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Abstract

In this paper we propose a model-based method to cluster units within a panel. The underlying

model is autoregressive and non-Gaussian, allowing for both skewness and fat tails, and the units

are clustered according to their dynamic behaviour and equilibrium level. Inference is addressed

from a Bayesian perspective and model comparison is conducted using the formal tool of Bayes

factors. Particular attention is paid to prior elicitation and posterior propriety. We suggest priors

that require little subjective input from the user and possess hierarchical structures that enhance

the robustness of the inference. Two examples illustrate the methodology: one analyses eco-

nomic growth of OECD countries and the second one investigates employment growth of Spanish

manufacturing firms.

keywords: autoregressive modelling; employment growth; GDP growth convergence; hierar-

chical prior; model comparison; posterior propriety; skewness.

1 Introduction

Models for panel or longitudinal data are used extensively in economics and related disciplines (Bal-

tagi, 2001; Hsiao, 2003; Nerlove, 2002), as well as in health and biological sciences (Diggleet al.,

2002; Weiss, 2005).

Typically, panels are formed according to some criteria (e.g. geographical, economical, demo-

graphical, etc.) with the intention of gaining strength when estimating quantities common to all

individual units in the panel. However, this grouping may strongly affect inference if presumed com-

mon characteristics of the units are, in reality, quite different. In these cases, clustering units within

the panel may prove useful. This will allow the units to share some common parameters, thus bor-

rowing strength in its estimation, but to also have some cluster-specific parameters (Banfield and

Raftery, 1993; Fraley and Raftery, 2002). In an economic context, Bauwens and Rombouts (2006)

proposes a method for clustering many GARCH models, while Frühwirth-Schnatter and Kaufmann

(2004) discuss a Bayesian clustering method for multiple time series data.
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2 1. Introduction

Even though the majority of the literature uses Gaussian models, it is often the case that data

contain outliers, which can be dealt with by allowing for a thicker-than-normal tail behaviour, as well

as asymmetries, which require the underlying distribution to allow a certain amount of skewness. The

former issue is frequently addressed by assuming a Student distribution withν degrees of freedom

(denoted here bytν), usually withν fixed at a small value. In comparison, there has been much less

development in dealing with asymmetry. Hirano (2002) proposes a semiparametric framework, with

a nonparametric distribution on the error term, using a Dirichlet prior. In this paper we will use fully

parametric, yet flexible, models, partly based on the models described in Juárez and Steel (2006), yet

allowing for clustering, and conduct inference from a Bayesian viewpoint.

As the aims of this paper are rather similar to those of Frühwirth-Schnatter and Kaufmann (2004),

we briefly highlight the differences with the approach used in that paper. Firstly, our modelling

allows for skewness and imposes stationarity. In addition, we use shrinkage within the clusters only

for the equilibrium levels, whereas we pool for the autoregressive coefficients. Frühwirth-Schnatter

and Kaufmann (2004) either shrink or pool both. The priors used in the present paper are carefully

elicited and are improper, unlike the conditionally natural-conjugate prior used in Frühwirth-Schnatter

and Kaufmann (2004). This implies we need to make sure that the posterior exists (we derive simple

and easily verifiable conditions for propriety), but we need to elicit fewer hyperparameters and, more

importantly, our priors enjoys a natural invariance (for those parameters we are improper on) with

respect to transformations of the data, which lead to desirable robustness properties. Whenever we

use proper priors on cluster-specific parameters, we reduce the dependence of the Bayes factors on

prior assumptions by using hierarchical prior structures. Finally, we allow for the data to inform us

on the tails of the error distribution, as we leaveν a free parameter.

An important contribution of this paper is the introduction of a flexible model that can be ap-

plied in a wide variety of economic contexts with a “benchmark” prior that will be a reasonable

reflection of prior ideas in many applied situations. Thus, the aim is to provide a more or less

“automatic” Bayesian procedure, that can be used by applied researchers without substantial re-

quirements for prior elicitation. In addition, we provide simple and easily checkable conditions for

the existence of a well-defined posterior distribution. However, we also clearly indicate the limits

of such procedures, especially in terms of model comparison (or model averaging), which is for-

mally conducted through Bayes factors. Thus, we present two prior structures, one with a flat im-

proper prior on the long-run mean levels of each cluster, which does not require subjective prior

input from the user, but does not permit model comparison between models with different numbers

of components (unless the levels of all components are assumed equal). The second prior struc-

ture asks the user for a mean and a variance of the long-run equilibrium levels, and allows for

model comparison. Proper priors on the model-specific parameters are given a hierarchical struc-

ture. This leads to greater flexibility, and, more importantly, reduces the dependence of posterior

inference and especially Bayes factors on prior assumptions, thus inducing a larger degree of robust-

ness. Matlab code which implements the methodology described in this paper is freely available at

http://www.warwick.ac.uk/go/msteel/steel_homepage/software/.

The rest of the paper is organized as follows: Section 2 describes the basic autoregressive model
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2. The model 3

and its extension to allow for clusters within the panel, and discusses the prior specification and

posterior propriety. Numerical methods for conducting inference with this model are briefly discussed

in Section 3. Two data sets are analysed in Section 4 to illustrate the implementation of the model:

one comprising GDP growth data for OECD countries and the other analyses employment growth in

Spanish manufacturing firms. Concluding remarks are presented in Section 5. Proofs are given in

Appendix A without explicit mention in the text.

2 The model

Assume that the data available,y = {yi t} form a (possibly unbalanced) panel ofi = 1, . . . ,m in-

dividuals for each of which we haveTi consecutive observations. We will focus on the first-order

autoregressive model:

yi t = βi (1− α) + α yi t−1 + λ−
1
2εi t , (1)

where the errors{εi t} are independent and identically distributed (iid) random quantities centred at

zero with unit precision, andα is the parameter governing the dynamic behaviour of the panel. We

assume that the process is stationary,i.e. |α| < 1. The interceptsβi then indicate the long-run tenden-

cies of the observables and are often called individual effects.

In order to accommodate skewness, we assume that the error term follows a skew distribution as

in Fernández and Steel (1998), defined by

S f (s | γ) =
2

γ + γ−1

[
f (sγ) 1[s≤0] + f (sγ−1) 1[s>0]

]
. (2)

wheref is a unimodal probability density function with support on the real line and symmetric around

zero,1[x] = 1 if condition x holds and 0 otherwise, andγ > 0 is the skewness parameter. Clearly,

for γ = 1 the density simplifies tof , and forγ , 1 we have skewness, characterised byP(s >

0|γ) = γ2/(1 + γ2). Positive skewness corresponds toγ > 1, while negative skewness is generated by

γ ∈ (0,1). Fernández and Steel (1998) derive an explicit expression for the moments in terms of the

moments off .

