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Abstract
Command and Control (C2) arrangements aim to ensure their au-

tonomous but rational commanders act in a way that is consistent with
C2�s overall objectives. This can be a challenge, especially in scenarios
where individual commanders face con�icting objectives: the success of a
mission verses the compromise of a campaign. Building on our experiences
in observing the reactions of military in simulated con�ict, in this paper
we demonstrate how multiattribute utility theory can be used to model
the e¤ects of such con�icting objectives on a particular commander�s ac-
tions. We show that the geometrical forms of expected utilities that arise
from the assumption of commander rationality are qualitatively stable in
a wide range of scenarios and therefore open to analysis. We proceed to
demonstrate how an appreciation of this geometry can aid understanding
of the relationship between complex operational environments and the
C2 arrangements and also inform selection and training of personnel to
address such con�icts appropriately.

1 Introduction

It is not uncommon for command and control (C2) arrangements to devolve
aspects of its military decision making. For example in the UK and Israel, [9],
it has proved e¢ cacious to communicate mission objectives in broad terms only
and devolve real time tactical decision making to a commander who is best able
to appreciate what is happening on the ground. C2 and its �eld personnel are
therefore players in a collaborative game. Remote agile higher level commanders,
knowing only some aspects of the geometry of their autonomous commander�s
utility functions, need to determine when to devolve decision making and when
to communicate more prescriptively. In this paper, building on our observations
of the behavior of experienced commanders in simulated battle games, [3], we
develop a formal framework within which C2 arrangements can be related via
commanders�capabilities to the demands of the operational context. We focus
on those scenarios which are most di¢ cult to manage: i.e. those when current
mission objectives con�ict with broader campaign objectives.

1



CRiSM Paper No. 08-09, www.warwick.ac.uk/go/crism

C2 arrangements generally aim to encourage contiguity : i.e. encourage com-
manders of di¤erent battle groups in geographic or operational proximity to
choose acts that are strategically coherent. For if this does not happen then,
for example, one commander could order a halt whilst another, not in direct
communication, a hasty attack, with potentially disastrous consequences. C2
arrangements should also strive to avoid facing a rational commander with con-
tradiction i.e. to avoid encouraging their commanders to commit to a decision
who subsequently wish had been completely di¤erent. Such stresses can lead to,
for example, hypervigilance [2], [8] and can jeopardize a commander�s ability to
subsequently act rationally. Furthermore, whilst smooth modi�cations in inten-
sity of engagement are often possible and can be taken at limited cost, dramatic
changes - where the commander faced with contradiction tries to dramatically
adjust midstream - can be very costly in a wide range of scenarios.
Commanders are expected to act rationally and take full account of their

training and experience. Here we interpret this expectation in a Bayesian way:
commanders should choose a course of action maximizing their expected utility.
Explicitly we assume that a commander chooses a decisive act d 2 D from
the potentially in�nite set of decisions D available so as to maximize the ex-
pectation of her utility function U . However it would not be reasonable for
higher command to expect its personnel to try to evaluate and take into ac-
count the potential acts of all other contiguous autonomous commanders. So
each commander will be treated as if they are an autonomous rational agent of
C2.
The simplest way to capture the con�ict scenario described above is to as-

sume that each commander�s utility function U(d;xj�1) has 2 value independent
attributes (v.i.a.) x = (x1; x2), [5] with parameter vector �1: The �rst attribute
measures the ongoing outcome state of the current mission. The second mea-
sures the extent the integrity of a campaign is preserved. Under this assumption,
for all decisions d 2D and xi 2 Xi where Xi is the sample space of the attribute
i (i = 1; 2) the commander�s utility function has the form

U(d; xj�1) = k1(�1)Ui(d; x1j�1) + k2(�1)U2(d; x2j�1)

where each marginal utility Ui(d; xij�1) is a function of its arguments only and
the criteria weights ki(�1) satisfy ki(�1) � 0; i = 1; 2; k1(�1) + k1(�1) = 1;
[7],[4]. The rational commander then chooses a decision d�(�) 2 D - called a
Bayes decision - to maximize the expected utility

U(dj�) = k1(�)U1(dj�) + k2(�)U2(dj�) (1)

where � = (�1;�2) 2 � - its possible set of values - and

U i(dj�) =
Z
Ui(d; xij�1)pi(xij�2)dxi (2)

The known vector �2 will be a function of the hyperparameters de�ning the
commander�s subjective posterior distribution - here de�ned by pi(xij�2) of at-
tribute xi, i = 1; 2. We now investigate the extent to which C2 arrangements
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can ensure that the commander�s marginal utilities and criteria weights appro-
priately address C2�s priorities of retaining contiguity and avoiding - as far as
is possible - commander contradiction.
The autonomous rational commander has a free choice of how she chooses

the parameters �1. However the observed and appraised commander will have a
utility function which will re�ect her understanding of the mission and campaign
objectives. Qualitatively a commander�s courses of action can be classi�ed into
three broad categories She can attempt to simultaneously achieve - at least
partially - both the mission objective and the broader campaign objectives.
Henceforth we will call this type of decision a compromise: On the other hand
in a scenario where no course of action is likely to attain satisfactory resolution
of either the mission or campaign objectives simultaneously, a compromise will
be perceived as futile . Rational choice will then need to focus on �nding a
combative action best achieving the mission objective whilst ignoring the broader
campaign objectives or alternatively choosing a circumspect action - focusing on
avoiding jeopardizing the campaign and to essentially abort the mission. The
transition from a rational act being a compromise between objectives to a stark
choice between combat and circumspection can be explained through examining
the geometry of a commander�s expected utility function. This geometry is
remarkably robust to the choice of parametric models: the type of courses of
action being determined by:

1. qualitative features of the descriptors of the con�ict,

2. the uncertainty of the mission and

3. the relative importance the commander places on the two objectives.

This robustness allows us to develop a useful general theory for decision
making under command con�ict and enables us to suggest remedial ways for
C2 arrangements to encourage appropriate commander response. In the next
section we analyse how the geometry of the corresponding expected utility func-
tions changes qualitatively under di¤erent combat scenarios and di¤erent types
of commander. In section 3 we demonstrate some general properties of rational
decision making in this context. In section 4 we discuss how with some mild
di¤erentiability conditions our taxonomy relates to the classi�cation of catastro-
phes [12], [17] and give a number of illustrative examples. We end the paper by
relating theory to observed behavior and give some general recommendations
for C2 in the light of these geometrical insights.

