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Abstract

In this paper we briefly review the main methodological aspects concerned with the appli-

cation of the Bayesian approach to model choice and model averaging in the context of variable

selection in regression models. This includes prior elicitation, summaries of the posterior distri-

bution and computational strategies. We then examine and compare various publicly available

R-packages for its practical implementation summarizing and explaining the differences between

packages and giving recommendations for applied users. We find that all packages reviewed lead

to very similar results, but there are potentially important differences in flexibility and efficiency

of the packages.

1 Motivation

A very general problem in statistics is where several statistical models are proposed as plausible

descriptions for certain observations y and the observed data are used to resolve the model uncer-

tainty. This problem is normally known as model selection or model choice if the aim is to select

a single “best” model, but if the model uncertainty is to be formally reflected in the inferential

process, we typically use model averaging, where inference on issues that are not model-specific

(such as prediction or effects of covariates) is averaged over the set of models under consideration.

A particular important model uncertainty problem in practice is variable selection where the

proposed models share a common functional form (eg. a normal linear regression model) but differ
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in which explanatory variables, from a given set, are included to explain the response. The focus in

this paper will be on variable selection in the context of normal linear models, a problem formally

introduced in Section 2.

Model uncertainty is a classic problem in statistics that has been scrutinized from many different

perspectives. Hence, quite often, the main issues for practitioners are to decide which methodology

to use and/or how to implement the methodology in practice. One appealing approach is based

on the Bayesian paradigm and is considered by many the formal Bayesian answer to the problem.

This approach is the one based on the posterior probabilities of the models under consideration and

results in a coherent and complete analysis of the problem and provides answers to practical ques-

tions. For instance, a single model can be selected as that most supported by the data (the model

with the highest posterior probability) or inferences can be performed using the posterior model

probabilities as weights, normally denoted by Bayesian model averaging (BMA).In this paper we

describe how the formal Bayesian method can be implemented in R (R Core Team, 2015), analyzing

the different packages that are currently available in CRAN (cran.r-project.org). Emphasis is

placed on comparison but also on putting in perspective the details of the implementations.

As with any Bayesian method, the prior distribution for the unknown parameters needs to be

specified. It is well known that this aspect is particularly critical in model uncertainty problem

since results are potentially highly sensitive to the priors used (see e.g. Berger and Pericchi, 2001;

Ley and Steel, 2009). In this paper, we pay special attention to the family of priors in the tradition

started by Jeffreys, Zellner and Siow (Jeffreys, 1961; Zellner and Siow, 1980; Zellner, 1986) and

continued by many other authors with important contributions during the last ten years. These

types of priors, which we label conventional, are introduced in Section 2.1. Bayarri et al. (2012)

have recently shown that conventional priors have a number of optimal properties that make them

a very appealing choice for dealing with model uncertainty.

2 Bayesian variable selection in Linear Models

Consider a Gaussian response variable y, size n, assumed to be explained by an intercept and some

subset of p possible explanatory variables with values grouped in the n×p matrix X = (x1, . . . , xp).

Throughout the paper we suppose that n > p and that X is of full column rank. We define a binary

vector γ = (γ1, . . . , γp)
t where γi = 1 if xi is included in the model Mγ and zero otherwise. This

is the variable selection problem, a model uncertainty problem with the following 2p competing

models:

Mγ : y = α1n +Xγβγ + ε, (1)

where ε ∼ Nn(0, σ2In) and the n × pγ design matrices Xγ are all possible submatrices of X. If

we choose the null matrix for Xγ , corresponding to γ = 0, we obtain the null model with only the
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intercept

M0 : y = α1n + ε. (2)

Without loss of generality, we assume that columns of X have been centered on their corresponding

means, which makes the covariates orthogonal to the intercept, and gives the intercept an inter-

pretation that is common to all models. The set of all competing models is called the model space

and is denoted as M.

Assuming that one of the models inM is the true model, the posterior probability of any model

is

Pr(Mγ∗ | y) =
mγ∗(y)Pr(Mγ∗)∑
γmγ(y)Pr(Mγ)

, (3)

where Pr(Mγ) is the prior probability of Mγ and mγ is the integrated likelihood with respect to

the prior πγ :

mγ(y) =

∫
pγ(y | βγ , α, σ)πγ(βγ , α, σ

2) dβγ dα dσ
2, (4)

also called the (prior) marginal likelihood. Note that, for γ = 0 this integrated likelihood becomes:

m0(y) =

∫
p0(y | α, σ)π0(α, σ

2) dα dσ2, (5)

An alternative expression for (3) is based on the Bayes factors:

Pr(Mγ∗ | y) =
Bγ∗(y)Pr(Mγ∗)∑
γ Bγ(y)Pr(Mγ)

, (6)

where Bγ is the Bayes factor of Mγ to a fixed model, say M0 (without any loss of generality) and

hence Bγ = mγ/m0 and B0 = 1.

The prior on the model parameters implicitly assigns posterior point mass at zero for those

regression coefficients that are not included in Mγ , which automatically induces sparsity.

As stated in the introduction, we are mainly interested in software that implements the formal

Bayesian answer which implies that we use the posterior distribution in (3). Even with this impor-

tant characteristic in common there could be substantial differences between R-packages (leaving

aside for the moment details on programming and the interface used) due to the following three

aspects:

• the priors that the package accommodates, that is, πγ(βγ , α, σ
2) and Pr(Mγ),

• the tools provided to summarize the posterior distribution and obtain model averaged infer-

ence,

• the numerical methods implemented to compute the posterior distribution.