In order to also allow for fat tails, we will focus on skew versions of the Student-tν distribution,

leading to

Skt(ε | γ, ν) =
2

γ + γ−1

Γ[(ν + 1)/2]
Γ[ν/2]

√
1
ν π

[
1 +

1
ν
ε2

(
γ2 1[ε≤0] + γ−2 1[ε>0]

)]− ν+1
2

, (3)

where the degrees of freedomν will be treated as a free parameter.

Thus, we will use (1) withεi t distributed according to (3), for uniti = 1, . . . ,m, and with

T1, . . . ,Tm consecutive measurements in time. This parameterisation allows for a clear interpreta-

tion of α as the parameter governing the dynamics of the panel,λ as driving the precision in the

measurements andβi as an individual location (level) or individual effect. In addition,γ will control

the skewness andν determines the tail behaviour. Since the error distribution has a mode at zero,
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4 2.1. Prior specification

individual effects are interpreted as the long-run modal tendencies of the corresponding observables.

In addition, the individual effects are assumed to be related according toβi ∼ N
(
βi | β, τ−1

)
, which is

a commonly used normal random effects specification, found e.g. in Liu and Tiao (1980), Nandram

and Petruccelli (1997) and Gelman (2006), whereβ is a common mean andτ the precision. Within a

Bayesian framework, this is merely a hierarchical specification of the prior on theβi ’s, which puts a

bit more structure on the problem and allows us to parameterise the model in terms ofβ andτ, rather

than allm individual effects. Finally, we assume that the initial observed value for individuali is yi 0,

on which we condition throughout, and that the process started a long time ago.

Pooling similar time series can be beneficial when estimating a model, but when the behaviour is

not homogeneous enough, the resulting pooled estimates may be misleading, as will be illustrated in

the examples in the sequel. Clustering is one way to keep the advantages of pooling, while also allow-

ing for heterogeneity within the panel (see e. g. Canova, 2004; Frühwirth-Schnatter and Kaufmann,

2004; Hoogstrateet al., 2000). In order to allow for clustering within the panel, we assume that all

units share a common parameterθC and each has a cluster-specific parameterθ j, for j = 1, . . . ,K,

with K the number of clusters in the panel.

Specifically, we assume that the different behaviour may arise either from the dynamics and/or

from the equilibrium level of the series. So, extending (1) to allow for different dynamics and levels

for each cluster yields

yi t = βi (1− α j) + α j yi t−1 + λ−
1
2εi t , (4)

with
∣∣∣α j

∣∣∣ < 1 and

βi ∼ N
(
βi | β j , τ−1

)
; j = 1, . . . ,K. (5)

Thus,θC = {γ, ν, λ, τ} andθ j =
{
α j , β

j
}
. Alternative specifications for the common and the cluster-

specific parameters are straightforwardly accommodated within this framework, and in the sequel we

will also consider an alternative partition of the parameters, where only the dynamics are cluster-

specific,i.e. the model withβ j = β, j = 1, . . . ,K, leading toθC = {β, γ, ν, λ, τ} andθ j = α j.

2.1 Prior specification

Juárez and Steel (2006) specify a prior for model (1), (3) of the product form

π (α, β, τ, λ, γ, ν) = π (α) π (β) π (τ) π (λ) π (γ) π (ν) , (6)

with a standard diffuse (improper) prior for(β, λ), which is invariant with respect to affine data trans-

formations. Theorem 1 will provide a simple sufficient condition for posterior existence under this

improper prior. Forτ, however, we need a proper prior and we adopt a gamma distribution with shape

parameter2 and a scale that is consistent with the observed between-group variance of the group

(i.e. individual) means,s2
β, by making the prior mode equal to2/s2

β. The prior onγ is induced by a

uniform prior on the skewness measure defined as one minus twice the mass to the left of the mode.

The dynamics parameterα gets a rescaled Beta prior (on(−1,1)), and we make the hyperparameters

of this Beta distribution random, with equal gamma priors, truncated to be larger than one. The latter
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2.1. Prior specification 5

truncation is important in ensuring posterior existence. The hierarchical structure of the prior onα

leads to more flexibility. Finally, forν we take a gamma prior with mass covering a large range of

relevant values (prior mean20and variance200). Full details are provided in Juárez and Steel (2006).

Thus, the components of the prior (6) are given by

π (β) π (λ) ∝ λ−1 . (7)

π
(
τ | s2

β

)
=

(
s2
β/2

)2
τ exp

[
−

s2
β

2
τ
]
. (8)

π (γ) = 2γ
(
1 + γ2

)−2
. (9)

π (α | aα,bα) =
21−aα−bα

B(aα,bα)
(
1 + α

)aα−1(1− α)bα−1 |α| < 1 , aα,bα > 1 , (10)

π(ν) =
ν

100
exp[−ν/10] . (11)

with

π (aα) ∝ aα exp[−0.1aα] , aα > 1 and π (bα) ∝ bα exp[−0.1bα] , bα > 1 . (12)

In the context of our clustering model in (4) and (5), we will use a direct extension of this

specification and use independent, identical priors for the cluster specific parameters, thus forα =

(α1, . . . , αK)′, aα = (aα1, . . . , aαK )′, bα = (bα1, . . . , bαK )′ andβ = (β1, . . . , βK)′ we have

π (β, λ) ∝ λ−1, and (13)

π (α) =

K∏

j=1

π
(
α j | aα j ,bα j

)
(14)

π (aα, bα) =

K∏

j=1

π
(
aα j

)
π
(
bα j

)
(15)

with each component prior specified as above.

In order to complete the mixture model, we need to specify a prior on the assignment of units

to clusters. A common approach in the literature is to augment the data with the indicator function

Si ∈ {1, . . . ,K}, whereSi = j means that uniti belongs to clusterj. Thus, we may write

p(yi |Si , θ) = p(yi | θ j , θC) for Si = j, j = 1, . . . ,K,

whereθ = (θC, θ1, . . . , θK).