2 Rational Decisions for Competing Objectives

2.1 A Probabilistic Formulation

The commander�s decision space D will typically be very complex, and be con-
strained by, for example, the available resources and the rules of engagement of
the mission. However, for a wide class of scenarios we will be able to express
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any course of action d = (d;d1;d2) 2 D = D �D1 �D2 where D is a subset
of the real line. In this paper the component d will measure the intensity of the
engagement in the mission. We assume that increasing the intensity of engage-
ment does not reduce the commander�s probability of successfully completing
the mission but is believed to have a potentially negative e¤ect on the campaign.
Thus it is not unusual for a mission to be successfully addressed by combating
the enemy with a large force quickly engaged. However the intensity of the en-
gagement will often increase the potential for casualties both the commander�s
own unit and to the local civilian population. It is also likely to be increasingly
politically dangerous and so be increasingly to the detriment of the campaign
objectives.
For a chosen level of intensity d a commander will choose, to the best of

her ability, between other courses of action d1(d) associated with best satisfy-
ing the mission objectives given d and between other courses of action d2(d)
associated best preserving the integrity of the campaign. Usually d1 encodes
speci�c tactics involved in achieving the current mission. On the other hand the
decision d2 codes the tactics involved in best securing human resources, life and
retaining political integrity. Both d1(d) and d2(d) will usually be decided by
the commander in the �eld and in response to the developing situation, albeit
informed by protocol and training. For the rest of this paper we now assume
that it is possible to de�ne the intensity d in such a way that these two subse-
quent choices do not impinge on one another. Formally this will mean that a
commander�s expected marginal utility U i(dj�) is a function only of (d;di;�),
(d;di) 2 D �Di; i = 1; 2, where D � R.
Now let d�1(d); (d

�
2(d)) denote respectively a best choice to attain the mission

objectives (campaign objectives) for a given intensity d. The assumption above
makes it possible to characterize behavior in terms of a one dimensional decision
space: see below. Assuming without loss that neither criterion weight is zero, in
the appendix we show that by taking a linear transformation of the expression
(1), a commander�s Bayes decision d� will maximize the function

V (dj�) = e�(�)P1(dj�)� P2(dj�) (3)

Here - temporarily suppressing the index �, for i = 1; 2

0 � P1(d) = (u1[1]� u1[0])�1
�
U1(d;d

�
1(d))� u1[0]

�
� 1

0 � P2(d) = (u2[1]� u2[0])�1
�
U2(d;d

�
2(d)j�)� u2[0]

�
� 1

where the daring �(�) satis�es

� = �1 + �2 (4)

where

�1 = log k1 � log k2
�2 = log (u1[1]� u1[0])� log (u2[1]� u2[0])
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and where for i = 1; 2, ui[0] = infd2D U i(d;d
�
i (d)) and ui[1] = supd2D U i(d;d

�
i (d))

denote the worst and best possible outcome - in the eyes of the commander - for
each of the objectives. For technical reasons it will be convenient to reparame-
trize � so that there is a one to one function from � to (�;�0) 2 R��0. Heuristi-
cally �0 simply spans the parameters in � other than �. From the constructions
above it is clear that P1(dj�); P2(dj�) can be chosen so that they are only func-
tions of � through �0 and so henceforth will be indexed as P1(dj�0); P2(dj�0).
Note here that P1(dj�0) (P2(dj�0)) are respectively simply an increasing (de-

creasing) linear transformations of U i(d;d
�
i (d)j�) : the commander�s expected

marginal utility i = 1; 2 on taking what she considers to be the best possible
decision consistent with choosing an intensity d of engagement. From the de�-
nition of d note that the functions Pi(dj�0) are each distribution functions in d
: i.e. non-decreasing in d 2 D, with

Pi(inf fd 2 Dg j�0) = 0; Pi(sup fd 2 Dg j�0) = 1 (5)

parametrized by �0 2 �0, and i = 1; 2. Denote the smallest closed interval
containing the support of Pi(dj�) by [ai(�0); bi(�0)], i = 1; 2 where by an abuse
of notation we allow any of the lower bounds to take the value �1 and any of
the upper bounds1.. Thus a1 is the value below which the intensity d is useless
for attaining any even partial success in the mission. The upper bound b1 is
the lowest intensity that allows the commander to obtain total mission success.
Similarly a2 is the highest value of intensity that can be used without damaging
campaign objectives. The bound b2 is the lowest value at which the campaign
is maximally jeopardized. For obvious reasons we will call b1(�

0) pure combat
and a2(�

0) pure circumspection..
The meaning of these distributions can be best understood through the

following simple but important special case.

Example 1 (zero - one marginal utilities) When a mission is either fully
successful or fails and the campaign is totally compromised or uncompromised
then P1(dj�) is the commander�s probability that the mission is successful using
intensity d and choosing other decisions associated with the mission in the best
way she can under this constraint. On the other hand P2(dj�) is the probability
that the campaign will be jeopardized if the commander used an intensity d. Note
that the di¤erence V de�ned above, balances these objectives, the relative weight
given to mission success being determined by the value of the daring parameter
�, with equal focus being given when � = 0.

In the more common scenarios where the mission can be partially successful
the interpretation of Pi(dj�), i = 1; 2 in fact relates simply to the special case
above. Thus, speci�cally, the partially successful probable consequence of using
and intensity d in the given scenario is considered by the commander to be
equivalent to attaining best possible mission success with probability P1(dj�)
and the most jeopardization of the campaign with probability P2(dj�):
One point of interest is that if V (P1; P2; �;�

0) is given by (3) and Q1 = P2;
Q2 = P1 and e� = �� then V (Q1; Q2;e�;�0) is a strictly decreasing linear trans-
formation of V (P1; P2; �;�

0). So in particular these two di¤erent settings share
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the same stationary points but with all local minima of V (P1; P2; �;�
0) being lo-

cal maxima of V (Q1; Q2;e�;�0) and vice versa. Henceforth call V (Q1; Q2;e�;�0)
the dual of V (P1; P2; �;�

0). The close complementary relationship between the
geometry of a problem and its dual will be exploited later in the paper.

2.2 Resolvability

Ideally C2�s arrangements should be agile, i.e. �exible enough to alternate
between devolving decision making to the commander in the �eld and taking a
top-down approach prescribing itself that each commander focus on achieving
one or other of the objectives. There are two scenarios where it is straightforward
for C2 to decide between devolution and a top down approach. The �rst occurs
when b1(�

0) � a2(�
0). We henceforth call this scenario resolvable for �0 2 �0

and call the closed interval
�
b1(�

0); a2(�
0)
�
the resolution interval for �0 2 �0. It

is easy to see from equation(3) that the set of the commander�s optimal decisions
require d�(�0) 2

�
b1(�

0); a2(�
0)
�
when V (d�(�0)j�0) = exp �(�0). Note that in

particular both pure combat and pure circumspection are always Bayes decisions
(as is any level of intensity between). In this case, although the commander�s
evaluation of her performance V (d�(�)j�) is clearly dependent on �, her decision
need not depend on �. She simply chooses a moderate intensity of engagement
d�(�0) in the interval above enabling the simultaneous optimization on mission
and campaign objectives subsequently choosing d�1(�

0) and d�2(�
0) to maximize

their respective marginal utility. In fact much military training focuses on this
type of scenario, where there exists at least one course of action which is �OK�[9]
for both objectives. Good training regimes that ensure the commander can
hedge: i.e. identify both (d�(�); d�1(�)) and (d

�(�); d�1(�)) will ensure that a
utility maximizing strategy will be found and will not be in�uenced by the
uncertain parameter �. C2 should be most prepared to devolve decision making
to a commander on the ground when a scenario is resolvable.
A second simple case occurs when b2(�

0) � a1(�
0). Henceforth called this

scenario unresolvable scenario for �0 2 �0. Here there is no possibility of scoring
anything from one objective if the commander even partially achieve something
in the other. A rational commander�s Bayes decision is either pure combat
d�(�) = b1(�

0) optimizing mission objectives or pure circumspection d�(�) =
a2(�

0) maximizing campaign objectives, choosing the �rst option i¤ � � 0. In
this scenario C2 therefore knows that a rational commander will apparently
ignore completely one or other of the objectives depending on the sign of �. It
is argued below that � can be unpredictable to C2. Therefore in such cases
which of two extreme reactions will be chosen will be di¢ cult for C2 to predict
and control. The agile C2 should therefore be most inclined to be prescriptive
in scenarios which are unresolvable and b2(�

