; l1, l2)

so that (16) follows.

�

Appendix 2

Let us recall from Beskos and Roberts (2005) conditions 1-3 (C1-C3) for the
construction of the Exact Algorithm 1:

C1 The drift function α is everywhere differentiable

C2
∫
R exp

{
A(u) − u2/2T

}
du with A(u) =

∫ u

0 α(z)dz is bounded by a constant

C3 The function (α2 + α′)/2 is bounded

Conditions B1-B2 in Section 2 trivially implies C1-C3 if the following Lemma
holds.

Lemma 1
Suppose that α is a C1 function on R. If α′ + α2 is bounded, then so is α

Proof:
Suppose to the contrary, then either:

(i) lim supx→+∞ α(x) = +∞
(ii) lim infx→+∞ α(x) = −∞
or, alternatively, (i) or (ii) hold with x→ −∞. Firstly, suppose that (i) holds.
Then there exists a sequence {xi} → +∞ with {α (xi)} → +∞. Under the
hypothesis of the Lemma, for all large enough indeces i, we have:

1. xi > 0

2. α′ (xi) < 0

3. α(xi) > α(0)

Since the derivative function α′ is continuous, by the intermediate value the-
orem, there exists yi ∈ [0, xi] such that α′(yi) = 0 and α(yi) > α(xi). Thus
{α(yi)} → +∞ and α′(yi) + α2(yi) = α2(yi) is unbounded in i for a contrad-
diction.

Secondly, suppose instead that (ii) holds. Then there exists {xi} → +∞ with
{α (xi)} → −∞. Then for all sufficiently large i:
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1. xi > 0

2. α′ (xi) < 0

3. α′(y) < 0 for all y > xi (otherwise there will be somewhere where α′(y) = 0
leading to a contraddiction similar to in (i))

Therefore, for sufficiently large x, α(x) is decreasing so that limx→+∞ α(x) =
−∞. This, combined with the boundedness of the function α′ + α2, implies
that, for any ε ∈ (0, 1), there exists x0(ε) such that for any x ≥ x0 we have:

−
(

1
α(x)

)′
+ ε =

α′(x)
α2(x)

+ ε ≤ 0

Choosing ε = 1/2 and applying the mean value theorem to the continuous
function α, we obtain for any x ≥ x0(1/2) and y ∈ (0, x):

1
α(x)

− 1
α(y)

≥ x− y

2

leading to a contradiction.

�
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Figure 1: Monte Carlo estimates of ν for the model (34) based on the Exact Monte Carlo
(dotted line), on the discrete Euler scheme (circle) and on the continuous Euler scheme (cross).
Monte Carlo estimates based on the Euler schemes are associated with the corresponding
number of disretization intervals. Monte Carlo sample size: 106. Plot 1(top-left): y0 =
0, b = 3, T = 5. Plot 2(top-right): y0 = 1.5, b = 4.5, T = 5. Plot 3(bottom-left): y0 = 0, a =
−3.5, b = 4.5, T = 5. Plot 4(bottom-right): y0 = 2, a = 1, b = 4.5, T = 5
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