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A separation theorem on a graphical model allows an analyst to
identify the conditional independence statements it logically entails
using only the topology of the graph. In this paper we prove separa-
tion theorems associated with a new coloured graphical model called
a Chain Event Graph (CEG). The class of CEG models generalises
the class of finite discrete Bayesian Network models. Here we formally
define this model class, and consider the set of permissible conditional
independence queries on this graph. We provide necessary and suf-
ficient conditions for these conditional independence statements to
hold on a subclass of uncoloured CEGs called simple CEGs. We then
prove sufficient conditions for such statements to hold on a much
larger subclass called regular CEGs. The paper is illustrated with a
running example demonstrating the application of these theorems.

1. Introduction. If the DAG (directed acyclic graph) G of a Bayesian
Network (BN) has a vertex set {Xi,Xo,...,X,}, then there are n con-
ditional independence assertions which can simply be read off the graph.
These are the properties that state that a vertex-variable is independent
of its non-descendants given its parents (the directed local Markov prop-
erty [14]). Answering most conditional independence queries however, is not
so straightforward. The d-separation theorem for BNs was first proved by
Verma and Pearl [31], and an alternative version considered in [15, 14, 5]. The
theorem addresses whether the conditional independence query AIIB | C 7
can be answered from the topology of the DAG of a BN, where A, B, C are
disjoint subsets of the set of vertex-variables of the DAG. It allows the BN to
be interrogated and irrelevances checked before any quantitative embellish-
ments of distribution on its conditional probability tables are added. This
provides a valuable tool in the process of discovering requisite models [21],
as well as a logical framework for propagation algorithms and learning (see
for example [5] and the TETRAD software of Scheines et al).

However for many problems the available quantitative dependence infor-
mation cannot all be embodied in the DAG of a BN. Separation theorems
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2 THWAITES & SMITH

have been proved for more general classes of graphical model including chain
graphs [3], alternative chain graphs [2], and ancestral graphs [23]. In this
paper we prove separation theorems for a particularly expressive graphical
model — the Chain Event Graph (CEG).

Our motivation for the development of this class is that CEGs are proba-
bly the most natural graphical models for discrete processes when elicitation
involves questions about how situations might unfold. Although the topol-
ogy of these graphs is more complicated than that of the BN, they are much
more expressive, as they allow us to represent all structural quantitative
information within the graph itself. Context-specific symmetries which are
not intrinsic to the structure of the BN [4, 16, 22, 24] are fully expressed in
the topology of the CEG, which also recognises logical zeros in probability
tables, and the numbers of levels taken by problem-variables. This last has
been found to be essential to understanding the geometry of BN models
with hidden variables [1, 18].

The CEG has already been demonstrated to be a useful inferential frame-
work for applications as diverse as forensic science [26], biological regulatory
models [27], and education [8]. The graphs provide a framework for repre-
sentation [27], probability propagation [29], learning and model selection [8],
and for causal analysis [30].

These papers concentrate on the application of CEG-based techniques.
Whilst they use the conditional independence properties of the graph, they
do not provide a full formal development for the class of CEG models. This
paper rectifies this lack. In doing so we identify the form of the types of
conditional independence statements it is natural to query, and also prove
a number of separation theorems which allow us to answer each query as
always true or not, solely on the basis of the topology of the graph.

We note that, even more so than is the case with BNs, there are a number
of conditional independence properties which can simply be read off the
CEG. These are described in Sections 2.4 and 5.2, and given the tree-based
nature of the CEG these properties are naturally context-specific. That is to
say they are properties of the form AIIB | A for some event A. An analogous
statement for a discrete BN would be of the form

p(A=a | B=bC=c)=p(A=a|C=c)

for some subsets of variables A, B, C, some specific vector value ¢ of C' and
all vector values @ of A and b of B. The class of conditioning events we can
tackle with a CEG is however much richer than that generally considered
when using BN-based analysis.
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Fig 1. An SCEG C

2. The Simple Chain Event Graph.

2.1. The basic definition of an SCEG. The Chain Event Graph C(V, E)
is a directed acyclic graph (DAG), which is connected with a unique root
vertez (with no incoming edges) and a unique sink vertez (with no outgoing
edges). Unlike the BN more than one edge can exist between two vertices of
a CEG. The regular Chain Event Graph (RCEG) discussed in section 4 also
has its vertices and edges coloured.

We first consider a subclass of the class of CEGs called a simple Chain
Event Graph (SCEG). Neither the vertices (called positions) w € V(C), nor
the edges e(w,w') € E(C) of an SCEG are coloured. An example of an SCEG
is given in Figure 1.