0) and a1(�
0) are far apart enough

for the choice between them to cause discontiguity or contradiction.
When scenarios are such that both intervals [ai(�

0); bi(�
0)], i = 1; 2 are

short - i.e. when a commander will judge that the use of an intensity d will
either result in complete failure or complete success except in a small range for
both the mission or campaign objective - then most scenarios will be resolvable
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or unresolvable and appropriate C2 arrangements will usually be clear. Of
course many scenarios have the property that by using a moderate level of
intensity, compromise cannot be expected to fully achieve both objectives -
as in the resolvable scenarios - but nevertheless might be a viable possibility
- unlike in the unresolvable scenarios. the e¤ect of an intensity d will have
intermediate potential success with respect to the mission or campaign over a
fairly wide range of values of d. To understand and control the movement from
the resolvable to the unresolvable scenario we will henceforth focus on these
intermediate scenarios.
Call a scenario a con�ict when [a(�0); b(�0)] is non-empty where I(�0) be

the open interval de�ned by

I(�0) = (a1(�
0); b1(�

0)) \ (a2(�0); b2(�0)) = (a(�0); b(�0))

The most important scenarios of this type are ones where one of the two intervals
in the intersection above is not properly contained in the other. The �rst -
the primal con�ict scenarios has a(�0) = a2(�

0) and b(�0) = b1(�
0). Here

the value of intensity at which the campaign begins to become progressively
jeopardized is lower than the intensity at which the mission can be ensured to
be fully successful. The second case - the dual con�ict - has a(�0) = a1(�

0) and
b(�0) = b2(�

0) is more di¢ cult for the commander but has some hope since the
intensity required to begin to have some success in the mission is lower than the
intensity at which the campaign will be maximally jeopardized.
Note that each primal scenarios with associated potential V (P1; P2; �;�

0)
with bounds [a1; b1] and [a2; b2] on P1; P2 respectively has a dual scenario asso-
ciated with its dual V (Q1; Q2;e�;�0) whose bounds on areQ1; Q2 are respectively
[a2; b2] and [a1; b1]. It follows that the geometry of dual con�icts can be simply
deduced from their corresponding primal con�icts. Say a scenario is a boundary
con�ict if a1 = a2 and b1 = b2:
Henceforth assume that P1 and P2 are absolutely continuous with respective

densities p1 and p2 and that p1 and p2 are strictly positive in the interior of
their support and, without loss, zero outside it. Then it is straightforward to
check from (3) that when

DV (dj�) = e�p1(dj�0) > 0 when a1(�0) < a2(�
0) and d 2 (a1(�0); a2(�0))

DV (dj�) = �p2(dj�0) < 0 when a1(�0) > a2(�
0) and d 2 (a1(�0); a2(�0))

DV (dj�) = �p2(dj�0) < 0 when b1(�0) < b2(�
0) and d 2 (b1(�0); b2(�0))

DV (dj�) = e�p1(dj�0) > 0:when b1(�0) > b2(�
0) and d 2 (b1(�0); b2(�0))

It therefore follows that whatever the value of �0 2 �0 we can �nd a Bayes
decision d�(�0) 2 I+(�0) where

I+(�0) = I(�0) [ fa2(�0)g [ fb1(�0)g

Henceforth in this paper we will assume, without loss, that the commander
chooses her act from I+(�0). So in any con�ict scenario d�(�0) 2 [a2; b1]. In a
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dual scenario d�(�0) is either at the extremes of intensity worth considering a2
or b1 or lies in the open interval (a1; b2).We next study the e¤ect of the value of
the daring � on a commander�s decisions.

2.3 Daring and intensity of action

Fix the value of �0 and suppress this index. Then for each d > d0; d; d0 2 I+(�0)
with the property that P2(d) > 0, there exists a large negative � such that

V (dj�)� V (d0j�) = e� fP1(d)� P1(d0)g � P2(d0) < 0

So in this sense as � ! �1 the rational commander will choose a decision
increasingly close to pure circumspection a2. On the other hand for all �xed �

0

for each d < d0; d; d0 2 I+(�0) with the property that P1(d) > 0, there exists a
large negative � such that

e�� (V (dj�)� V (d0j�)) = e�� (P2(d
0)� P1(d))� P1(d) < 0

So as the daring parameter � ! 1 becomes large and negative the rational
commander will choose a decision increasingly close to pure combat b1.
Next note that any rational commander will assess that if d0 < d and d0 is

not preferred to d when � = �0 then d
0 is not preferred to d when � = �1 when

�1 � �0. To see this simply note that

V (dj�1)� V (d0j�1) = (V (dj�0)� V (d0j�0)) + (e�1 � e�0) (P1(d)� P1(d0))

The �rst term on the right hand side is non-negative by hypothesis whilst the
second is positive since P1 is a distribution function. Further, by an analogous
argument, if d0 > d� and d0 is not preferred to d� when � = �0 then d

0 is not pre-
ferred to d� when � = �1 when �1 � �0 either. In this sense a rational comman-
der will choose to engage with non-decreasing intensity as � increases whatever
the circumstances. We shall henceforth call this property �� monotonicity. Let

D�(�;�0) = fd�(�;�0) : d�(�;�0) = arg supV (d�j�;�0)g

denote the set of optimal intensities d�(�;�0) for a commander whose parameters
are (�;�0): Note that �-monotonicity implies that if D�(�0;�

0) contains pure
circumspection then so does D�(�;�0) where � < �0. Similarly if D

�(�1;�
0)

contains pure aggression then so does D�(�;�0) where � > �1. When for some
�xed value �0 and for � lying in the closed interval [�0; �1]; D

�(�;�0) consists
of the single point fd�(�;�0)g. Then the monotonicity condition above and
the strict positivity of p1(d�j�) or p2(d�j�) on their support then tells us this
d�(�;�0) 2 I(�0) is strictly increasing � 2 [�0; �1]. So the larger �(�0) is the
higher the priority she places on mission success. From the above this will be
re�ected in her choice of intensity: the larger the value of �(�0) the greater her
choice of intensity.
Recall form equation(4) that the daring �(�0) = �1(�

0)+�2(�
0) decomposes

into two terms. The term �1(�
0) is an increasing function of the relative weight
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placed on the mission against the campaign objectives; i.e. her prioritization.
Note also that it is the only term in V a¤ected by a commander�s criterion
weights. This term may be potentially very unpredictable to C2, especially if
no strong training is given about how to balance mission and broader campaign
objectives. Even when this training has happened the personality and emotional
history will color the commander�s choice of this parameter.
The term �2(�

0) is an increasing function of how much better the commander
believes she can achieve mission over campaign objectives were she able to choose
an optimal intensity for either. This, of course depends on the scenario faced
and her competence - something that C2 might hope to estimate well. But,
since it is based on her own evaluation of her competence it also re�ects her
relative con�dence in her ability to achieve mission success or be sensitive to
the campaign objectives. A commander�s lack of training or di¢ cult recent
emotional history may well have a big a¤ect on this term. Note that a large
positive value of this parameter encourages the commander to focus almost
entirely on the mission objectives whilst a large negative value would encourage
her to neglect the mission objectives in favour of the overall campaign objectives.