We now succinctly revise the main methodological proposals for the above points. Emphasis

is placed in presenting the revision in a way that accommodates the methods implemented in the

different R packages.
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Proposal Reference Name Label

Constant g

g = n Zellner (1986); Kass and Wasserman (1995) Unit Information prior (UIP) C1

g = p2 Foster and George (1994) Risk inflation criterion prior (RIC) C2

g = max{n, p2} Fernández et al. (2001) Benchmark prior (BRIC) C3

g = log(n) Fernández et al. (2001) Hannan-Quinn (HQ) C4

gγ = ĝγ Liang et al. (2008) Local Empirical Bayes (EBL) C5

Random g

g ∼ IGa(1/2, n/2) Jeffreys (1961); Zellner and Siow (1980, 1984) Cauchy prior (JZS) R1

g|a ∼ π(g) ∝ (1 + g)−a/2 Liang et al. (2008) hyper-g R2

g|a ∼ π(g) ∝ (1 + g/n)−a/2 Liang et al. (2008) hyper-g/n R3

g ∼ π(g) ∝ (1 + g)−3/2, g > 1+n
pγ+1 − 1 Bayarri et al. (2012) Robust prior R4

Table 1: Specific proposals for the hyperparameter g in the literature. Column “Label” will be used as

convenient reference to particular proposals throughout the paper. For the priors on g, a > 2 to ensure a

proper prior and pγ denotes the number of covariates in Mγ .

2.1 Prior Specification

The two inputs that are needed to obtain the posterior distribution are πγ and Pr(Mγ): the 2p

prior distributions for the parameters within each model and the prior distribution over the model

space, respectively.

Without loss of generality, the prior distributions πγ can be expressed as

πγ(βγ , α, σ
2) = πγ(βγ | α, σ2)πγ(α, σ2).

Under the conventional approach (Fernández et al., 2001) the standard Jeffreys’ prior is used

for the parameters that are common to all models

πγ(α, σ2) = σ−2 (7)

and for πγ(βγ | α, σ2) we adopt either a normal or mixtures of normal distributions centered on

zero (“by reasons of similarity” Jeffreys, 1961) and scaled by σ2(Xt
γXγ)−1 (“a matrix suggested

by the form of the information matrix” Zellner and Siow, 1980) times a factor g, normally labelled

as “g-prior”. Recent research has shown that such conventional priors possess a number of optimal

properties that can be extended by putting specific priors on the hyperparameter g. Among these

properties are invariance under affine transformations of the covariates, several types of predictive

matching and consistency (for details see Bayarri et al., 2012).

The specification of g has inspired many interesting studies in the literature. Of these, we have

collected the most popular ones in Table 1.

Related with the conventional priors is the proposal by Raftery (1995) which is inspired by

asymptotically reproducing the popular Bayesian Information Criterion (Schwarz, 1978). Raftery
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(1995) proposes using the same covariance matrix as the Unit Information Prior (see Table 1) but

with mean the maximum likelihood estimator β̂γ (instead of the zero mean of the conventional

prior).

Other priors specifically used in model uncertainty problems are the spike and slab priors, that

assume that the components of β are independent, each having a mixture of two distributions:

one highly concentrated on zero (the spike) and the other one quite disperse (the slab). There

are two different developments of this idea in the literature. In the original proposal by Mitchell

and Beauchamp (1988) the spike is a degenerate distribution at zero so this fits with what we

have called the formal approach. The proposal by George and McCulloch (1993) in which the

spike is a continuous distribution with a small variance also received a lot of attention, perhaps

for computational advantages. In this implementation there is no posterior distribution over the

model space as every model smaller than the full model has zero probability.

With respect to the priors over the model space M, a very popular starting point is

Pr(Mγ | θ) = θpγ (1− θ)p−pγ , (8)

where pγ is the number of covariates in Mγ , and the hyperparameter θ ∈ (0, 1) has the interpretation

of the common probability that a given variable is included (independently of all others).

Among the most popular default choices for θ are

• Fixed θ = 1/2, which assigns equal prior probability to each model, i.e Pr(Mγ) = 1/2p;

• Random θ ∼ Unif(0, 1), giving equal probability to each possible number of covariates or

model size.

Of course many other choices for θ – both fixed and random– have been considered in the

literature. In general, fixed values of θ have been shown to perform poorly in controlling for

multiplicity (the occurrence of spurious explanatory variables as a consequence of performing a

large number of tests) and can lead to rather informative priors. This issue can be avoided by

using random distributions for θ as, for instance, the second proposal above that has been studied

in Scott and Berger (2010). Additionally, Ley and Steel (2009) consider the use of θ ∼Beta(1, b)

that results in a binomial-beta prior for the number of covariates in the model or the model size,

W :

Pr(W = w | b) ∝
(
p

w

)
Γ(1 + w)Γ(b+ p− w), w = 0, 1, . . . , p.

Notice that for b = 1 this reduces to the uniform prior on θ and also on W . As Ley and Steel

(2009) highlight, this setting is useful to incorporate prior information about the mean model size,

say w?. This would translate into b = (p− w?)/w?.
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2.2 Summaries of the posterior distribution and model averaged inference

The simplest summary of the posterior model distribution (3) is its mode

arg max
γ

Pr(Mγ | y).

This model is the model most supported by the information (data and prior) and is normally called

the HPM (stands for highest posterior model) or MAP (maximum a posteriori) model. Clearly,

a measure of uncertainty regarding this summary is reflected by its posterior probability which

should always be reported.

When p is moderate to large, posterior probabilities of individual models can be very small

and their interpretation loses appeal. In such situations, posterior inclusion probabilities (normally

denoted as PIP) are very useful.

Pr(γi = 1 | y) =
∑
xi∈Mγ

Pr(Mγ | y). (9)

These should be understood as the importance of each variable for explaining the response. Inter-

estingly, these probabilities are used to define another summary, namely the median probability

model (MPM) which is the model containing the covariates with inclusion probability larger than

0.5. This model is studied in (Barbieri and Berger, 2004) and they show that, in some situations,

it is optimal for prediction.

Extending the idea of inclusion probabilities, it is interesting to obtain measures of joint impor-

tance of sets of regressors on the response. For instance, we can compute the posterior probability

of two (or more) covariates occurring together in the model or the probability that a covariate

enters the model given that another covariate is already present (or not). These quantities are

known as joint posterior probabilities and conditional posterior probabilities, respectively, and are

studied, with other related summaries, in Ley and Steel (2007) (and references therein).

A measure of the model complexity is given by

Pr(W = w | y) =
∑

Mγ :pγ=w

Pr(Mγ | y), (10)

which is the posterior probability mass function of the model size.