The root and sink vertices of a CEG are labelled wg and w,. Each position
w € V(C)\{weo } has a set E(w) of k(w) outgoing edges, which when we wish
to emphasise their connection with the position w, may be labelled {e,(w) :
x=1,2,...,k(w)}.

A directed wy — we path A in C is called a route. The set of routes of C
is labelled A(C) (and corresponds to the set of atoms of the finite discrete

CRiSM Paper No. 11-09, www.warwick.ac.uk/go/crism
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TABLE 1
Context for Figure 1
Descriptor Edges
male e1(wo)
female e2(wo)

displayed symptom S before puberty | ei(w1),er(w2)
displayed symptom S after puberty es2(w1), ez (ws)

never displayed symptom S es(w), es(w2)

developed condition e1(ws), e1(wa)

did not develop condition e2(ws), e2(wa)

died before the age of 50 e1(ws), e1(we), e1 (wr),
e1(ws),e1(wg)

died at the age of 50 or older es2(ws), e2(ws), ez (wr),

ez(wg), 62(11)9)

probability space represented by C  see below). Note that each route is
uniquely determined by a sequence of edges. Thus in the CEG in Figure 1,
one such route is Ay = {e1(wy), e1(wy), e1(ws), e1(wg)}. It is easy to check
that C here has 20 such routes. We write w < w’ when the position w
precedes the position w' on a route.

When our CEG is applied to a population, each route corresponds to a
possible set of attributes that a member of the population could take. For
example, if the CEG in Figure 1 is applied to a population of people whose
parents sufferered from an inherited medical condition, and the edges of the
CEG carry the descriptors given in Table 1, then the route A; described
above corresponds to male, displayed symptom S before puberty, developed
condition, died before the age of 50.

An SCEG is route compatible for a population of units ¥ if each possible
history of a unit in the population (or atom of the event space) corresponds
to the unit passing along one of the routes A € A(C). We use F(C) to denote
the sigma field of events formed by these atoms. F(C) corresponds to the
power set of A(C). Since each atom of this event space codes what might
happen to a unit in ¥, the SCEG encodes an additional longitudinal devel-
opment depicting the possible ways the future might unfold, not encoded by
the sigma field F(C) alone (see [25]).

We label an event in F(C) by A, and note that because the CEG’s atoms
have this implicit longitudinal development associated with them, certain
events in F(C) are particularly important. Let A(w) denote the event that
a unit takes a route that passes through the position w € V(C). A(w,w")
is then the union of all routes passing through the positions w and w’,
A(e(w,w')) is the union of all routes passing through the edge e(w,w'), and
A(p(w,w")) is the union of all routes utilising the subpath pu(w,w").
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Certain subsets of the set of positions also have an important status in
this context. In this paper we will call a set R C V(C) a regular subset if
the events {A(w) : w € R} are disjoint. Note that R is regular if and only if
there is no route A € A(C) containing more than one position w € R. Call
R a position-cut if {A(w) : w € R} forms a partition of A(C). A position-cut
can be associated with a random variable that labels which of a class of
developments a unit might take (see section 3).

2.2. Probabilities on an SCEG. Underlying the SCEG there is a prob-
ability space which is specified by assigning probabilities to the atoms. We
do this as follows: For each position w € V(C)\{we } and edge e(w, w') em-
anating from w, we call m.(w' | w) a primitive probability if mw.(w' | w) > 0
and >, me(w' | w) = 1.

DEFINITION 1. A probability mass function p(A), A € A(C) is said to
have the monomial property for a population V¥ if there exists a set of prim-
itive probabilities IT = {m.(w' | w) : e(w,w') € E(w),w € V(C)\{ws}} on
the edges of C such that for all routes A\ € A(C)

p(A) = H me(w' | w) (2.1)

e(w,w')EX
where e(w,w') € A means that the edge e(w,w') lies on the route .

Note that (2.1) fully defines a probability measure over F(C) by specifying
each atomic probability as a function of its primitive probabilities.

The assignment of probabilities (2.1), determined by II implicitly de-
mands a Markov property over the flow of the units through the graph.
Thus, in the context of our medical example, the probablility of an indi-
vidual with attributes (male, displayed symptom S before puberty), (male,
displayed symptom S after puberty) or (female, displayed symptom S before
puberty) developing the condition depends only on the fact that the subpaths
corresponding to these pairs of attributes terminate at the position ws, and
not on the particular subpath leading to ws. The probability this individual
develops the condition is then 7 (wg | w3) = p(A(e(ws, ws)) | A(ws)). So we
only need to know the position a unit has reached in order to predict as well
as is possible what the next unfolding of its development will be.