3 The developing bifurcation

3.1 Bifurcation with continuous potentials

Here, building on methodologies developed in [9], [10], [16], we investigate the
geometrical conditions determining when bifurcation of the expected utility can
occur. When V (dj�) is continuous a commander�s optimal choice will move
smoothly in response to smooth changes in �, provided that her best course of
action d�(�) is unique: see the appendix for a formal statement of this prop-
erty and a proof. Thus the undesirable situations of there being dramatic dif-
ferences between the Bayes decisions of contiguous commanders at � = �0 =
(�0;�

0
0) or a single commander suddenly faced with contradiction can only occur

when D�(�0;�
0
0) contains at least two Bayes decisions- and hence in particu-

lar two local maxima. On the other hand if D�(�0;�
0
0) contains two decisions

d�1(�0); d
�
2(�0) where d

�
1(�0) < d�2(�0); then holding �

0
0 �xed and increasing �

through �0 from the above we must jump from a d�(�) � d�1(�0) being optimal
� � �0 to a d

�(�) � d�2(�0) being optimal. This in turn implies that C2 can
be faced with a lack of contiguity and commander contiguity whenever their
daring is near �0. So there is an intimate link between when it is expedient for
C2 to delegate and the cardinality of D�(�0;�

0
0), which in turn is related to the

number of local maxima of V (dj�).
Again suppressing the index �0 a rational commander will choose a non-

extreme option d�(�) 2 I(�0) for some value �(�0) if and only if

V (d�(�)j�) = e�P1(d
�(�))� P2(d�(�)) � maxfe� � 1; 0g

i.e.

P1(d
�(�)) fP2(d�(�))g�1 � e�� � f1� P1(d�(�)g f1� P2(d�(�))g�1
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or equivalently

P1(d
�(�)) f1� P1(d�(�))g�1 � P2(d

�(�)) f1� P2(d�(�))g�1 (6)

It follows, in particular, that if for all d�(�) 2 I(�0)

P1(d
�(�)j�0) � P2(d

�(�)j�0) (7)

- i.e. P2 stochastically dominates P1 - then all commanders will have a Bayes
decision either pure combat or pure circumspection, their choice depending on
their daring, i.e. act just as in an unresolvable scenario. Call such a scenario
pseudo-unresolvable. Pseudo - unresolvable con�icts have the same di¢ cult con-
sequences as the unresolvable ones for C2 and are therefore strong candidates for
prescriptive arrangements. Note that in our zero-one example above a scenario
is pseudo-unresolvable i¤, for all d 2 I(�0), the probability of mission success
using intensity d is no larger than the probability of jeopardizing the campaign.
When this domination is violated at some point d0 2 I(�0) then C2 will pre-

dict that a commander with a particular level of daring will choose an interior
decision, so compromise can be a viable option for at least some commanders.
At the other extreme when P1 stochastically dominates P2 then, for any com-
mander, an interior decision d�(�) 2 I(�0) is at least as good as pure combat
or circumspection. We now study the position and nature and development of
these interior decisions under smoothly changing scenarios and personnel.

3.2 Bifurcation when distributions are twice di¤erentiable

Henceforth assume that the distributions Pi are twice di¤erentiable in the open
interval

�
a1(�

0); b2(�
0)
�
, i = 1; 2 and constant nowhere in this interval. On

di¤erentiating and taking logs, any local maximum of V (dj�) will either lie on
the boundary of I or satisfy

v(dj�0) , f2(dj�0)� f1(dj�0) = � (8)

where fi(dj�0) = log pi(dj�0), i = 1; 2 where a necessary condition for this
stationary point to be a local maximum of V is that the derivative Dv(dj�0) � 0
. So in con�icting scenarios the commander�s optimal decision d� 2 I+(�0) will
either lie on the boundary of I(�0) - as in the unresolvable scenario - or satisfy
the equation above.
Let �1(�

0) (�01(�
0))and �2(�

0) (�02(�
0)) respectively denote the mode of p1(dj�0)

occurring at the largest (smallest) value of d (and hence the largest(smallest)
maximum of f1(dj�0)) in (a1(�0); b1(�0)) and the mode of p2(d(�)j�0) = 0 oc-
curring at the smallest (largest) value of d (and hence the smallest (largest)
maximum of f2(dj�0)) in the open interval (a2(�0); b2(�0)): Note that when P1
and P2 are both unimodal �i(�

0) = �0i(�
0), i = 1; 2. In this case because �1(�

0)
is a point of highest incremental gain in mission we call this point the mission
point and the intensity �2(�

0) where the threat to campaign objectives worsens
fastest the campaign point.

10
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When �1(�
0) � �2(�

0), for any d 2 [�1(�0); �2(�0)], v(dj�0) is strictly decreas-
ing. It follows that there is at most one solution d� to (8) for any value of � and
Dv(dj�0) � 0 so this stationary value d� 2

�
a(�0); b(�0)

�
is a local maximum of

V . Call a (primal) scenario pseudo-resolvable if

�1(�
0) � a2(�

0) � b1(�
0) � �2(�

0) (9)

where a Bayes decision can only occur in the closed interval [a2(�
0); b1(�

0)]
Clearly in this case for each value of � 2 � there is a unique maximum in this
interval moving as a continuous function of �.
It follows that C2 should �nd pseudo-resolvable con�icts almost as desirable

as resolvable ones and these are therefore prime candidates for devolved deci-
sion making. In particular no rational commander will face the stark combative
v. circumspection dichotomy. Furthermore, although her choice of act will de-
pend on �, two commanders with similar utility weightings as re�ected through
their value of � will act similarly. So in particular it is rational for them to
compromise and if contiguous commanders are matched by their training and
emotional history then they will make similar and hence broadly consistent
choices. In the particular case when the distributions P1 and P2 are unimodal,
pseudo-resolvable scenarios occur in primal con�ict where the e¤ectiveness of
the mission of increasing intensity past a2(�

0) is waning up to b1(�
0) whilst the

e¤ect on mission compromise is accelerating. It therefore makes logical sense
for a commander to compromise between these two objectives.
On the other hand when �02(�

0) � �01(�
0) for any d 2 [�02(�0); �01(�0)], v(dj�0)

is strictly increasing. It follows that there is at most one solution to (8) for any
value of � and Dv(dj�0) � 0 so this stationary value is a local minimum of V .
It is easily checked that a (dual) scenario where

�02(�
0) � a1(�

0) � b2(�
0) � �01(�

0)

is pseudo-unresolvable and a Bayes decision can only be pure combat or pure
circumspection.

3.3 Convexity and compromise

The next simplest case to consider is when D2v(dj�0) has the same sign for all�
a(�0); b(�0)

�
. This will occur for example when one of f2(dj�0); f1(dj�0) is con-

vex and the other concave in
�
a(�0); b(�0)

�
. In this case clearly equation(8) has

no solution, two coincident solutions or two separated solutions in
�
a(�0); b(�0)

�
.