The posterior distribution easily allows for obtaining model averaged estimates of any quantity

of interest Λ (assuming it has the same meaning across all models). Suppose Λ̂γ is the estimate of

Λ you would use if Mγ were the true model. Then the model averaged estimate of Λ is

Λ̂ =
∑
Mγ

Λ̂γ Pr(Mγ | y), (11)

which has the appeal of incorporating model uncertainty.
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When Λ refers to regression coefficients (βi) the model averaged estimates should be used and

interpreted with caution as they could be potentially misleading since the ‘same’ parameter may

have a different meaning in different models (Berger and Pericchi, 2001). Also the posterior distri-

bution of βi is a discrete mixture and hence summaries like the mean are not natural descriptions.

One particular appealing application of this technique is in predicting new values y? of the

dependent variable associated with certain values of the covariates. In this case Λ could be the

moments of y? or even the whole predictive distribution. Apart from their intrinsic interest, predic-

tions can be a very useful tool to run predictive checks (often using score functions) e.g. to compare

various prior specifications.

2.3 Numerical methods

There are two main computational challenges in solving a model uncertainty problem. First is the

integral in (4) and second is the sum in the denominator of (3) which involves many terms if p is

moderate or large.

Fortunately, in normal models, conventional priors combine easily with the likelihood, and

conditionally on g lead to closed forms for mγ(y). Hence, at most, a univariate integral needs to

be computed when g is taken to be random. Interesting exceptions are the Robust prior of Bayarri

et al. (2012) and the prior of Maruyama and George (2011), which despite assuming a hyper prior

on g induce closed form marginals. This is done by making the prior on g dependent on the size of

the model considered, either through the hyperparameters or through truncation.

The second problem, related with the magnitude of the number of models inM (i.e. 2p), could

be a much more difficult one. If p is small (say, p in the twenties at most) exhaustive enumeration is

possible but if p is larger, heuristic methods need to be implemented. The question of which method

should be used has been studied in Garcia-Donato and Martinez-Beneito (2013) which classify

strategies as i) MCMC methods to sample from the posterior (3) in combination with estimates

based on frequencies and ii) searching methods looking for ‘good’ models with estimates based

on renormalization (i.e with weights defined by the analytic expression of posterior probabilities,

cf. (3). They show that i) is potentially more precise than ii) which could be biased by the searching

procedure. Approach i) is the most standard approach but different implementations of ii) have

lead to fruitful contributions. The proposals in Raftery et al. (1997) and Fernández et al. (2001)

which are based on a Metropolis-Hasting algorithm called MC3 (originally introduced in Madigan

and York (1995)) could be in either class above, while the implementation in Eicher et al. (2011)

based on a leaps and bound algorithm proposed by Raftery (1995) is necessarily in (ii), since model

visit frequencies are not an approximation to model probabilities in this case.
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3 CRAN packages screening

In what follows we will write the name of the packages using the font package; functions as

function() and arguments as argument.

We seek in CRAN all possible packages that, potentially, could be used to implement the

Bayesian approach to variable selection. The key words used to search in CRAN were Model Selection,

Variable Selection, Bayes Factor and Averaging. The last search was on June 26, 2015 and we

found a total of 13 packages: VarSelectIP; spikeslab (Ishwaran et al., 2013); spikeslabGAM (Morey

et al., 2015); ensembleBMA (Fraley et al., 2015); dma (McCormick et al., 2014); BMA (Raftery

et al., 2015); mglmn (Katabuchi and Nakamura, 2015); varbvs (Carbonetto and Stephens, 2012);

INLABMA (Bivand et al., 2015); BayesFactor (Morey et al., 2015); BayesVarSel (Garcia-Donato and

Forte, 2015); BMS (Zeugner and Feldkircher, 2015) and mombf(Rossell et al., 2014).

From these, VarSelectIP, appeared as not longer supported and, within the rest, only the last

four implement conventional priors described in the previous section to perform variable selection

in linear models and hence will be considered for detailed description and comparison in the fol-

lowing sections. Particularly, BayesVarSel and BMS seem to be specifically conceived for that task,

while the main motivation in BayesFactor and mombf seem different. BayesFactor provides many

interesting functionalities to carry out t-tests, ANOVA-type studies and contingency tables using

(conventional) Bayes factors with special emphasis on the specification of the hyper parameter g

for certain design matrices. On the other hand, mombf focuses on a particular type of priors for

the model parameters, namely the non-local priors (Johnson and Rossell, 2010, 2012), applied to

either the normal scenario considered here or probit models.

Of the other packages we found, spikeslab and spikeslabGAM, implement spike and slab priors in

the spirit of the approach by George and McCulloch (1993) and hence are not directly comparable

with packages that compute the posterior distribution over the model space. Interestingly, the

original spike and slab approach by Mitchell and Beauchamp (1988) is used as the base methodology

in varbvs but with a specific development by Carbonetto and Stephens (2012) with extreme high

dimensional problems (p >>) in mind. Finally, BMA provides the posterior distribution over the

model space, but based on the BIC criterion.

Some other packages consider statistical models that are not of the type studied here (lin-

ear regression models). This is the case for ensembleBMA, which implements BMA for weather

forecasting models and dma which focuses on dynamic models.

INLABMA interacts with the INLA (Rue et al., 2009) methodology for performing model selec-

tion within a given list of models. The priors there used are those in the R package INLA which

are not model selection priors.

The package mglmn is not Bayesian and it uses the Akaike Information Criterion (AIC).
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Package BayesFactor BayesVarSel BMS mombf

Commands for

model uncertainty

regressionBF() Bvs(),PBvs(),GibbsBvs bms() modelSelection()

Prior

Argument
rscaleCont= prior.betas= g= priorCoef=

C1 - "gZellner" "UIP" zellnerprior(tau=n)

C2 - - "RIC" zellnerprior(tau=p2)

C3 - "FLS" "BRIC" zellnerprior(tau=max(n,p2))

C4 - - "HQ" zellnerprior(tau=log(n)))

C5 - - "EBL" -

R1 1 "ZellnerSiow" - -

R2 - - "hyper=a" -

R3 (a=3) - "Liangetal" - -

R4 - "Robust" - -

Table 2: Priors for the parameters within each model. Main commands and corresponding modifying

arguments for the different specifications for the hyper parameter g (keys in column ‘Prior’ refer to that in

Table 1) in conventional prior.