This Markov hypothesis looks strong but in fact holds for many families of
statistical model. For example all event tree descriptions of a problem satisfy
this property, all finite state space context specific Bayesian Networks as well
as many other structures [27].
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We can go further and state that the sets of possible future developments
(whether or not they developed the condition and whether or not they died
before the age of 50) for individuals taking any of these three subpaths
must be the same. Moreover the conditional probability of any particular
subsequent development must be the same for individuals taking any of these
three subpaths. This accounts for the term position for a (non-sink) vertex.

In this paper we discuss minimal CEGs where if positions w, and wg
are such that the sets of possible future developments from w, and wg are
identical, and the conditional probability distributions over these sets are
identical, then w, and wg are the same position. Any reference to a CEG,
SCEG or RCEG should therefore be taken to mean a minimal CEG, SCEG
or RCEG.

DEFINITION 2. An SCEG C is said to be wvalid for a population W if it
is route compatible and has the monomial property for W.

Note that like the BN, the SCEG can be valid without its associated
primitive probabilities being known. We just need to believe that some set
IT exists so that the associated Markov hypothesis holds. We are free to
assign any set of probabilities II to the edges of a valid SCEG within the
simplex conditions above. So in particular the probability model space of a
valid C can be defined as the product space of these |V (C))| — 1 different
simplices where the simplex associated with w € V(C)\{wx } has Euclidean
dimension k(w) — 1. The probability of any event A in F(C) is then of the

form
p(A)=>pN) =3 [ melw' |w)

AEA A€A e(w,w’)EN

where A € A means that A is one of the component atoms of the event A.
In this paper we will also use the following further notation:

mu(w' | w) = p(A(p(w,w')) | A(w)) denotes the probability of utilising the
subpath p(w,w') (conditional on passing through w),

m(w' | w) = p(A(w,w') | Aw)) =3, m,(w' | w) denotes the probability of
arriving at w’ conditional on passing through w.

2.3. Conditioning on intrinsic events. In this paper we are interested in
conditioning sets which give rise to conditional independence queries that
can be answered purely by inspecting the topology of an SCEG C. An im-
portant subclass of these are events in F(C) which are called intrinsic.

DEFINITION 3. An intrinsic event A in F(C) is a set of routes of C which
are also routes of Cy where Cy is a subgraph of C that contains the root vertex
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wo and the sink vertex wey, of C in its vertex set, and where wq is the only
vertex in V' (Cp) with no parent, and wy is the only vertex in V(Cp) with
no child. Call such a subgraph Cp a sub SCEG.

Note that the sub SCEG C, is itself an SCEG. All atoms of F(C) are
intrinsic, as are A(w) and A(w,w’) (provided this is non-empty) for all
w,w' € V(C), and as is the exhaustive set A(wg). If we include the empty
set in the set of intrinsic events then we note that intrinsic sets are closed
under intersection and so technically form a w-system (see for example [12])
we can associate with the SCEG C.

Not all events in F(C) are necessarily intrinsic because the class of intrin-
sic events is not closed under union. For example, for the CEG in Figure 1,
the event A consisting of the union of the two atoms (e (wyg), e1(w1), e1 (ws),
e1(wg)) and (er(wp), e2(wr),e1(ws), e2(ws)) produces a subgraph Cy which
has four distinct routes, so A is not intrinsic. However the class of intrinsic
events is rich enough to encompass virtually all of the conditioning events
in the conditional independence statements we would like to query. In par-
ticular, if our model can be expressed as a BN then any set of observations
expressible in the form O(A) = {X; € A;} (for subsets {A;} of the sample
spaces of { X}, the vertex-variables of the BN) is a proper subset of the set
of intrinsic events defined on the CEG of our model [29].

The first important property of the class of valid SCEG models is that
they are closed under conditioning by an intrinsic event:

THEOREM 1. If an SCEG C is valid on a population VU then the proba-
bility model on F(C|A) of any of its sub SCEGSs Cy is a probability model on
F(CA) which is also valid.

The obvious set of primitive probabilities for the sub-SCEG C, is given by
I = {m} (v | w):e(w,w') € B(w),w € V(C)\{we}}

where

p(A | Ale(w, w")))

p(A | A(w))
providing this is well-defined. A proof of this theorem can be found in the
appendix. We note that this property has now been successfuly used to
develop fast propagation algorithms for CEGs (see [29]).