We have considered cases above when v(dj�0) is increasing or decreasing in d,
when one or no stationary point exists in the interval of interest. Below we
focus on the case when there are two di¤erent solutions.
By our di¤erentiability conditions the two stationary points in

�
a(�0); b(�0)

�
a local maximum and a local minimum. Furthermore it is easy to check that
in a primal con�ict when D2v(dj�0) > 0, d 2

�
a(�0); b(�0)

�
and p1(a1j�0) = 0

the only maxima of V are either the smaller of these two intensities or b1(�
0):

On the other hand when D2v(dj�0) > 0 and p2(b2j�0) = 0 the only maxima

11
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of V are either a2(�
0) or the larger of these two interior intensities. In these

two cases we have a choice between a compromise and all out attack - in the
�rst scenario or total focus on the campaign in the second. In the dual case
we simply reverse the roles of maxima and minima in the above. Any choice
between the two options largely determined by �. So in all these case C2 avoids
some possibilities of contradiction in the commander but risks lack of contiguity.
It is often straightforward to �nd the solutions to (8) when the two densities

p1(dj�0); p2(dj�0) have a known algebraic form. We illustrate below a boundary
scenario where v(dj�0) satis�es the convexity conditions outlined above.

Example 2 (Zero-one utility/beta beliefs) Consider the setting described
in the example above where, for i = 1; 2, Pi(dj�0) has a beta B(�i; �i) density
pi(dj�i; �i) on the interval d 2 [0; 1] = I (so a = 0 and b = 1) given by

p1(dj�1; �1) =
�(�1 + �1)

�(�1)�(�1)
d�1�1(1� d)�1�1

p2(dj�2; �2) =
�(�2 + �2)

�(�2)�(�2)
d�2�1(1� d)�2�1

The function V (dj�) is then di¤erentiable in d for d 2 (0; 1) so by equation(8)
the commander�s decision will be 1) d = 0 - to keep intensity to the minimum
and so minimally compromise the campaign 2) d = 1 - to engage with full
intensity in order to attain the mission with highest probability or 3) to choose
a compromise decision d which satis�es

�(dj�; �) = � log d+ � log(1� d) = �0 (10)

where � = �2 � �1, � = �2 � �1 and

�0 = �+ �3(�
0)

where

�3(�
0) = � log �(�1 + �1)�(�2)�(�2)

�(�2 + �2)�(�1)�(�1)
(11)

Note in particular that in the two types of symmetric scenarios when �1 = �2
and �1 = �2 or when �1 = �2 and �1 = �2 the term �3(�) = 0 so that the
parameter �0 is exactly the daring �. Equation(10) implies that there are either
0; 1 or 2 interior critical points and 0 or 1 local maximum which is a potential
compromise solution as well as the two extreme intensities. We consider 4 cases
in turn:

� > 0; � < 0 In this case �(dj�; �) is strictly increasing on (0; 1) corresponds to a maxi-
mum of V . This compromise option is always better than fully committing
to the mission or campaign objectives at the exclusion of the other.

� < 0; � > 0 In this case �(dj�; �) is strictly decreasing on (0; 1) corresponds to a min-
imum of V . In this situation the rational commander will choose either
d = 1 - pure combat or d = 0 - pure circumspection. The actual choice with
depend on the value of �0 - the larger �0 the more inclined the commander
is to choose combat.

12
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� > 0; � > 0 This occurs when, for example, the maximum negative e¤ect on the cam-
paign of a chosen level of intensity is approached much more quickly than
the e¤ect of intensity on the success of the mission. Here it can be seen that
�(dj�; �) has two values in (0; 1) : the smaller a maximum and the larger
a minimum of V . With large negative values of �0 the rational commander
chooses a low but non- zero value of intensity obtaining almost optimal re-
sults associated with campaign objectives but allowing small chances of the
mission success which is more uncertain. As �0 increases, for example be-
cause the mission objectives are given a higher priority then this intensity
smoothly increases. However at some point before the intensity maximiz-
ing � is reached the commander switches from the partial compromise to
pure combat.

� < 0; � < 0 This happens when for example, the maximum negative e¤ect on the cam-
paign of a chosen level of intensity is approached much more slowly than
the e¤ect of intensity on the success of the mission. Here again �(dj�; �)
has two values in (0; 1) : but this time the smaller is a minimum and
the larger a maximum of V . With large negative values of �0 the rational
commander chooses pure circumspection but as �0 increases a point where
the Bayes decision suddenly switches to a moderately high intensity, this
intensity smoothly increasing to pure combat as �0 !1.

All scenarios where v(dj�0) is either strictly convex or concave exhibit an
analogous geometry to the one discussed above: only the exact algebraic form
of the equations governing the stationary point change. Although surprisingly
common in simple examples, this convexity condition is not a generic one. It
cannot model all scenarios adequately and competing decisions can often de-
velop in subtler ways. In these cases it is necessary to use somewhat more
sophisticated mathematics to understand and classify the ensuing phenomena.

3.4 Con�ict and di¤erential conditions

For the purposes of this section we make the qualitative assumption that for all
values of �0 2 �0 p1(:j�0) and p2(:j�0) are both unimodal with its unique mission
point mode denoted by �1(�

0) and its unique campaign point mode �2(�
0).

Further assume that p1(:j�0) and p2(:j�0) - are continuously di¤erentiable on
the open interval

�
a(�0); b(�0)

�
. It will then follow that

Df1(dj�0) > 0 when a(�0) � d < �1(�
0)

Df1(dj�0) < 0 when �1(�
0) < d � b(�0)

Df2(dj�0) > 0 when a(�0) � d < �2(�
0)

Df2(dj�0) < 0 when �2(�
0) < d � b(�) (12)

We have seen in the discussion of equation(9) that when the mission point is
smaller than the campaign point in a primal scenario the Bayes decisions of all
rational commanders are compromises and this decision is a continuous function
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of the hyperparameters and this is the only scenario which is not bifurcated, We
now study the complementary situation Thus suppose for a �0 2 �0 the mode
�2(�

0) < �1(�
0) : i.e. the mission point is larger than the campaign point. Then

when d 2 (a(�); b(�)) \
�
�2(�

0); �1(�
0)
�

Dv(dj�) = Df2(dj�0)�Df1(dj�0) < 0 (13)

this being true independently of the value of �. The stationary points d0(�) of
V satisfy (8) so de�ne a value �0 such that

�0(d0(�);�
0) = v(d0(�)j�0) = f2(d0(�)j�0)� f1(d0(�)j�0) (14)

This implies that any choice of �0 making d0(�0;�
0) a stationary point, makes

d0(�) a local minimum of V (dj(�0;�0)) and furthermore this is unique. It follows
by (??) that in a primal scenario V (d0j�)must have one local maximum &2(�) <
�2(�

0); and a local maximum &1(�) > �1(�
0): The scenario is therefore bifurcated

and will present possible problems for C2.
Since Dv(dj�) < 0 for any value of � for any d 2 (a(�); b(�))\�2(�0); �1(�0)

then in particular no Bayes decision can lie in this interval a phenomenon de-
scribed by [17] as inaccessibility. In particular �xing �0 and running � from �1
to1. From the monotonicity property d�0(�) is discontinuous in � at some value
��(�0) : �1

�
�0
�
< ��(�0) < �2

�
�0
�
. The set of optimal decisions thus bifurcates

into two disjoint sets: either lying in the interval (a(�0);&2(�
0)] and be of "low

intensity" more consistent with campaign objectives or be in [&1(�
0);b(�0)) and

be of "high intensity" and be more consistent with mission objectives.
Thus when �2(�

0) < �1(�
0) C2 cannot avoid a potential lack of contiguity,

even in primal scenarios .Furthermore the smaller the campaign point �2(�
0)

relative to the mission point �1(�
0) the larger the inaccessibility regions will

tend to be and so the worse the potential lack of contiguity. So the relative
position of the mission and campaign points has a critical role in the geometrical
description of the resolvability of con�ict for the rational commander.