4 Selected Packages

The R packages BayesFactor, BayesVarSel, BMS and mombf provide functionalities to calculate and

study the posterior distribution (3) corresponding to some of the conventional priors described in

Table 1. The commands for such calculation are regressionBF() in BayesFactor; Bvs(), PBvs()

and GibbsBvs() (for exhaustive enumeration, distributed enumeration and Gibbs sampling) in

BayesVarSel; bms() in BMS and finally modelSelection() in the package mombf.

Prior inputs The different conventional priors available in each package and the corresponding

argument for its use are described in Table 2.

The implementation of the conventional priors in mombf have certain peculiarities that we now

describe. The priors for the common parameters, (α, σ), in mombf do not exactly coincide with (7).

In this package, the simplest model M0 only contains the error term and hence α is not a common

parameter. The more popular problem with fixed intercept examined in this paper (cf. (7)) is

handled via the modifying argument center=TRUE (given by default) which in turns is equivalent

to a prior for α degenerate at its maximum likelihood estimate. This will, especially if n is large

enough, often lead to very similar results as with a flat prior on α but small differences could occur

because in mombf the variability in this parameter is not taken into account. Also, for σ2 this

package uses an inverse gamma which has the non informative σ−2 as a limiting density. Thus,

differences among the two are expected to be negligible if the parameters in the inverse gamma

are small (values of 0.01 are given by default). Another logical argument in modelSelection() is
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Package BayesFactor BayesVarSel BMS mombf

Prior

Argument
newPriorOdds(BFobject)= prior.models= mprior= priorDelta=

θ = 1/2 rep(1,2^ p) "constant" "fixed" or "uniform" modelunifprior()

θ ∼ Unif(0,1) - "ScottBerger" "random" modelbbprior(1,1)

Table 3: Most popular default priors over the model space (see (8)) within the selected packages. For more

flexible options see the text.

scale. If it is set to TRUE the y’s and the x’s are scaled to have unitary variance. In this article we

are fixing it to scale=FALSE so that the data that enter in all the main functions exactly coincide.

All four packages are very rich and flexible regarding the choice of the prior over the model

space, Pr(Mγ). The access to the standard approaches is described in Table 3. Apart from these

standard priors BMS, following the proposals in Ley and Steel (2009), also allows for the use of a

beta distribution for θ in (8) by using mprior="random" and modifying the argument mprior.size

to specify the desired expectation for the model prior distribution (the default option is p/2 hence

providing the uniform prior on model size). Similarly the mombf package provides a beta prior

for θ with parameter (a, b) by setting the corresponding argument to modelbbprior(a,b). In

BayesVarSel particular specifications of prior probabilities are available with mprior="User" and a

p+ 1 dimensional vector defined in priorprobs which describes the prior probability, Pr(Mγ), of

a single model of each possible size (models of the same size are assumed to have the same prior

probability).

For illustration purposes consider the FLS dataset in Ley and Steel (2009) with p = 41 potential

regressors. These authors study the prior (8) with θ ∼ Beta(1, b = (41 − ω?)/ω?) and ω? = 7, re-

flecting that, a priori, the expected number of regressors is ω? = 7. Such a prior can be implemented

in BMS with mprior="random", mprior.size=7 and in mombf with modelbbprior(1,34/7). In

BayesVarSel the syntax is quite different and we have to specify prior.models="User" and

priorprobs = dbetabinom.ab(x = 0 : 41, size = 41, shape1 = 1, shape2 = 34/7)/choose(41, 0 : 41).

Summaries and model averaging The result of executing the main commands for model

uncertainty (see Table 2) is an object describing, with a specific structure depending on the package,

the posterior distribution (3). For ease of exposition suppose the object created is called ob. We

compare here the different possibilities to summarize this distribution under each package. This

is illustrated in the Supplementary Material which shows the different ways of summarizing the

results for each package using one of the studied data sets.

• In BayesFactor, a list of the most probable models and their corresponding Bayes factors (to

the null model) can be obtained with the command head(ob) or plot(ob) over the resulting

10



Paper No. 16-04, www.warwick.ac.uk/go/crism

object.

• In mombf, this list can be obtained with postprob(ob) but now best models are displayed

with their posterior probabilities. Additionally, inclusion probabilities (9) are contained in

ob$margpp. In the context of large model spaces, having a list with all the models sampled

can be very useful so that the user may program his/her own needs, such as model averaged

predictions. Such a list is contained in binary matrix form in mombf in ob$postSample. To

obtain model averaged estimates we also have the command rnlp which produces posterior

samples of regression coefficients (from which it is easy to obtain any Λ̂ in (11) that relates

to coefficients).

• In BayesVarSel most probable models and their probabilities are viewed printing the object

created, ob, while summary(ob) displays a table with the inclusion probabilities, the HPM

and the MPM (see Subsection 2.2). The posterior distribution of the model size (10) is

in ob$postprobdim which can be graphed with plotBvs(ob,option="d"). Plots of several

measures of the joint importance of two covariates (e.g. joint inclusion probabilities) can be

visualized as an image plot with plotBvs(ob, option="j"). All models visited are saved in

the matrix ob$modelslogBF which, in the last column, have the Bayes factors of each model

in log scale.

• In BMS the top best models with their probabilities are displayed using topmodels(ob), that

can also be plotted with image(ob). A summary(ob) of the resulting object also prints the

posterior of the model size (10) that can be plotted with the command plotModelSize(ob).

Printing ob displays a table with model averaged estimates of regression coefficients, namely

their expected posterior mean and standard deviation (column Post Mean and Post SD respec-

tively). Interestingly, it is possible to compute predictions with the commands predict(ob)

(expected predictive mean a posteriori) and pred.density(ob) (mixture predictive density

based on a selected number of best models). This package does not save all the models vis-

ited but only a (necessarily small) list of the best models sampled in ob$topmod expressed in

hexadecimal code.

Numerical methods Exhaustive enumeration can be performed with BayesFactor, BayesVarSel

(command Bvs()) and in BMS (modifying argument mcmc="enumerate").