A priori we assume that independently

P[Si = j | η] = η j ,

whereη j is the relative size of clusterj = 1, . . . ,K and η = {η1, . . . , ηK}. Obviously,η· ι′ = 1

(whereι denotes aK-dimensional vector of ones) and thus it is natural to specify the Dirichlet prior
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6 2.2. An alternative prior on β

π(η) = Di
(
η | e

)
, where we will use a “Jeffrey’s type” prior with e = (1/2) × ι (see Berger and

Bernardo, 1992). In addition, we exclude from the sampler cluster assignments that do not lead to a

proper posterior (as will be explained in Subsection 2.3). Therefore, the joint prior forS={S1, . . . ,Sm}
andη is

π
(
S, η

)
=

m∏

i=i

π
(
Si | η) π (

η
)
I (S) ∝

m∏

i=1

ηSi

K∏

j=1

η−1/2
j I (S), (16)

whereI (S) is one if the assigment gives rise to a proper posterior and zero otherwise.

Finally, note that in this finite mixture model with unknownK and commonβ (i.e. θ j = α j), the

hierarchical prior structure onα will induce less dependence of the Bayes factors between models

with differentK on the prior assumptions.

2.2 An alternative prior on β

The long-run equilibrium levels associated with each cluster are often quantities that we possess

some prior information about. If so, it may be desirable to introduce that information through an

informative prior, rather than the improper uniform prior used in the previous subsection. Another

reason for wanting to put a carefully elicited proper prior onβ is that we typically want to compute

Bayes factors between models with different numbers of components. If the components have a

commonβ, that is perfectly feasible with the improper prior in (13), but in the general case where

β j ’s are cluster-specific, such Bayes factors are no longer defined. Of course, any proper prior on the

cluster-specific parameters inθ j will give us Bayes factors, but we need to be very careful that the

prior onβ truly reflects reasonable prior assumptions, just like we did (in Juárez and Steel, 2006) for

the prior on eachα j, since the Bayes factors will depend crucially on the particular prior used.

Staying within the product form of (13), we propose the following multivariate Normal prior for

β:

β ∼ NK

(
mι, c2[(1 − a) I + a ι ι′]

)
, (17)

wherec > 0 and−1/(K − 1) < a < 1. The prior in (17) generates an equicorrelated prior structure

for β with prior correlationa throughout. Thus, ifa = 0 we have independent normally distributed

β j ’s, but if a→ 1 they tend to perfect positive correlation. The main reason for allowing for nonzero

a becomes obvious when we consider that (17) implies thatβ j ∼ N(m, c2), j = 1, . . . ,K andβi − β j ∼
N(0,2c2(1−a)), i , j, i, j = 1, . . . ,K. Thus, fora = 0 the prior variance of the difference between the

equilibrium levels of two clusters would be twice the prior variance of the level of any cluster. This

would seem counterintuitive, and positive values ofa would be closer to most prior beliefs. In fact,

a = 3/4, leading toVar(βi − β j) = (1/2)× Var(β j) might be more reasonable.

As we typically will have a fair amount of sample information onβ j, we can go one step further

and, rather than fixinga at, say, a reasonable positive value, we can keepa random and put a prior on

it. This implies an additional level in the prior hierarchy and would allow us to learn abouta from the

data. We put a beta prior ona, rescaled to the interval(−1/(K − 1),1), and posterior inference ona

then provides valuable information regarding the assumption that allβ j ’s are equal. In particular, if we
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2.3. Propriety of the posterior 7

find a lot of posterior mass close to one fora, that would imply that a model withβ j = β, j = 1, . . . ,K

(where only theα j ’s differ across clusters) might be preferable to the model with cluster-specificβ j ’s.

As an important bonus of such a hierarchical prior structure, the sensitivity of the Bayes factors

to the prior assumptions will be much reduced. In particular, in the model with cluster-specificβ j ’s,

Bayes factors between models with differentK depend on the prior onβ mostly through the implied

prior on the contrastsβi − β j. If the priorπ
(
βi − β j

)
is unreasonably vague (corresponding toa very

far from 1), we will tend to favour smaller values ofK, whereas for excessively preciseπ
(
βi − β j

)

(i.e. a very close to 1), Bayes factors would point to models with more components. By changinga

we can thus affect model choice, and makinga largely determined by the data reduces the dependence

of Bayes factors on prior assumptions.

2.3 Propriety of the posterior

Note that (13) yields an improper joint prior. Juárez and Steel (2006) proves that in the extreme case

whereK = 1 a sufficient condition for the posterior to be proper is thatT > m+ 1, whereT =
∑m

i=1 Ti

is the total number of observations in the sample. The following result under the prior assumptions in

Subsection 2.1 can be derived easily from their Theorem 1:

Theorem 1.

Consider the model defined by(4) and (5), with the error term distributed according to(3), and the

prior specification(6) through(16). Definemj =
∑m

i=1 1[Si= j], the number of units assigned to cluster

j, and letT j =
∑m

i=1 Ti 1[Si= j] denote the number of available observations for clusterj. If for every

j = 1, . . . ,K, T j > mj + 1, then the posterior is proper.

This condition is not very strong and is trivial to check. It implies thatT > m+ K and is satisfied

if each cluster has at least one unit with more than two observations. It excludes empty clusters and

it is easy to see that the presence of empty clusters would preclude the existence of a posterior. The

condition in Theorem 1 will be imposed in the sampler by truncating the prior in (16) throughI (S).

In practice (as in our examples), this will often merely imply assigning probability zero to empty

clusters.

In case we simplify the model by assuming thatβ j = β, the condition in Theorem 1 will still be

sufficient, as this restriction increases the borrowing of strength between the clusters and can only

help posterior existence.

In the case where we adopt a proper prior onβ, as in Subsection 2.2, we can derive the following,

even weaker, condition for posterior propriety:

Theorem 2.

Consider the model defined by(4) and (5), with the error term distributed according to(3), and the

prior specification(6) through(16), but replacing the flat prior onβ in (13) with any proper prior,

such as the one in(17). The posterior is proper if and only ifT j > mj + 1 holds for at least one

j = 1, . . . ,K.
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8 3. Model estimation

Theorem 2 provides a necessary and sufficient condition for propriety, which is so weak that any

sample with at least one unit with more than two observations will always lead to a posterior. As the

prior is only improper on the precisionλ, existence of the posterior can only be destroyed by having

so few observations that we can find a perfect fit in all clusters. As long as we have one cluster where

we can not fit the data perfectly, we have a valid Bayesian analysis. Since there are no cluster-specific

parameters with an improper prior, empty clusters will now not preclude Bayesian inference.

If we assume a common levelβ j = β, the existence condition of Theorem 2 will continue to hold,

as it is a necessary condition for integrating out the precisionλ.