4 Links to catastrophes

4.1 Catastrophes and rational choice

The bifurcation phenomenon we have described in this paper is actually a more
general example of some well studied singularities, especially the cusp (and dual
cusp) catastrophe, that are classi�ed for in in�nitely di¤erentiable functions see
e.g. [12], [17], [6]. Thus, for the purposes of this section assume now within
the interval d 2 (a(�); b(�)) that V (dj�) is in�nitely di¤erentiable in d and
consider the points (d0;�0) 2 I �� of (d;�) which are stationary points in this
interval: i.e. that satisfy (8). On this manifold the points for which the next
two derivatives of this function are zero: i.e. the parameter values �0 2 �0 of
the two densities and a stationary value of d

Df1(d
0j�00) = Df2(d

0j�00) (15)
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are called fold points. If in addition we have that at that stationary value

D2f1(d
0j�00) = D2f2(d

cj�00) (16)

also holds then such a � 2 � is called a cusp point. These points are of special
interest, because near such values �0 2 � the geometry of V (dj�) changes. In
the zero - one example these points will be largely determined by the actual
situation faced by the commander.
An important theorem called the Classi�cation Theorem demonstrates that

for most functions V and dimensions of the non-local and scale parameters in
� is less than 7 the way this geometry changes can be classi�ed into a small
number of shapes called catastrophes [17] each linked to the geometry of a
low order polynomial. In our case the cusp points and fold points are especially
illuminating because we will see below that, in many scenarios the commander�s
expected utility will exhibit a geometry associated with one of two of these
catastrophes the cusp catastrophe in the case of primal scenarios and the dual
cusp catastrophe in the dual scenario.
Suppose that � can be projected down on to a two dimensional subspace

C � R2; C � �. called the control space. Suppose this contains a single cusp.
The cusp is a continuous curve in C with a single point c(�00) called the cusp
point where the curve is not di¤erentiable and turns back on itself to form
a curly v shape. Points on this continuous line are called fold points. Their
coordinates can be obtained by solving the �rst two equations above in � and
then projecting these on to C:
It is convenient to parametrize the space C using coordinates (n; s) which

are oriented around this cusp. The splitting factor s takes a value 0 at the cusp
point along the (local) line of symmetry of the cusp orientated so that positive
values lie within the v. We will see below that typically in this application, in
symmetric scenarios the splitting factor is increasing of the distance �2(�

0) �
�1(�

0) between the campaign and mission points of the commander�s expected
utility. This is however not a function of � and so in particular not a function of
the utility weights. In this sense it is somewhat a feature of the scenario faced by
the commander rather than the commander herself and so in particular a more
robust feature for C2 to estimate. The normal factor n also takes a value 0 at
the cusp point and is orthogonal to s. In our examples it is always a function of
the parameter � as well as other features which might make the problem non-
symmetric and can in principle take any value depending on the commander�s
criterion weights.
It has now been shown that under a variety of regularity conditions, discrete

mixtures of two unimodal distribution typically exhibit at most on cusp point see
e.g. [14],[15]. When V (dj�) exhibits a single cusp point its geometry is simple
to de�ne. For values of � 2 � such that (n(�);s(�)) lies outside the v of the
cusp. there is exactly one stationary point d� of V (dj�) where d is in the open
interval (a; b), under the assumptions above d� must be a local (and therefore
global) maximum of V (dj�), and so the commander�s best rational choice. In
this scenario, because d� 2 (a; b) this course of action can be labelled as a
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compromise between the two objectives. The extent to which the compromise
will favour one of the two objectives will depend of the commander�s current
values of � 2 � which in turn depend on his prioritization and beliefs. In
this region d�(�) will be continuous in � and so evolve continuously as the
commander�s circumstances evolve.
On the other hand, for values of � 2 � such that (n(�);s(�)) lies within

the v of the cusp, under the assumptions above there will (exceptionally) be
two turning points and a maximum, or (typically) two maxima, d�(1) and d�(2)
and a minimum. In the latter usual scenario the commander�s optimal choice
will depend on the relative height of these local maxima. If the maximum d�(1)
closer to a is such that V (d�(1)j�) > V (d�(2)j�) where d�(2) is the maximum
closer to b then the rational commander chooses a low intensity option. If
V (d�(1)j�) > V (d�(2)j�) then the rational choice is the higher intensity option.
Note that this is analogous to the circumstances we have described above. In
this case C2 can experience lack of contiguity and regret at least for central
values of �.
The dual scenario - less favourable to C2 - has an identical geometry but

with maxima and minima permuted. Since rational behaviour is governed by
maxima, the behavioral consequences on the commander of the geometry are
quite di¤erent. Outside the v of the cusp, optimal decisions are thrown on
to the boundary and the scenario becomes pseudo unresolvable. On the other
hand parameters inside the v of the cusp allow there to be an interior maximum
of the expected utility as well as the two extreme options. Usually as we move
further into the v of the cusp the relative e¢ cacy of the interior decision improves
relative to the extremes until the Bayes decision becomes a compromise decision.
Rather than dwell on these generalizations we now move on to demonstrate

the geometries explicitly for some well known families of distribution.

4.2 Some illustrative examples

Example 3 (Zero -one beta catastrophe) From the catastrophe point of view
this is particularly simple. The fold points are obtained as solutions of D� = 0
which lie in the interior (0; 1) of the space of possible Bayes decisions. The
solution in terms of d� = �(�+ �)�1 lies in (0; 1) if and only if � and � are of
the same sign: the last two of the four special cases we analyzed. Explicitly they
are given by �� > 0 and

(�0; �; �) = (�f 0(�; �); �; �)

where
�f (�; �) = � log�+ � log � � (�+ �) log(�+ �)

It is easy to check there are no cusp points satisfying the above. Here the control
space can be expressed in one dimension and this one dimensional space summa-
rizes the geometry of the their commander�s utility function, as described earlier.
Once C2 identi�es whether the scenario is primal or dual and whether �� < 0
or �� > 0 the value of �f (�; �) and whether or not the value of �0 < �f (�; �),
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if �f (�; �) exists explains the range of possibilities. In this sense the existence
and position of fold points is intrinsic to understanding the geometry. Finally
note that this geometry is qualitatively stable in the sense that other utilities
satisfying the same strict convexity/concavity condition illustrated in this ex-
ample can never exhibit cusps and will exhibit exactly analogous geometry of
projection of its singularities but be governed by di¤erent equations on di¤erent
hyperparameters.

Because this is a boundary scenario the above example is not general enough
to capture all important geometries that C2 may encounter. Typically these
cases include cusps. Consider the following example.