When p is larger, exhaustive enumeration is not feasible and this is solved in mombf, BayesVarSel

and BMS by providing specific routines to approximate the posterior distribution in such big model

spaces. In summary, all three packages implement the strategy i) briefly described in Section 2.3

with the following peculiarities. The packages mombf and BayesVarSel implement the same Gibbs

sampling scheme. A minor difference between both is that frequency-based estimates of inclusion
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probabilities in mombf are refined using Rao-Blackwellization. The methods programmed in BMS

are also MCMC strategies to explore the posterior distribution which can be of the type birth

and death (modifying argument mcmc="bd") or a reversible jump (mcmc="rev.jump"). There is

an important difference between the algorithms in mombf, BayesVarSel and in BMS. While in each

MCMC step the inclusion/exclusion of all p covariates is sampled in mombf and BayesVarSel only

one is sampled in BMS.

5 Performance in selected datasets

To compare the selected packages two different scenarios have been considered:

• Exact scenario: data sets with small p and hence all the models can be enumerated.

• Sampling scenario: data sets with moderate to large p where only a small proportion of

models can be explored.

As we previously mentioned, mombf cannot be considered in the exact scenario nor can BayesFac-

tor be considered in the sampling scenario. Ideally, we should compare all possible packages (in

each setup) under the same prior. Thus, Table 2 indicates which comparisons are possible. We

compared BayesFactor with BayesVarSel using the Zellner-Siow prior (labelled as R1) while we com-

pared mombf and BMS and BayesVarSel using the UIP (C1). In all cases, the constant prior over

the model space was used.

As expected, all four packages produced very similar results in the analyzed datasets. Hence,

the question of comparing them reduces basically to comparing computational times and the avail-

ability, clarity and organisation of the output.

For the computational comparisons to be fair all the calculations have been done on an iMac

computer with Intel Core i5, 2.7 GHz processor. The code used to compute results provided here

is publicly available at www.uv.es/fordela.

5.1 Exact Scenario

We considered two data sets that we briefly describe.

US Crime Data. The US Crime data set was first studied by Ehrlich (1973) and is available

from R-package MASS (Venables and Ripley, 2002). This data set has a total of n = 47 observations

(corresponding to states in the US) of p = 15 potential covariates aimed to explain the rate of

crimes in a particular category per head of population.
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Returns to schooling This data set, used by Tobias and Li (2004) and Ley and Steel (2012),

concerns returns to education. As these are microeconomic data, the number of potential observa-

tions is much larger. In particular we have a response variable: the log of hourly wages recorded

for n = 1190 white males in the US in 1990, and a total of p = 26 possible regressors.

For both scenarios we directly compare the time needed to exactly calculate the posterior

distribution with BayesVarSel and BMS using the C1 prior for the parameters and the uniform prior

(with fixed θ = 1/2) for the model space. These times are presented in Table 4. The results clearly

indicate that BayesVarSel is more affected by the sample size since it performs better than BMS for

the Crime data set (n = 47) but not for the returns to schooling application (n = 1190). The Bayes

factors depend on the data only through the sum of squared errors and we know that BayesVarSel

computes this statistic from scratch for each model and, thus, the n matters in that calculation.

Hence a likely reason for the differences in computational time between the two packages when

n increases would be that the algorithm in BMS exploits reduction by sufficiency and optimally

updates when a variable is added/dropped from the current model.

The comparison between BayesFactor and BayesVarSel, now using the R1 prior, is summarized

in the same table for the Crime data set where we can clearly see that BayesFactor is outperformed

by BayesVarSel.

Data set Prior BMS BayesVarSel BayesFactor

Crime p = 15 C1 unif 3.22 secs 0.35 secs -

Returns to schooling p = 26 C1 unif 1.83 hrs 11.24 hrs -

Crime p = 15 R1 unif - 1.4 secs 12.73 mins

Table 4: Computational times in exact scenario.

Table 4 also illustrates the large difference in computational cost between an exhaustive analysis

with p = 15 covariates (where M has 215 = 32, 768 models) and p = 26, leading a model space

with 67 million models, which is about 2000 times larger. Computational cost goes up by a factor

of about 2000 for BMS, which is therefore roughly linear in the size of model space, and thus seems

virtually unaffected by the number of observations n. This is a consequence of how the statistics

are computed within each package, as commented above.

5.2 Sampling Scenario

We considered here three data sets.

Ozone. These data were used by Casella and Moreno (2006), Berger and Molina (2005) and

Garcia-Donato and Martinez-Beneito (2013) and contain n = 178 measures of ozone concentration

13
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in the atmosphere with a total of p = 35 covariates. Details on the data can be found in Casella

and Moreno (2006).

GDP growth. This dataset is larger than Ozone with a total of p = 67 potential drivers for the

annual GDP growth per capita between 1960 and 1996 for n = 88 countries. This data set is also

used in Sala-I-Martin et al. (2004) and revisited by Ley and Steel (2007).

Boston housing. This dataset was used recently in Schäfer and Chopin (2013) and contains

n = 506 observations of p = 103 covariates formed by the 13 columns of the original data set, all

first order interactions and a squared version of each covariate (except for the binary variable CHAS).

For the Ozone dataset, exact inclusion probabilities, (9), are reported in Garcia-Donato and

Martinez-Beneito (2013) for the C1 prior. These are the result of an intensive computational

experiment aimed at comparing different searching methods. These numbers allow us to define

a simple measure to compare the computational efficiency of the different packages. For a given

computational time, t, we can compute

∆t = max
i=1,...,p

|P̂ rt(γi = 1 | y)− Pr(γi = 1 | y)|,

where P̂ rt(γi = 1 | y) is the estimate of the corresponding PIP at time t provided by the package.

Clearly, the faster ∆t approaches zero, the more efficient is the package. In Figure 1 we have plotted

∆t for mombf and BayesVarSel respectively and the two algorithms in BMS.

All four approaches behave quite satisfactorily, providing very reliable estimates with a small

computational time (a maximum discrepancy with the exact values of 0.01 in less than 2.5 min-

utes). It seems that BayesVarSel is slightly more efficient than the rest while the reversible jump

implemented in BMS is less efficient. The apparent constant bias in mombf is possibly due to the

difference in the prior actually implemented that we have already described.