3 Model estimation

There is a large literature on mixture models, seee.g.the monographs by Titteringtonet al.(1985) and

McLachlan and Peel (2000). Diebolt and Robert (1994) and Marinet al. (2005) provide an overview

from the Bayesian perspective.

3.1 Likelihood

Augmenting the data with cluster indicatorsSi as described above, we can write the likelihood as

L(θ,S) =

m∏

i=1

K∏

j=1

p(yi |θC, θSi ),

whereyi = (yi 1, . . . , yi Ti ) and the use of (3) and (4) leads to

p(yi t |θC, θ j) =

√
2/π

γ + γ−1

(ν/2)ν/2

Γ[ν/2]
λ1/2

�
<+

ω
ν−1
2

i t

�
<

exp

[
−1

2
ωi t

(
ν + λh2

i t

)]
fN(βi |β j , τ−1) dβi dωi t

with

hi t =
(
yi t − βi(1− α j) − α jyi t−1

)(
γ 1[hi t≤0] + γ−1 1[hi t>0]

)
,

and wherefN(x|µ, ζ−1) is the pdf of a normal distribution onx with meanµ and precisionζ.

In the sampling density above, we have used the representation of the Student distribution as a

gamma scale mixture of normals, which facilitates the computations. In particular, we will augment

with the mixing variablesωi t in the sampler. We have also integrated the sampling density in (4) with

the random effects distribution in (5). Again, we will include the individual effectsβi in the sampler,

which is convenient and also allows for inference on each unit’s individual effect.

Analytic solutions for this mixture model are not available and, thus, we will resort to Monte Carlo

techniques, briefly described in the next section. When dealing with an unknown number of clusters,

two alternative approaches may be followed : direct estimation in the sampler or model comparison.

The first involves a Markov chain moving in spaces of different dimensions and is implemented by

e.g.Green (1995) and Richardson and Green (1997) through reversible jump Markov chain Monte

Carlo, while Stephens (2000a) and Phillips and Smith (1996) propose alternative samplers that move
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3.2. Computational implementation 9

between models. We will adopt the second approach,i.e. we fit the model for different values of

K and then compute Bayes factors in order to decide which number of clusters performs best, as in

Bensmailet al.(1997), Frühwirth-Schnatter and Kaufmann (2004) and Raftery (1996). This approach

is particularly useful in cases where the clusters have a specific interpretation, as inference given a

chosen number of components is immediately available.

3.2 Computational implementation

In order to conduct inference, we will use Markov chain Monte Carlo (MCMC) methods, as is now

common in the Bayesian literature on finite mixture models. As most of the ideas can be found in the

literature (seee.g.Bensmailet al., 1997 and Marinet al., 2005), we will not provide any details in the

paper.

As pointed out by Celeuxet al. (2000), Stephens (2000b) and Casellaet al. (2004), a number

of difficulties may arise when constructing a sampler for a mixture model. In particular, we need

to take into account the multimodality of the posterior distribution caused by the invariance under

permutation of the cluster labels. To overcome this problem, Diebolt and Robert (1994) propose

to impose identifiability constraints, while Celeuxet al. (2000) and Stephens (2000b) use decision-

theoretical based criteria. Casellaet al. (2004) suggest a method based on an appropriate partition of

the space of augmented variables. Casellaet al.(2002) introduce a perfect sampling scheme, which is

not easily extended to non-exponential families, and Frühwirth-Schnatter (2004) proposes a random

permutation scheme. A comprehensive discussion is given in Jasraet al. (2005).

In our setting, we are interested in differentiating between the components in terms of either

dynamic or long-run behaviour. It would not be meaningful to distinguish between the clusters in

terms of the weightsη j. Thus, we propose to consider scatterplots of all the draws on(α,β) before

deciding on the labels. This will suggest which of the two sets of parameters (α orβ) are best separated

between the clusters, and the one that provides the clearest separation will be used to identify the labels

through an order constraint. This can then be done by simply post-processing the MCMC output.

In both of the examples in this paper, this convincingly indicates that imposing an identifiability

constraint through the dynamics parameter,α, is a natural way to identify the labels and does not

seem to preclude the chain from adequately visiting the posterior support.

To perform model comparison we use the formal tool of Bayes factors1. The Bayes factor between

any two models is simply defined as the ratio of the marginal likelihoods2 for the models. Several ways

of approximating the marginal likelihood are available in the literature, see e.g. Chenet al. (2000),

Chib (1995), DiCiccioet al. (1997), Newton and Raftery (1994) and references therein. However,

in our case these methods may yield poor results due to the potential multimodality of the posterior.

Steeleet al. (2003) and Ishwaranet al. (2001) provide alternative methods for mixture models, but

1Posterior odds between any two models are then immediately obtained by multiplying the prior odds with the appro-
priate Bayes factor. These can then be used either for model comparison or Bayesian model averaging (for inference on
quantities that are not model-specific, such as predictive inference). In this paper, we will typically assume unitary prior
odds.

2The marginal likelihood is the sampling density integrated out with the prior, and is not that easy to obtain from
MCMC output.
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10 4. Examples

rely either on being able to integrate out some of the parameters or on the underlying distribution

being from the exponential family.

In the sequel, we will use the bridge sampler of Meng and Wong (1996), which is based on

importance sampling and a simple identity, and uses a so-called bridge function that helps to link

the importance function to the target distribution. Given the complexity of the target distribution,

which potentially will have heavy tails and be skewed, we construct the importance function using

Student-t3 distributions, centred at the modal MCMC values, for parameters with support on<;

Gamma densities with parameters matching the first two moments of the MCMC output, for positive

parameters; and rescaled Betas, with parameters matching the first two moments of the chain, for

the dynamics parameter anda in (17). The variance of these distributions is then doubled to aid

sampling from the entire posterior support. This choice is intended to mimic the posterior as closely

as possible, while still allowing for easy sampling from the importance density and easy evaluations

of the importance function at the chain values. Finally, we use the iterative procedure suggested by

Meng and Wong (1996) to calculate the optimal bridge function. Using other special cases of bridge

sampling, such as ordinary importance sampling or the harmonic mean estimator (see DiCiccioet al.,

1997) always leads to the same conclusions in terms of model choice in the examples that follow.

In the particular case that one model is a simple parametric restriction of another model, we can

often compute Bayes factors through the Savage-Dickey density ratio3. This way of computing Bayes

factors is typically easier and can be more precise than using the methods estimating the marginal

likelihoods mentioned above, but is not always applicable.