Example 4 (gamma distributions) Suppose the distributions P1 and P2 are
(translated) gamma distributions having log densities on (a = 0; b = 2b) given
by

f1(d) = c1 + �1m1 log(2b� d)� �1(2b� d), d � 2b
f2(d) = c2 + �2m2 log d� �2d, d � 0

where ci = �i log �i � log �(�i), mi = ��1i (�i � 1) and �i; �i > 1 so that each
density has its mode strictly within the interior of its support. The equation( 3)
of the stationary points of the commander�s expected utility is then

�2m2 log d� �2d� �1m1 log(2b� d) + �1(2b� d) = (�1 + �2)�0

where �0 = (�1+�2)
�1 (�+ c1 � c2) Letting � = �1(�1+�2)

�1 , � = d� b this
simpli�es to

(1� �)m2 log(b+ �)� �m1 log(b� �)� � = �0 + (1� 2�)b

The modes of the two densities on � are given by the mission point �1 =
b � m1and campaign point �2 = m2 � b. By di¤erentiating with respect to
� substituting and reorganizing it follows that the fold points for � such that
�b < � < b must satisfy the quadratic equation

�2 +
�
(1� 2�)b� (��1 + (1� �)�2)

�
� + b((1� �)�2 � ��1) = 0

This scenario can therefore be identi�ed with the canonical cusp catastrophe [17]
whose fold points are also given by a quadratic. In particular its cusp points
satisfy

� =
�
(1� 2�)b� (��1 + (1� �)�2)

�
The fold points exist when�

(1� 2�)b� (��1 + (1� �)�2)
�2 � 4b((1� �)�2 � ��1)

Note that when �1 = �2 = � and �1 = �2 = �0 so that � = 1=2 and �1 = ��2
this simpli�es to there being fold points only when �2 � �1 and a cusp point at
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(�; �1; �2) = (0; 0; 0). This is consistent with the results concerning inaccessibility
discussed after (12) and the two competing decisions get further apart as �1 and b

increase since the fold points are given by � = �
q
b�1 with inaccessible decisions

between these two values.

Example 5 (dual gamma) In the dual scenario to the one described above
the cusp point de�nes the emergence of a compromise solution whilst pure cir-
cumspection a = 0 and pure combat b = 2b are always competing local maxima
of the expected utility. However as the modes �1 of Q2 and �2 of Q1 become
increasingly separated the compromise region grows and becomes the Bayes de-
cision of most commanders.

Although being able to identify this phenomenon with a canonical cusp/dual
cusp catastrophe as above is unusual, for many pairs of candidate distribution
the most complicated singularity we encounter is usually a cusp catastrophe.
Thus consider the following example.

Example 6 (Weibull distributions) Let X have an exponential distribution
with distribution function 1� exp�1=2x and suppose that the distribution func-
tions P1 and P2 are the distributions of X1 = 2

�
��1 fb�Xg

�c
and X2 =

2
�
��1 fX + ag

�c
so that for d 2 (a(�); b(�)) ; a(�) < b(�) the respective densi-

ties on this interval are given by

p1(d) = er (b� d)c�1 exp
�
�1
2

�
��1 (b� d)

	c�
p2(d) = er (d+ a)

c�1
exp

�
�1
2

�
��1 (d+ a)

	c�
Here � > 0 and for simplicity we will assume 0 < c � 2. Note that when c > 1;
the densities are unimodal with mission point �1(�) = b��

�
2(1� c�1)

	1=c
and

campaign point �2(�) = a+ �
�
2(1� c�1)

	1=c
and stationary points satisfy

f2(�)�f1(�) = (c� 1)
�
log
�
� + b

�
� log

�
b� �

��
�1
2
��c

h�
� + b

�c � �b� ��ci = �

(17)
where b = 1=2(b�a) and � = d�1=2(a+b) - so that �b � � � b: Di¤erentiating
and rearranging this expression when c 6= 1 decisions on the fold points must
also satisfy

 (�2; b) ,
�
b
2 � �2

�
�(�2; b) = g (18)

where g , 2(1� c�1)�c and

�(�2; b) =
1

2
b
�1 n�

b+ �
�c�1

+
�
b� �

�c�1o
> 0
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Note that when 1 < c < 2; �(�2; b) is strictly decreasing in �2. The cusp points
also need to satisfy

D (�2; b) = 0,

(c� 1)
�
b
2 � �2

�n�
b+ �

�c�2 � �b� ��c�2o = 2�
n�
b+ �

�c�1
+
�
b� �

�c�1o
Note in particular that for each value of b there is always a cusp point at
(�; �; g) = (0; 0; b

c
) and the splitting factor of such a cusp is b

c � g:: largest
when the di¤erence between the campaign point and mission point is large and
when the uncertainty � is small. When 0 < c < 1, g < 0 but  (�2; b) > 0 so no
fold points exist. As � increases the best course of action jumps when � = 0 from
pure circumspection a to the value b of pure combat. When c = 1 the stationary
points are given by those value, unique functions of the parameters satisfying
�c = dc � 1=2(a + b) = �=� and this again is always a minimum except when
� = 0 when all intensities in [a; b] are equally good. Finally when 1 < c � 2
because  is decreasing in �2 and g > 0, there is a single pair of stationary
points (���; ��) - coinciding when �� = 0 - lying on fold points if and only if

 (0) = b
c
= (1=2(b� a))c �

�
2(1� c�1)�c

�
= g

It can easily be checked that for a given b there is a single cusp point at (�; �; g) =
(0; 0; b

c
). In the special case when c = 2, the fold points are given by

�2 = b
2 � �2

There are therefore no fold points if b
2
= 1=4(b�a)2 < �2 whilst if 1=4(b�a)2 �

�2 the fold points are given by

d = 1=2(a+ b)�
p
1=4(b� a)2 � �2

Di¤erentiating and solving gives that the cusp point satis�es

1=4(b� a)2 = �2; d = 1=2(a+ b)

The distance between the campaign and mission point is therefore again central
here. See [[14]] for further analyses of the geometry of this special case and
its generic analogues. Note that this case is used to explain and categorize the
results of two battle group exercises we discuss in [3]:

Like in the gamma example above the assumption of equality in the uncer-
tainty parameter for the two distributions is not critical in the example above
in the sense that the underlying geometry can still be described in terms of s
continuum of cusp points and details of their exact coordinates for the case c = 2
can be found in [15].. It turns out the richest geometry is obtain in the equal
variance case, and when the uncertainty associated with one of the objectives is
much higher than the other the large uncertainty objective tends to get ignored
in favour of the other and the problem tends to degenerate
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We end by elaborating the �rst example to analyse the geometry of non-
boundary scenarios of this type. We note that as we move away for the boundary,
cusp catastrophes like those appearing in the last two example are exhibited in
this example as well.

Example 7 (General Beta Case) For i = 1; 2, let Pi(dj�0) be the density of
2Xi � 1 + (�1)ic where X1 has a beta B(�i; �i) density given in the earlier
example and jcj � 1. Then I(�0) = [jcj � 1; 1 � jcj] and the scenario is primal
when c > 0, dual when c < 0 whilst when c = 0 we have a linear transformation
of the boundary case of the last example. Writing 
i = �i � 1; �i = �i � 1,
i = 1; 2: The equation (8) becomes


2 log(1 + d+ c) + �2 log(1� d� c)� 
1 log(1 + d� c)� �1 log(1� d+ c) = �00

where

�00 = �+
X
i=1;2

log �(�i) + log �(�i)� log �(�i + �i) + (
2 + �2 � 
1 � �1) log 2

Di¤erentiating and reorganizing we �nd that in the fold points in I(�0) must
satisfy the cubic

3X
j=0

cjd
j = 0

where

c0 = (1� c2)[(�1 + 
2)(1� c)� (
1 + �2)(1 + c)]
c1 = (�1 � 
2)(1� c)2 � (
1 � �2)(1 + c)2

c2 = �(�1 + 
2)(1 + c) + (
1 + �2)(1� c)
c3 = 
2 + �2 � 
1 � �1

This situation is therefore slightly more complicated than the boundary on we
discussed earlier, because there is the possibility that two local and potentially
competing maxima appear in the interior of I(�0). However when a commander
is comparably certain of the e¤ect of chosen intensity on mission and campaign
objectives then 
1+ �1 = 
2+ �2 the fold point becomes quadratic and we recover
the geometry of the single canonical cusp/dual cusp catastrophe. After a little
algebra the cusp points related to the modes through the equation.