In the GDP growth and the Boston Housing examples, we cannot compute ∆t simply because

the PIP’s are unknown. Nevertheless, we observe that for a sufficiently large computational time,

all packages converged to almost identical PIP’s. Hence, and even in the unlikely case that none of

them were capturing the ‘truth’ it seems that the fairest way to compare the packages is computing

time until ‘convergence’. This is what we have represented in Figures 2 and 3 where the y-axes

display the difference between estimates at consecutive computational times, i.e.

∆t,t−dt = max
i=1,...,p

|P̂ rt(γi = 1 | y)− P̂ rt−dt(γi = 1 | y)|,

where dt = 60 seconds was used and we have verified that PIPs converge.
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Figure 1: Ozone dataset: maximum difference with the real inclusion probabilities (∆t) as a function of

computational time. BMSbd (BMSrv) stands for the birth/death (reversible jump) algorithm in BMS; Bvs

for BayesVarSel and momfb for mombf.

In the GDP growth data set, we can not find big differences in the performance of all four

approaches and all of them behave, again, very satisfactorily. It seems that the procedure imple-

mented by BayesVarSel tends to 0 faster than the rest of algorithms while the performance of mombf

manifests more variability, likely due to the Rao-Blackwellization way of computing the results.

In the Boston Housing problem the package BayesVarSel is clearly penalized (with respect to

the GDP growth data) by the large number of observations hence having a slower convergence.

For both examples, the inclusion probabilities obtained with each package after 30 minutes of

computations (after the burning period) differ, at most, in the second decimal number. Finally,

both plots are not affected by the difference in the prior implemented (as each method compares

with itself).

6 Other Features

Besides the characteristics analysed so far (prior inputs, numerical methods and summaries), there

are several other features of the packages that are potentially relevant for the applied user. We list

some here under three categories: the interface, extra functionalities and documentation.

The interface In general all four packages have simple interfaces with quite intuitive syntaxes.

One minor difference is that in BayesVarSel and BayesFactor the dependent and explanatory vari-

ables are defined with the use of formula (hence inspired by well-known R commands like lm) while
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Figure 2: GDP growth data: variations in PIP (∆t,t−dt) as a function of computational time with dt = 60

seconds (starting after the burning period). Both figures represents the same functions and just differ in

that the figure below describes the behaviour after 5 minutes of computation.

in mombf these are defined through the arguments y and x. In BMS the dependent variable should

be in the first column of the data provided and the rest play the role of explanatory variables.

Extra functionalities

• Fixed covariates. By default only the intercept is included in all the competing models (cf.

(1)) in all packages (but recall this is handled in mombf via centering). There could be

situations where we wish to assume that certain covariates affect the response and these
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Figure 3: Boston Housing data: variations in PIP (∆t,t−dt) as a function of computational time with dt = 60

seconds (starting after the burning period). Both figures represents the same functions and just differ in the

axis represented (the figure below details the behaviour of the routines after 5 minutes of computation).

should be always included in the analysis (see, for instance Camarero et al., 2015). Both

BMS and BayesVarSel include this possibility in their main commands.

• Main terms and interactions. On occasion, it is convenient to conserve the hierarchy between

the explanatory variables in the way that interactions (or higher polynomial terms) are only

included if the main terms are included (Peixoto, 1987). In Chipman et al. (1997) this is

called the “heredity principle”. This would translate into a reduction of the model space.

The package BMS accommodates this possibility through a modification of the sampling
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algorithm.

• Model comparison. A complementary tool to the BMA exercise would be comparing sepa-

rately some of the competing models (e.g. comparing the HPM and the MPM). These type

of comparisons can be performed in BMS, BayesVarSel and BayesFactor.

• Convergence. BMS includes several interesting tools to analyse the convergence of the sam-

pling methods implemented.

• Parallel computation. BMS, BayesVarSel and mombf have facilities to perform computations

in parallel.

Documentation The four packages come with a detailed help with useful examples. Further,

mombf and BMS have a comprehensive vignette with additional illustrations and written more

pedagogically than the help documentations.

The packages BMS and BayesFactor are documented in the websites associated with Feld-

kircher and Zeugner (2014) (http://bms.zeugner.eu) and Morey (2015) (http://bayesfactor.

blogspot.com.es), respectively. These sites contain manuals as well as valuable additional infor-

mation, especially to users less familiars with model uncertainty techniques.

7 Conclusions and recommendations

In this paper, we have examined the behaviour and the possibilities of various R-packages available

in CRAN for the purpose of Bayesian variable selection in linear regression. In particular, we

compare the packages BMS, BayesVarSel, mombf and BayesFactor. It is clear that all packages

concerned lead to very similar results, which is reassuring for the user. However, they do differ in

the prior choices they allow, the way they present the output and the numerical strategies used.

The latter affects CPU times, and, for example means that BayesVarSel is a good choice for small

or moderate values of n, but BMS is preferable when n is large. The package BayesFactor can

not deal with larger values of p and seems relatively slow, thus is not recommended for general

use. mombf uses a slightly different prior from the one we focus on here (and which is the most

commonly used), but is relatively competitive and closely approximates the PIPs after a short run

time, albeit with slightly more variability than BMS or BayesVarSel.

In practice, users may be interested in specific features, such as always including certain co-

variates, that will dictate the choice of package. On the basis of its performance, the flexibility of

prior choices and the extra features allowed, we would recommend the use of BayesVarSel for small

or moderate values of n, and of BMS when n is large.
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in the analysis of energy consumption-growth nexus. Energy Economics 52, Part A, 207–216.

Carbonetto, P. and M. Stephens (2012). Scalable variational inference for Bayesian variable selection

in regression, and its accuracy in genetic association studies. Bayesian Analysis 7 (1), 73–108.

Casella, G. and E. Moreno (2006). Objective Bayesian variable selection. Journal of the American

Statistical Association 101 (473), 157–167.

Chipman, H., M. Hamada, and C. F. J. Wu (1997). A Bayesian variable-selection approach for

analyzing designed experiments with complex aliasing. Technometrics 39 (4), 372–381.