On the basis of various simulated data sets, we conclude that the numerical methods work well

and that the priors described in Subsection 2.1 and 2.2 are reasonable and not overly informative.

4 Examples

Two real data sets are analysed in this section. The first contains GDP growth data from 29 OECD

countries. The second is a panel of 738 Spanish manufacturing firms, taken from Arellano (2003,

Sec. 6.7), where we model growth of employment. We use both the priors in Subsections 2.1 and 2.2.

In the latter case, the induced proper prior on each long-run growth levelβ j will be N(0.05,0.032) for

the GDP growth data andN(0,0.052) for the employment growth. For the correlation parametera in

(17), we will use a uniform prior over(−1/(K − 1),1) in both applications.

MCMC samplers were ran for 170,000 iterations, discarding the first 20,000 and then taking every

10th draw, ending up with an effective size of 15,000. Parameters of the Metropolis-Hastings proposal

distributions were tuned as to achieve acceptance rates of around 1/3. In both examples very similar

results were obtained using smaller runs of size 70,000, suggesting that convergence was achieved.

3The Savage-Dickey density ratio is the ratio of the posterior and the prior density values at the restriction (see
Verdinelli and Wassermann, 1995). For example, the Bayes factor in favour of a symmetric model over its skewed
counterpart will bep(γ = 1|data)/p(γ = 1).
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Table 1. OECD GDP data. Log Bayes factors for the number of clustersK. A positive number
indicates support in favour of the model in the row.

K
K 2 3 4
1 -47.4 45.3 28.3
2 92.7 75.7
3 -16.9

4.1 GDP of OECD countries

There is a vast literature concerned with economic growth and convergence. While there seems not to

be empirical evidence of overall growth convergence (Durlauf and Johnson, 1995; Durlauf and Quah,

1999; Temple, 1999), some clusters of homogeneous growing countries or convergence clubs have

been found; see e.g. Canova (2004) and Quah (1997).

Here we concentrate on GPD growth rates from 29 OECD countries, taken from the Penn World

Table (Hestonet al., 2002), for the period 1950-2000. We define the growth of countryi from time

t − 1 to t asyi t = log(xi t/xi t−1), wherexi t is the GDP of countryi at timet.

We feel that allowing forK ≥ 5 would not be of practical interest in this context, so we fit

the model forK = 1,2,3,4. Initially, we report results for the case of the proper prior onβ and will

indicate any differences with respect to the analysis with a flat prior onβ. At the end of this subsection,

we will use the flat prior. Estimated log Bayes factors (BF) are shown in Table 1, a positive value

implies support in favour of the model in the row. Interestingly, the simplest, completely pooled

model is clearly preferred toK = 3 andK = 4, but the best model by far is the one with two clusters.

Figure 1 shows scatter and trace plots of the drawn values for(α,β) in the chain with two com-

ponents. The original assignment of labels to drawings is indicated by the use of different shadings

and symbols (grey traces and crosses for one cluster and black traces and circles for the other). It is

clear from the traces that label switching has occurred (around draw 7000) and the scatterplot vividly

illustrates that the dimension in which the components differ is the dynamics parameterα. Thus, we

use the labelling convention according to the values ofα, and impose thatα1 < α2 in post-processing

the data. This perfectly implements the separation between the two visually separate clusters in the

scatterplot. Similar pictures appear for the other values ofK, so we always use ordering onα to iden-

tify the component labels. It is clear from the graphs that identifying the labels through an ordering

constraint onβ would have made little sense, and would have left us with two (very similar) bimodal

distributions onα1 andα2.

Figure 2 shows estimated marginal posterior densities for the model-specific parameters of the

models withK = 1,3,4. Throughout, we also plot the prior density in these graphs, indicated by a

dashed line. Estimation of the common parameters is virtually unaffected by the number of clusters.

Thus, we only present posterior densities for the cluster-specific parameters here and will present

those for the other parameters in the figure for the preferred model withK = 2. Comparing the plots

for α with differentK, the effect of pooling when units are not homogeneous is apparent: the pooled

model (K = 1) averages over the whole panel, yielding misleading inference on the dynamics and an
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Figure 1. OECD GDP data. Scatterplot and traces of the sampler forα and β, usingK = 2.
Different shadings and symbols indicate the raw assignment of labels to drawings, before post-
processing.

illusion of precise estimation. Also, it is clear from the inference onα with K = 3 andK = 4 that

these models contain more clusters than supported by the data, as there is no clear separation between

the clusters with higherα j (and the clusters do not distinguish betweenβ j either). It is reassuring

that model choice through Bayes factors strongly avoids the inclusion of unwarranted clusters in our

model. This illustrates, in particular, the sensible calibration of our prior assumptions.

With a decisive BF of3.9 × 1020, K = 2 is preferred over the pooled model and its superiority

over the other alternatives is even more pronounced. Posterior results are displayed in Figure 3. Note

that the prior onλ is improper and the scaling is, therefore, arbitrary. For this best model with two

clusters, we have a fast converging club of countries, i.e. those with a small value ofα, and a slow

converging subset, as indicated in the top left graph of Figure 3. The posterior mean relative cluster

sizes are{0.17,0.83}. In addition, Figure 4 shows the individual membership probabilities. The first

club, with an mean value ofα = 0.077is the smallest and it is constituted by Spain, Luxembourg and

Turkey with membership probabilities of over 0.85, while Mexico and Denmark have a probability

of belonging to this cluster of around 0.35 (countries are ordered as in Appendix B). The other club

corresponds to a mean value ofα = 0.43, indicating much slower convergence. The posterior mean

and median values ofβ j are0.062for the first cluster and0.061for the second, indicating that both

clubs converge (at different speeds) to a long-run growth rate of around 6%. Note that the posterior

distribution ofα for the pooled model (K = 1) in Figure 2 is concentrated around an area which

receives only very little probability mass from the posteriors ofα1 andα2 in the two-component

model, so its averaged nature really does not correspond to any “observed” dynamic behaviour.