Note that the probability of an atom X in C conditioned on the intrinsic
event A is the probability of that atom in the SCEG Cj. We denote this
probability pa(A). It is then trivially the case that the probability of an
event in C conditioned on the event A is the probability of that event in the

SCEG Ch.

me(w' | w)

me(w' | w) =
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8 THWAITES & SMITH

2.4. Random variables on an SCEG.. Random variables measurable with
respect to F(C) partition the set of atoms into events. So for example, we
can define variables X,Y, measurable with respect to F(C), which partition
the set of atoms into events {Ax},{Ay}. Moreover for an event A (with
p(A) #0) we can write X IIY | Aifp(X =2 | Y =y, A) =p(X ==z | A)
for all values = of X and y of Y (see for example [7]).

LEMMA 1. For a CEGC, variables X, Y measurable with respect to F(C),
and intrinsic conditioning event A, the statement X IIY | A is true if and
only if X 1Y is true in the CEG Cjy.

The proof of this lemma is in the appendix. This is a particularly useful
property because it allows us to check any context-specific conditional inde-
pendence property by checking a non-conditional independence property on
a sub-SCEG.

We now turn our attention to two types of elementary random variables,
measurable with respect to F(C), that can be identified with each position
w € V(C)\{weo}- These are the variables {I(w) : w € V(C)\{woo }} defined
by

1 if X passes through w
I(w) = { 0 otherwise

and the variables {X (w) : w € V(C)\{weo }} defined by

X(w) = x if X passes along edge e, (w) € E(w)
Y= 0 if the position w does not lie on

where x = 1,2,...k(w) index the edges emanating from w. Notice that
since I(w) is clearly a function of X (w), to specify a full joint distribution
over {(I(w), X (w)) : w € V(C)\{wu}} it is sufficient to specify the joint
distribution of { X (w) : w € V(C)\{wwo }}. Note that all atomic events A can
be expressed as the intersection of events

A= () {X(w) = 2)}

WEA

and events in F(C) as the union of these atomic events

AeA weA

A= U { ﬂ {X (w) :.7:,\}}

where w € A denotes that the position w lies on the route A, and z) # 0 is
the unique value of X (w) of the edge in the route A.
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Fia 2. C conditioned on the event that displayed symptom S

Figure 2 shows the SCEG C from Figure 1 conditioned on the intrinsic
event A = (X (w1) = 1) U (X(w1) =2) U (X (w2) =1) U (X(w2) =2) or in
the context of our medical example, displayed symptom S.

For any set A C V(C), let X 4 denote the set of random variables { X (w) :
w € A} and I 4 the set {I(w) : w € A}. Also, for any w € V(C), let U(w) be
the set of positions in V(C) which lie upstream of the position w, D(w) the
set of positions which lie downstream of w, U¢(w) the set of positions which
do not lie upstream of w, and D (w) the set of positions which do not lie
downstream of w.

LEMMA 2. For any SCEG C and position w € V(C)\{w }, the variables
I(w), X (w) ezxhibit the position independence property that

X(w) O X pe(yy | I(w)

The result given in this lemma is analogous to that which Pearl [20] uses to
define BNs, which states that a BN vertex-variable is independent of its non-
descendants given its parents. It provides a set of conditional independence
statements that can simply be read from the graph, one for each position
in V(C). The proof of the lemma is in the appendix.

The statement that X (w) Il X pe(y) | (I(w) = 1) can be read as: Given
a unit reaches a position w € V(C), whatever happens immediately after w
is independent of not only all developments through which that position was
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reached, but also of all positions that logically have not happened or could
not now happen because the unit has passed through w. Thus, in the sense
above, the position of a valid SCEG C is sufficient to describe the future
development of units passing through it.

As already noted, the product space defined by {(I(w), X (w))

w € V(C)} is over specified. This is so firstly because I(w) =0 < X (w) =0
and I(w) = 1 = X(w') = 0 for w' € D% w) N Uw). Probability dis-
tributions exist which satisfy the set of statements of the form X (w) II
X pe(w) | I(w) which do not obey these implications, but such distributions
cannot be represented on an SCEG.

More significantly, if the SCEG is used for the purpose for which it was
intended, as a representation of an asymmetric process or problem, then
there will be many probabilities in the joint probability tables over the space
defined by {(I(w), X (w)) : w € V(C)} which are identically zero. The joint
mass function is then extremely sparse. These zeros correspond to impossible
events which nonetheless are given equal significance with possible events in
a BN-representation of the problem. In many cases these events are not
just impossible but meaningless. For example if X (w,) = 1 corresponds to
patient dies, X (wp) = 1 corresponds to patient is given treatment 2, and
wy < wy, then the event (X (wg) = 1, X (wp) = 1) has no logical meaning.