Ehrlich, I. (1973). Participation in illegitimate activities: a theoretical and empirical investigation.

Journal of Political Economy 81 (3), 521–567.

Eicher, T., C. Papageorgiou, and A. E. Raftery (2011). Default priors and predictive performance in

Bayesian model averaging, with application to growth determinants. Journal of Applied Econo-

metrics 26, 30–55.

19



Paper No. 16-04, www.warwick.ac.uk/go/crism

Feldkircher, M. and S. Zeugner (2014). R-package BMS Bayesian Model Averaging in R. http:

//bms.zeugner.eu.

Fernández, C., E. Ley, and M. F. Steel (2001). Benchmark priors for Bayesian model averaging.

Journal of Econometrics 100, 381–427.

Foster, D. and E. I. George (1994). The Risk Inflation Criterion for Multiple Regression. The

Annals of Statistics 22, 381–427.

Fraley, C., A. E. Raftery, J. M. Sloughter, T. Gneiting, and U. of Washington. (2015). ensem-

bleBMA: Probabilistic Forecasting using Ensembles and Bayesian Model Averaging. R package

version 5.1.2.

Garcia-Donato, G. and A. Forte (2015). BayesVarSel: Bayes Factors, Model Choice And Variable

Selection In Linear Models. R package version 1.6.1.

Garcia-Donato, G. and M. A. Martinez-Beneito (2013). On Sampling strategies in Bayesian vari-

able selection problems with large model spaces. Journal of the American Statistical Associa-

tion 108 (501), 340–352.

George, E. I. and R. E. McCulloch (1993). Variable selection via Gibbs sampling. Journal of the

American Statistical Association 88 (423), 881–889.

Ishwaran, H., J. Rao, and U. Kogalur (2013). spikeslab: Prediction and Variable Selection Using

Spike and Slab Regression. R package version 1.1.5.

Jeffreys, H. (1961). Theory of Probability (3rd ed.). Oxford University Press.

Johnson, V. E. and D. Rossell (2010). On the use of non-local prior densities in Bayesian hypothesis

tests. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (2), 143–170.

Johnson, V. E. and D. Rossell (2012). Bayesian model selection in high-dimensional settings.

Journal of the American Statistical Association 107 (498), 649–660.

Kass, R. E. and L. Wasserman (1995). A reference Bayesian test for nested hypotheses and its

relationship to the schwarz criterion. Journal of the American Statistical Association 90 (431),

928–934.

Katabuchi, M. and A. Nakamura (2015). mglmn: Model Averaging for Multivariate GLM with Null

Models. R package version 0.0.2.

Ley, E. and M. F. Steel (2007). Jointness in Bayesian variable selection with applications to growth

regression. Journal of Macroeconomics 29 (3), 476 – 493. Special Issue on the Empirics of Growth

Nonlinearities.

20



Paper No. 16-04, www.warwick.ac.uk/go/crism

Ley, E. and M. F. Steel (2009). On the effect of prior assumptions in Bayesian model averaging

with applications to growth regression. Journal of Applied Econometrics 24 (4), 651–674.

Ley, E. and M. F. Steel (2012). Mixtures of g-priors for Bayesian model averaging with economic

applications. Journal of Econometrics 171 (2), 251 – 266. Bayesian Models, Methods and Appli-

cations.

Liang, F., R. Paulo, G. Molina, M. A. Clyde, and J. O. Berger (2008). Mixtures of g-priors for

Bayesian variable selection. Journal of the American Statistical Association 103 (481), 410–423.

Madigan, D. and J. York (1995). Bayesian graphical models for discrete data. International

Statistical Review 63, 215–232.

Maruyama, Y. and E. I. George (2011). Fully Bayes factors with a generalized g-prior. The Annals

of Statistics 39 (5), 2740–2765.

McCormick, T. H., A. E. Raftery, and D. Madigan (2014). dma: Dynamic model averaging. R

package version 1.2-2.

Mitchell, T. and J. Beauchamp (1988). Bayesian variable selection in linear regression. Journal of

the Americal Statistical Association 83, 1023–1032.

Morey, R. (2015). BayesFactor an R package for Bayesian data analysis. http://bayesfactorpcl.

r-forge.r-project.org.

Morey, R. D., J. N. Rouder, and T. Jamil (2015). BayesFactor: Computation of Bayes Factors for

Common Designs. R package version 0.9.11-1.

Peixoto, J. (1987). Hierarchical variable selection in polynomial regression models. American

Statistician 44 (1), 26–30.

R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing.

Raftery, A., J. Hoeting, C. Volinsky, I. Painter, and K. Y. Yeung (2015). BMA: Bayesian Model

Averaging. R package version 3.18.4.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology 25,

111–163.

Raftery, A. E., D. Madigan, and J. Hoeting (1997). Bayesian model averaging for linear regression

models. Journal of the American Statistical Association 92, 179–191.

21



Paper No. 16-04, www.warwick.ac.uk/go/crism

Rossell, D., J. D. Cook, D. Telesca, and P. Roebuck (2014). mombf: Moment and Inverse Moment

Bayes factors. R package version 1.5.9.

Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent gaussian

models using integrated nested Laplace approximations (with discussion). Journal of the Royal

Statistical Society: Series B 71 (2), 319–392.