Figure 3 suggests that skewness is not an important feature of this data set. Indeed,γ ∈ (0.96,1.11)

with posterior probability of 0.95 for all values ofK used. As a consequence, the log Savage-Dickey

CRiSM Paper No. 06-14, www.warwick.ac.uk/go/crism



4.1. GDP of OECD countries 13

Κ=1

α

0.30 0.35 0.40 0.45

0
4

8
1

2
1

6

Κ=3

α

α1
α2

α3

−0.2 0.0 0.2 0.4 0.6 0.8

0
3

6
9

Κ=4

α

α1
α2

α3
α4

−0.2 0.0 0.2 0.4 0.6 0.8

0
3

6
9

β

0.050 0.055 0.060 0.065 0.070

0
3

0
6

0
9

0
1

2
0

β

β1
β2
β3

0.04 0.06 0.08

0
2

5
5

0
7

5
1

0
0

β

β1
β2
β3
β4

0.04 0.06 0.08

0
2

5
5

0
7

5

Figure 2. OECD GDP data. Prior (light dashed) and posterior (solid or as in legend) densities for
the model-specific parameters, usingK = 1, 3,4.
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Figure 3. OECD GDP data. Prior (dashed) and posterior (solid or as in legend) densities, using
K = 2.
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Figure 4. OECD GDP data. Membership probabilities forK = 2. Countries are ordered as in
Appendix B.

density ratio in favour ofγ = 1 is 2.6 (forK = 2, with very similar values for otherK). Comparing

the marginal likelihoods for the symmetric and skewed Studentt models, computed using bridge

sampling, leads to a log BF of 2.5 in favour of symmetry, which accords very well with the Savage-

Dickey result. For the symmetric version, the rest of the estimated parameters are virtually identical.

In the remainder of this subsection, we will use the symmetrict model.

Fat tails, however, are a very prominent feature of these data. Posterior inference onν is quite

concentrated on small values in all cases, typicallyν ∈ (2.8,5.0) with high posterior probability.

Throughout, posterior results with the flat improper prior onβ introduced in Subsection 2.1 are

virtually indistinguishable from the ones presented here, except, of course, for the fact that the Bayes

factors involving the choice ofK are not defined for this case.

As already indicated, the posterior distributions of theβ j are always centred around similar values.

Recall that the proper prior forβ introduced in Subsection 2.2 puts a hierarchical prior on the corre-

lation parametera, wherea close to one would indicate similarity of theβ j ’s. Figure 5 displays the

posterior density ofa for K = 2,3,4 and clearly suggests that the data favour values close to one. This

becomes especially clear for largerK where we have even more information ona in the data. Thus,

we also consider a model where the only difference between the clusters is the dynamics parameters,

while the long-run level is shared between the components. The Bayes factor in favour of this model

with common long-run mean level versus the original two-component model is 11.9.4

Note that if we use a commonβ, we can compute Bayes factors between models with different

numbers of components under a flat improper prior onβ. Table 2 presents these Bayes factors for the

models with symmetrict errors and commonβ. The ordering of models is the same as with skewed

errors and cluster-specificβ j ’s: K = 2 is strongly preferred to the pooled model, which is itself a lot

better that the models with 3 and 4 components.

So we finally model the data using atν model (i.e. γ = 1) with two clusters andβ j = β for

j = 1,2. We now use a flat improper prior onβ. As illustrated in Figure 6, the resulting estimates

are quite close to those for the previous case (the posteriors forλ andτ are not shown as they are

indistinguishable from those in Figure 3). Also, the expected cluster sizes remain the same. A 95%

4The latter can easily be computed using the Savage-Dickey density ratio for the differenceβ2 − β1.
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Figure 5. OECD GDP data. Posterior (solid) and prior (dashed) densities fora in (17). From left
to right, panels are forK = 2, 3 and4. Note thata ∈ (−1/(K − 1), 1).

Table 2. OECD GDP data. Log Bayes factors for the number of clusters, using thet model with
commonβ, for which we adopt an improper flat prior. A positive number indicates support in favour
of the model in the row.

K
K 2 3 4
1 -20.5 88.0 88.8
2 108.5 109.3
3 0.8

posterior credible interval5 for the new common equilibrium levelβ is (0.060, 0.068) andβ is now

more precisely estimated, as all observations contribute.
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Figure 6. OECD GDP data. Prior (dashed) and posterior (solid or as in legend) densities, using a
tν model withK = 2 clusters and a common level with an improper flat prior.

4.2 Spanish firm employment

The data set is described in the Appendix of Alonso-Borrego and Arellano (1999) and also used in

Arellano (2003, Sec. 6.7). It consists of a balanced panel of 738 manufacturing companies, recorded

5Throughout the paper, 95% credible intervals are defined by the2.5th and the97.5th percentiles of the corresponding
distribution.
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Table 3. Spanish firm data. Log-BF, according to the number of clusters. A positive figure indicates
support in favour of the model in the row.

K K
2 3 4 5

1 824 -7 3077 5127
2 -830 2253 4304
3 3084 5134
4 2051

yearly from 1983 to 1990 and represents more than 40% of the Spanish value added in manufacturing

in 1985.

In particular, we model employment growth in these firms. With our setting described in Section

2, and lettingK = 1, we obtain the posterior densities shown in Figure 7 for the model-specific

parameters. This is computed with the proper prior onβ from Subsection 2.2, which will be used

until we indicate otherwise. Again, inference on parameters common to models with different values

of K is virtually unaffected by the choice of the number of clusters.
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Figure 7. Spanish firm data. Prior (dashed) and posterior (solid) densities forα andβ, usingK = 1.

As shown in Table 3,K = 1 is strongly preferred toK = 2, K = 4 andK = 5. However, the model

with three clusters performs better than the pooled model, and we will concentrate on the model with

K = 3 in the sequel. Since the model with five clusters was not preferred to any other, we did not

experiment with even larger values ofK.

Figure 8 shows a scatterplot of the drawn values for(α,β) in the chain with three components,

clearly illustrating that identifying the labels through ordering the values ofα j is the natural approach,

just like in the previous example. The partition of the draws before inducing this labelling convention

is indicated through the different hues and symbols. After imposing the ordering constraint the three

clusters are well separated.

From the posterior densities in Figure 9, it is apparent that tail behaviour is extremely heavy and

very well determined by this (fairly large) data set. In contrast with the GDP data, these data present

substantial right skewness with (1.05, 1.13) a 95% credible interval forγ. In this case the log-BF

calculated from the Savage-Dickey density ratio in favour ofγ = 1 is -31. As the posterior density

value atγ = 1 is quite small, the Savage-Dickey density ratio is not that easy to estimate in this case.

Computing marginal likelihoods through bridge sampling leads to a log BF of -20, which corroborates
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Figure 8. Spanish firm data. Scatterplot of the sampler forα andβ, usingK = 3. Different shadings
and symbols indicate the raw assignment of labels to drawings, before post-processing. For clarity,
only a thinned version of the sample (one in 10) is displayed.