�2 � �1
�2 + �1

= c2

When c = 0 - our earlier case - this equation degenerates into requiring P1 =
P2 - but otherwise such cusp points exist and are feasible whenever �2 > �1:
This demonstrates how our original example can be generalized straightforwardly
away form convexity to a situation where compromise appears as an expression
of the cusp catastrophe.
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5 Discussion

An agile C2 can draw several conclusions from this analysis about how to orga-
nize, train and communicate intent and freedoms for decision-making to com-
manders: a number of these conclusions already being accepted as good practice.
Here we will assume that commanders face a scenario where both P1 and P2 are
twice di¤erentiable and unimodal.

1. Whenever appropriate and possible mission statements and campaign ob-
jectives should be stated in such a way that they are resolvable so that
well-trained rational commanders can safely compromise.

2. When a scenario cannot be presented as resolvable then, if planning to
devolve decision making C2 should aim to present a commander with a
pseudo resolvable scenario. The �rst of two conditions required for this
is that the scenario is primal. This means that the commander can per-
fectly address the campaign objectives whilst still having some possibility
of completing the mission to some degree of success and there is a level
of intensity ideal for attaining mission objective which also can be ex-
pected not to totally jeopardize the campaign. It will often be possible
to make a scenario primal simply by the way the two objectives are com-
municated to the commander. The second requirement is to control the
mission and campaign points modes so that the intensity with the best
incremental improvement on mission success occurs at a value ensuring
maximal campaign integrity and the best incremental improvement on
campaign success occurs at a value ensuring maximal mission. A rational
commander will then choose to compromise between the two objectives.
The actual compromise point will depend on each commander�s individ-
ual training and emotional history but the careful matching of contiguous
commanders should ensure coherence.

3. When neither of the two scenarios described above are achievable then in
most cases, provided the mission point is lower than the campaign point,
the devolved commander can still be expected to compromise and not
to be faced with contradiction. In this case C2 arrangements must be
prepared to expect lower levels of contiguity but coherence can still be
managed by carefully considering the commanders�capacity to deal with
stresses. In particular to encourage compromise C2 should try to ensure
that mission statements allow for there to be an option which scores at
least half as well as the best option for mission and at least half as well for
campaign objectives. Note that if it is made clear that partially achieved
success in the two objectives is more highly rated then the likelihood of
compromise is increased.

4. Problems of lack of contiguity and contradiction can be expected to occur if
the mission point is much higher than the campaign point. If C2 still plans
to devolve in these cases then they must endeavor to keep the distance
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between the mission and campaign points as small as possible since this
will limit the extent of the discontiguity and contradiction (see the analysis
of the last section).

5. The most undesirable scenarios are those that are unresolvable or pseudo
unresolvable. In these cases the focus falls on � and therefore, unless the
intensity associated with pure combat is close to that for pur circumspec-
tion, the training, deployment and personality of individual commanders
will become criticl. The C2 arrangements are then most stable if a top-
down style is adopted.

All these points rely on the assumption of commander rationality. In [1],
[3] we detail results from two experiments studying how experienced person-
nel respond to con�icting scenarios. The �rst was a mission where there was
high risk of casualties. The second was a potential threat to a civilian convoy
where the commander had to balance the e¢ cacy of defence from attack and a
negotiated passage. Participants were then encouraged to document their deci-
sion processes. The commanders often reasoned di¤erently but interestingly all
choose courses of action consistent with the rationality described above. Per-
haps one of the most interesting �ndings was that con�dence in succeeding in
the objectives - mainly re�ected in the choice of � - had a big in�uence on
course of action selection. Conclusions from these experiments, aided by the
implementation of the ideas above have informed procurement of command in-
formation systems [13]. Of course in real time a commander can only evaluate
a few possible courses of action [11], ,[9], [10] but we argue in [3] that this does
not invalidate the approach above, it just approximates it. So both from the
theoretical and practical perspective this rational model - where C2 assumes its
commanders choose what is rationally consistent with their individual nature,
experience and competencies is a good starting point for C2 arrangements and
their organization for training and selection.
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6 Appendix

Writing u[0;�] = infd2DfU(dj�)g and u[1;�] = supd2DfU i(dj�)g; to obtain
(3) note that U(dj�) is an increasing linear transformation of �01(�)U01 (dj�) +
�02(�)U

0
2 (dj�) where, for i = 1; 2, U0(dj�) =

�
U0i (d;d

�
i (d)j�)� u[0;�]

	
fu[1;�]� u[0;�]g�1,

U0i (dj�) =
�
U i(dj�)� u[0;�]

	
fui[1;�]� u[0;�]g�1and �0i (�) = �i(�)ui[1;�]u[1;�]

�1:Note
that these renormalizations simply ensure that �01(�)+�

0
2(�) = 1 , supU

0(dj�) =
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supU01 (dj�) = supU02 (dj�) = 1 and inf U0(dj�) = inf U01 (dj�) = inf U02 (dj�) =
0. For each �xed value of d a rational commander chooses the decision d�i (d)
maximizing U 0i(dj�), i = 1; 2 - respectively and then chooses d so as to maximize

�01(�)P1(dj�) + �02(�) (1� P2(dj�))

whereP1(dj�) = U01 (d;d
�
1(d)j�) and P2(dj�) = 1�U01 (d;d�2(d)j�). On substitu-

tion this can be seen to be maximized when V (dj�) of equation(3).is maximized.

Theorem 8 If V (d�0(�);�) is continuous in d at all values � 2 � and d�(�0),
de�ned above, is unique and there exists, for a �xed value of �0; an �0 > 0 such
that V (d;�0) is strictly increasing in d when d�(�0) � �0 < d < d�(�0) and
strictly decreasing when d�(�0) < d < d�(�0) + �

0, then d�(�0) is continuous in
� at �0:

Proof. For � > 0, let V �(�0) = supd2DfV (d;�0)gand A(�; �(�0)) = fd :
V (d;�) � V �(�)� �g where

�(�0) = maxfV (d�(�0);�0)�V (d�(�0)��0;�0); V (d�(�0);�0)�V (d�(�0)+�0;�0)g

Then, from the uniqueness of d�(�0) and the monotonicity conditions above,
for all " > 0; there exists an �0(") > 0 such that A(�0; �(�0)) � B(d�(�0); "(�

0))
where B(d�(�0); ") is an open ball centred at d�(�0) of radius ". By the con-
tinuity of V (d;�0) at (d�(�0);�0); for all " > 0 there exists an �(!) > 0 such
that if k �0 � �k0 < � then jV �(�0)� V �(�)j < ": Thus

d�(�) 2 A(�; �) � fd : V (d;�0) > V �(�)� � � !g
= A(�0; � + !) � B(d�(�0); 2")

which implies that, for all " > 0 there is an �00(") = min [�0("); �(!)] > 0 such
that if k ���0k0 < �, jd�(�)� d�(�0)j < 2": i.e. d�(�) is continuous at �0.
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