Sala-I-Martin, X., G. Doppelhofer, and R. I. Miller (2004). Determinants of long-term growth: A

Bayesian averaging of classical estimates (BACE) approach. American Economic Review 94 (4),

813–835.
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Appendix A. Summarizing the output for the Crime data set

BMS

• Call:

bms(X.data=lUScrime, g="UIP", mprior="uniform", nmodel=100,g.stats = F)

• print()

> 0b

PIP Post Mean Post SD Cond.Pos.Sign Idx

Ineq 0.9974810 1.4165246470 0.35866715 0.99999993 12

Ed 0.9775864 1.9044911340 0.61687338 0.99999929 2

Prob 0.8963338 -0.2156149890 0.11648121 0.00000000 13

M 0.8503615 1.1652362359 0.67546221 0.99999999 1

NW 0.6792925 0.0666392373 0.05770554 1.00000000 8

Po1 0.6654873 0.6238407271 0.52893431 0.99999947 3

U2 0.5996084 0.2030465034 0.21658823 0.99898978 10

Po2 0.4215797 0.3263306162 0.51374655 0.94520349 4

Time 0.3333490 -0.0792972600 0.15550003 0.05684919 14

Pop 0.3301836 -0.0207565713 0.03847876 0.00026644 7

GDP 0.3124840 0.1830703611 0.35290133 0.99921131 11

So 0.2306890 0.0316629469 0.08629093 0.97051521 15

U1 0.2082608 -0.0196768907 0.15978060 0.40681795 9

M.F 0.1603299 0.0007683185 0.69992351 0.50105177 6

LF 0.1567424 0.0445475745 0.27607008 0.76320873 5

Mean no. regressors Draws Burnins Time

"7.8198" "32768" "0" "3.188557 secs"

No. models visited Modelspace 2^K % visited % Topmodels

"32768" "32768" "100" "0.31"

Corr PMP No. Obs. Model Prior g-Prior

"NA" "47" "uniform / 7.5" "UIP"

• summary()

> summary(ob)

Mean no. regressors Draws Burnins Time

"7.8198" "32768" "0" "3.188557 secs"
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No. models visited Modelspace 2^K % visited % Topmodels

"32768" "32768" "100" "0.31"

Corr PMP No. Obs. Model Prior g-Prior

"NA" "47" "uniform / 7.5" "UIP"

• plot() and image() Figure 4
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Figure 4: Prior/Posterior probabilities of each dimension and convergence performance ploted us-

ing BMS with plot(ob)(top) and Model inclusion probabilities based on the best 100 models using

image(ob)(bottom)

• Predictive density plot(pred.density(ob, newdata)) Figure 5
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Figure 5: Predictive density using the 100 most probable models
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BayesFactor

• Call:

regressionBF(formula=y . ,data=lUScrime, rscaleCont = 1, noSample=TRUE)

• head(ob)

Bayes factor analysis

--------------

[1] M + Ed + Po1 + NW + U2 + Ineq + Prob + Time : 23217774828 0%

[2] M + Ed + Po1 + NW + U2 + Ineq + Prob : 22390162522 0%

[3] M + Ed + Po2 + NW + U2 + Ineq + Prob : 15146223575 0%

[4] M + Ed + Po1 + Pop + NW + U2 + Ineq + Prob : 13801956643 0%

[5] M + Ed + Po1 + U2 + Ineq + Prob : 12988208736 0%

[6] M + Ed + Po1 + NW + U2 + GDP + Ineq + Prob + Time : 11922310558 0%

Against denominator:

Intercept only

---

Bayes factor type: BFlinearModel, JZS

• plot(head(ob)) Figure 6
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Figure 6: Bayes Factors using BayesFactor
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BayesVarSel

• Call:

Bvs(formula="y .", data=lUScrime, prior.betas="gZellner", n.keep=10)

• print()

>ob

Call:

Bvs(formula = "y~.", data = lUScrime, prior.betas = "gZellner",

n.keep = 10)

The 10 most probable models and their probabilities are:

M Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time So prob

1 * * * * * * * 0.024695841

2 * * * * * * * * 0.023987471

3 * * * * * * * 0.016258755

4 * * * * * * 0.014728156

5 * * * * * * * * 0.013640810

6 * * * * * * * 0.012415831

7 * * * * * * * * * 0.010720692

8 * * * * * * * * 0.010106903

9 * * * * * * 0.009834356

10 * * * * * * * 0.008994454

• summary()

> summary(ob)

Call:

Bvs(formula = "y~.", data = lUScrime, prior.betas = "gZellner",

n.keep = 10)

Inclusion Probabilities:

Incl.prob. HPM MPM

M 0.8504 * *

Ed 0.9776 * *

Po1 0.6655 * *

Po2 0.4216
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LF 0.1567

M.F 0.1603

Pop 0.3302

NW 0.6793 * *

U1 0.2083

U2 0.5996 * *

GDP 0.3125

Ineq 0.9975 * *

Prob 0.8963 * *

Time 0.3333

So 0.2307

---

Code: HPM stands for Highest posterior Probability Model and

MPM for Median Probability Model.

• plotBvs() The BayesVarSel package has its own plot function named as plotBvs() which

shows different information depending of the value of the argument option. If option is

‘‘d’’ a Barplot of the posterior probabilities of each model dimension is printed. If we set

option=‘‘j’’ we obtain the posterior probability of every two covariates being together in

the model. option=‘‘c’’ present the posterior conditional probability of a variable (in rows)

given an other variable (in columns) is already in the model. Finally option=‘‘n’’ plots the

posterior conditional probability of a variable (in rows) being in the model given than other

variable (in columns) is not. See Figure 7.
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Figure 7: Posterior probabilities of each dimension ploted using BayesVarSel with plotBvs(ob,

option=’’d)(left) and posterior conditional probabilities plotBvs(ob, option=’’c)(right)
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mombf

• Call:

modelSelection(y=lUScrime$y, x=lUScrime[,-1], priorCoef=zellnerprior(tau=n), center=TRUE,

scale=FALSE, priorDelta=modelunifprior(),priorVar=igprior(alpha=.001,lambda=.001))

• print() and summary()

> ob

msfit object with 15 variables

Use postProb() to get posterior model probabilities

Elements $margpp, $postMode, $postSample and $coef contain further information

(see help(’msfit’) and help(’modelSelection’) for details)

> mombf.crime$margpp #posterior inclusion probabilities

[1] 0.8573872 0.9807889 0.6853461 0.4037062 0.1563102 0.1611739 0.3349094 0.6960262

[9] 0.2103670 0.6125000 0.3171652 0.9977052 0.9081704 0.3449367 0.2321784

> mombf.crime$postMode

[1] 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0

> round(mombf.crime$coef,4)

[1] 1.4472 2.1749 0.8347 0.0000 0.0000 0.0000 0.0000 0.1066 0.0000 0.2827

[11] 0.0000 1.2120 -0.3039 -0.2806 0.0000
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