Table 4. Spanish firm data. 95% posterior credible intervals and means for the dynamics parame-
tersα j usingK = 3.

Cluster 95% Interval Mean
1 (-0.549 , -0.200) -0.384
2 (-0.022, 0.073) 0.028
3 (0.222, 0.551) 0.378

the massive evidence in favour of the skewed model.

The relative size of each cluster,i.e. the average probability of cluster membership, is {0.132,

0.651, 0.217}. Table 4 presents 95% posterior credible intervals forαi. Thus, there are two rela-

tively small clusters of “extreme” dynamic behaviour: one with negativeα (suggesting alternating

behaviour) and one with positiveα (slowly converging) existing besides one big club with more or

less random walk employment behaviour. In fact, the cluster displaying negativeα tends to contain

smaller firms, which are more volatile and often overadapt to market situations. Firms that have a

high probability of belonging to the slowly converging cluster are typically larger firms which display

much more stable long-term employment strategies. The firms in the main cluster cover a wide range

of sizes and have, on average, experienced a small decline in employment over the sample period.

Again, the effect of pooling all units to estimate the dynamics parameter is apparent from comparing

Figures 7 and 9: rather than gaining strength in the process, opposites are averaged out and the spread

of the dynamic behaviour is dramatically underestimated when we useK = 1.

We have already reported that the skewed model is strongly favoured by the data over its sym-

metric counterpart. In order to assess whether allowing for skewness makes a practical difference

in this example, we have estimated the symmetric Student model (i.e. γ = 1) with 3 components.

The main difference is in the locations which are represented by theβ j in our model. The posterior

medians forβ j with skewness were all within (-0.0011, -0.0008), and these are now all positive, equal
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Figure 9. Spanish firm data. Prior (dashed) and posterior (solid or as in legend) densities, using
K = 3.
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Figure 10. Spanish firm data. (a) Estimated posterior forβ, usingK = 3 andγ = 1. The (proper)
prior is dashed. (b) Posterior density for common equilibrium levelβ, using K = 3 and a flat
(improper) prior onβ.

to {0.0057,0.0051,0.0058} whereas the 95% credible interval forβ2 is entirely on the positive real

line. Figure 10 (a) shows these posterior densities ofβ, which are clearly shifted to the right with

respect to the skewed case in Figure 9. Thus, without taking into account the skewness, we would er-

roneously conclude that long-run employment growth is positive, whereas our skewed model assigns

most probability to negative equilibrium growth of employment in Spanish manufacturing firms.

Both for the skewed and symmetric cases, the three clusters of firms converge to very similar

equilibrium levels, suggesting that we might also pool this parameter to gain strength, as done in

the previous example. The resulting marginal posterior forβ when we impose a common equilibrium

level is shown in Figure 10 (b), where we have now used the improper flat prior onβ. Other parameters

are virtually unaffected by this simplification of the model. In particular, the evidence in favour of

right skewness does not change and a credible interval of size 0.95 forγ is (1.05, 1.13), as before.

The inference on the dynamics parameters is also virtually unchanged from the previous case. The

common long-run levelβ ∈ (−0.005,0.003)with posterior probability 0.95, very much in line with
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Figure 11. Spanish firm data. Predictive distribution for 1991 for the employment of firms 433
(a) and 31 (b). Predictives are forK = 1 (dashed) andK = 3 (solid for skewed model, dotted
for symmetric model). Employment numbers for 1989 and 1990 are indicated by dotted and solid
vertical lines, respectively.

the results for cluster-specificβ j ’s, except that inference is now a bit more precise as a consequence

of borrowing strength.

Finally, we calculate the predictive distribution of the employment of two firms in the sample for

1991 (one year after the last observation in the sample), using the flat prior on the commonβ. As

we are predicting employment itself (rather than its growth), we condition on the actual employment

values in the sample years. Firms 433 and 31 are selected: the former grows from 30 to 37 employ-

ees in 1990 and in the model withK = 3 it is assigned to the three clusters with posterior weights

{0.834,0.165,0.001}; the latter shrinks its employment in 1990 from 126 to 62 and has cluster prob-

abilities{0.324,0.636,0.040}. Figure 11 presents these predictives for the pooled model (K = 1) and

the model with three components (a symmetric and a skewed version). The model withK = 1 has

a slightly positiveα (see Figure 7) and will thus concentrate the predictive at a value which slightly

extends the last observed movement. In the three-cluster model, Firm 433 (Figure 11 (a)) has most

mass on the first cluster, which corresponds to large negative values forα (see Figure 9 and Table

4), and will thus counteract the last movement, which results in much more predictive mass on lower

employment values. Firm 31 has non-negligible mass for all three clusters and this results in a mul-

timodal predictive, with the first cluster providing predictive mass around 80 (partially counteracting

the last movement) and the third (least important) cluster resulting in slightly more weight on lower

values. The latter is a consequence of the large positive values for the dynamics parameters, which

lead to a pronounced extrapolation of the last observed change. Finally, the second cluster (which

has most of the weight) corresponds to very small, mostly positive values forα (see Table 4), which

is translated in the large central mode, close to the last observed value (with a slight extrapolation of

the last movement). The clusters vary mostly in terms of the dynamics parameter, so if the observed

change is substantial (as is the case for firm 31), multimodality in the predictive is easily generated. It
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is clear that the pooled model substantially underestimates the predictive uncertainty and can lead to

dramatically different conclusions. Of course, the different firms also have different individual effects

βi, but the effect of those on the one-step ahead predictives shown is dominated by the dynamics: in

the three-component modelβ433 has a posterior mean of 0.011 (corresponding to 1% growth) and the

mean ofβ31 is -0.025. In case we use the symmetric three-component model (γ = 1), the posterior

means of these long-run levels are changed to 0.026 and -0.018, respectively, which constitutes a

rather different picture for the equilibrium situation, especially for firm 433. This would, of course,

affect the predictives for long forecast horizons, but short-run forecasting with the symmetric model

is not very different from that with the skewed model, as illustrated in Figure 11.

5 Conclusion

This paper deals with model-based clustering of longitudinal data, where the clusters can differ in

dynamic and long-run equilibrium behaviour. We adopt flexible error distributions, allowing for fat

tails and skewness, each controlled by a single (easily interpretable) parameter. Prior distributions

are carefully chosen, to reflect a (commonly encountered) situation without strong prior information.

Hierarchical prior structures are used to increase the robustness of our posterior results with respect

to prior assumptions. Two prior structures are proposed, giving the applied user the opportunity to

conduct inference with these models without spending a lot of effort on prior elicitation. Practically

useful and quite mild conditions for the existence of the posterior distribution are provided. We

propose to use a scatterplot of the drawn values for the dynamics and long-run level parameters to

indicate a solution to the labelling problem.

It would be straightforward to extend the model to let the assignment of observations to clusters

depend on covariates:e.g.a probit or logit specification would simply add one step to the MCMC

sampler. In view of our discussion of the example on Spanish firm employment, it would, for example,

be natural to use firm size as a determinant of cluster probabilities in that case. In addition, the

inclusion of extra explanatory variables in the regression model in (4), with coefficients that could

either be cluster-specific or common to all clusters, is relatively straightforward.

We analyse two real panel data sets: one on GDP growth of OECD countries, with only 29 indi-

vidual countries, and one concerning employment growth in a much larger sample of 738 manufac-

turing firms. Both applications favour clustering, with the clusters characterised by different speeds

of convergence to a common underlying long-run growth levelβ. As a consequence, modellingβ as

common is favoured by both data sets. Ignoring the clustering in the data would result in totally mis-

leading inference of the dynamic behaviour, parameterised byα: the pooled model averages out the

dynamic behaviour and does not properly account for the uncertainty. In both examples, the pooled

posterior distribution forα is far too sharp, inducing a false sense of security. For the GDP data,

where two components are preferred, the pooled model puts virtually all the posterior mass forα in

between the clusters, where very little posterior mass is allocated by the clustering model. For the

firm employment example, which favours three clusters, the pooled posterior onα is a slightly shifted

and more concentrated version of the central cluster’s dynamics, but the two other clusters are totally
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overlooked by the pooled model. The effect of this is perhaps best appreciated by considering the

predictive distribution: the shape, location and concentration of the latter are often very different for

the pooled model, as illustrated here for the firm data. In the firm application skewness also matters;

not just statistically, but also in terms of the conclusions we would draw from the data: equilibrium

growth levels are quite different if we ignore the skewness, in that they would point to overall long-run

employment growth rather than contraction.

Appendix A Proofs

A.1 Proof of Theorem 1

The proof relies on Theorem 1 of Juárez and Steel (2006), which states thatT > m+1 is sufficient for

propriety in the case withK = 1. Given a particular cluster assignmentS, we simply apply this result

to any clusterj separately, leading toT j > mj + 1 as a sufficient condition for existence. The fact

that the parameters inθC are shared between the clusters can only help existence, so the condition in

Theorem 1 is definitely sufficient. Finally, we mix overS with its proper prior. Technically, the prior

onSas defined in (16) is truncated to impose this condition.

A.2 Proof of Theorem 2

We use Theorem 1 of Fernández and Steel (1998) which states that the posterior of the skew model is

proper if and only if it is proper whenγ = 1. Given the proper prior onγ, we can thus concentrate on

the symmetric model. So we need to evaluate

p(y) =

�
p(y|ξ, λ,S,ω)λ−1p(ξ,S,ω) dλ dξ dS dω,

whereξ = {γ, ν, τ, θ1, . . . , θK} andω = {ω1 1, . . . , ω1T1, . . . , ωm Tm}. We can derivep(y|ξ, λ,S,ω) from

the fact that, given a cluster assignment, we can write the model for each cluster asyj = Xj ζ j +λ
−1/2ε j,

where superscriptsj indicate that we consider only those observations allocated to clusterj:

yj =



yj
1 1
...

yj

1T j
1

yj
2 1
...

y j

mj T j
m



, Xj =



ιT j
1

0T j
1,mj−1 yj

1

0T j
2,1

ιT j
2

0T j
2,mj−2 yj

2
...

. . . . . .
...

0T j
m,mj−1 ιT j

m
yj

m


and ζ j =



β
j
1 (1− α j)

β
j
2 (1− α j)

...

β
j
mj (1− α j)

α j



whereyj
i =

{
y j

i 0, . . . , y
j
i T j

i −1

}
, ιk is ak-dimensional vector of ones and0A,B is anA× B matrix of zeros.

So,yj ∈ RT j , Xj is a matrix of sizeT j × (mj + 1) andζ j ∈ Rmj+1.
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Thus, definingΩ j = diag(ω j
1 1, . . . , ω

j

mj T j
mj

), we can write

p(y|ξ, λ,S,ω) =

K∏

j=1

f
T j

N (yj |Xjζ j , λ
−1Ω−1

j )

∝ λT /2 exp

−
λ

2

K∑

j=1

(yj − Xjζ j)
′Ω j(y j − Xjζ j)


K∏

j=1

mj∏

i=1

T j
mj∏

k=1

(
ω

j
i k

)1/2
.

The expression above is integrable with respect to the prior onλ if and only if at least one of the terms

in the sum above is strictly positive. This is the case if and only if the rank ofXj is larger than the

dimension ofθ j for at least onej = 1, . . . ,K. This is equivalent to the condition in Theorem 2. Under

that condition, we can integrate outλ through a Gamma conditional posterior and are left with

p(y) ∝
� 

K∑

j=1

(yj − Xjζ j)
′Ω j(y j − Xjζ j)


−T /2 K∏

j=1

mj∏

i=1

T j
mj∏

k=1

(
ω

j
i k

)1/2
p(ξ,S,ω) dξ dSdω,

where
∑K

j=1(y
j − Xjζ j)

′Ω j(y j − Xjζ j) >
∑K

j=1 yj ′Ω j yj − yj ′Ω jXj(X′jΩ jXj)−1X′jΩ j yj, which is strictly

positive with probability one under the condition. Thus, we can integrate outξ with its proper prior.

Following the proof of Theorem 2 in Fernández and Steel (2000)ω can be integrated out to leave

a finite result for each assignment that satisfies the condition. Integrating overS with a prior that

respects the condition completes the proof.

Appendix B List of OECD countries

1 Australia 11 United Kingdom 21 Mexico

2 Austria 12 Germany 22 Netherlands

3 Belgium 13 Greece 23 Norway

4 Canada 14 Hungary 24 New Zealand

5 Switzerland 15 Ireland 25 Portugal

6 Czech Republic 16 Iceland 26 Slovak Republic

7 Denmark 17 Italy 27 Sweden

8 Spain 18 Japan 28 Turkey

9 Finland 19 Republic of Korea 29 United States

10 France 20 Luxembourg
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