As the set of statements of the form {(I(w), X (w)) : w € V(C)} do not de-
fine the SCEG, these additional counterfactual statements produced by the
product space representation are not an integral part of the CEG-framework.
The product space defined by the full set of statements is nevertheless a use-
ful construct because it allows us to encode sets of conditional independence
statements into a valid SCEG and so allows us to quickly prove separation
theorems for such graphs.

The structure of the CEG illustrates a further aspect of the graphical
modelling process which is not transparent in the topology of the BN. The
CEG depicts all possible histories of a unit in a population, and gives a
probability distribution over these histories. However, when a single unit
traverses one of the routes in the CEG, values are assigned to I(w), X (w) for
all positions w € V(C). Those conditional independence statements encoded
by the positions and edges through which our unit has not passed are now
truly counterfactual [6] in that they answer queries of the form If X had
not been the case, what would be the chance of Y happening? So the CEG
simultaneously depicts both the “reality” and the counterfactual aspects
of the problem once we start to observe the actual behaviour of units in
the population. It also makes it a powerful framework for expressing rich
varieties of causal hypotheses [30].
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3. A separation theorem for Simple CEGs. We call a position
w € V(C) a stalk if the removal of w from V(C) would result in a graph with
two disconnected components. In (non-probabilistic) graph theory such a
vertex is called a cut vertez (see for example [11]).

THEOREM 2. In an SCEG C with wi,we € V(C) and wy A wr,
X(wy) II X (we) if and only if either wey is a stalk, or there exists a stalk
downstream of wi and upstream of wa, for wy X W1 < Wee, Wy < W < Weg-

The proof of this theorem is in the appendix. Theorem 2 has a number
of powerful corollaries, which we give after introducing two new variables.
Call J(R) the incidence variable of a regular subset R if

J(R) = > I(w) = sup I(w)
weR weR

and call Y(R) the criterion variable of a regular subset R if

Y(R) = Z X(w) = suII){X(w)
weR we

LEMMA 3. For an SCEG C with position cuts R, = {wy}, Ry = {wp}:
If X(w,) I X(wp) forany w, € Ry, wy € Ry, then Y(R,) LY (R,) in
every distribution compatible with C.

Conversely, if Y(Ry)IIY (Ry) holds for all distributions compatible with C ,
then X (wg) I X (wy) for all wg € Ry, wy € Ry.

This lemma and Corollary 5 in Section 7 formalise and generalise the
result given in [27] Theorem 2. The proof of the lemma is in the appendix.
The converse result is somewhat surprising, but is a consequence of the
particular structure of the sigma field associated with an SCEG.

COROLLARY 1. Let C be an SCEG, A an intrinsic event, R, = {w,},
Ry = {wy} be position cuts of C.
If in the sub-CEG Cy, w, and wy are separated by a stalk, for any w, € R,
wp € Ry, we,wp € V(Cr), then Y(R,) LY (Ry) | A.

The proof of this corollary is in the appendix. This has major consequences
for models which admit a product space structure, where othogonal cuts of
the CEG have a natural meaning corresponding to measurement variables
of the problem. Models of this sort can be represented as BNs, with possible
annotation of context-specific conditional independence properties.
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COROLLARY 2. If an SCEG C is of a model which admits a product
space structure, A, B are measurement variables of the model, and R,, Ry
are the position cuts of C correponding to these variables, then:

If X(we) I X(wp) for any w, € R,, wy € Ry, then ATl B in every
distribution compatible with C.

Conversely, if A1l B holds for all distributions compatible with C, then
X (we) I X (wy) for all wy € Ry, wy € Ry.

The proof of this follows immediately from Lemma 3.

COROLLARY 3. Let C be an SCEG of a model which admits a product
space structure, A, B be measurement variables of the model, A an intrinsic
event, Ry, Ry be position cuts of C correponding to the variables A and B.
If in the sub-CEG Cy, w, and wy are separated by a stalk, for any w, € R,
wy € Ry, wa, wy € V(Cp), then AILB | A.

The proof of this follows directly from Corollaries 1 and 2. In the case
where our model has a natural product space structure, the topology of
the SCEG allows us to replace conditional independence queries such as
AT B | C 7 by sets of context-specific queries such as {AII B | (C = ¢) 7},
allowing us to interrogate the graph using Corollary 3. If in addition our
model admits no context-specific conditional independence properties, then
the symmetries in the SCEG mean that we need only check the answer to a
single query, for instance AIIB | (C=1) 7

ExAMPLE 3.1. Figure 3 shows the SCEG C from Figure 1 conditioned on
the intrinsic event A = (X (w;) = 1) U (X (wa) = 1) or displayed symptom S
before puberty. This graph has a stalk at ws, and by Theorem 2 we have that
X (wo) O {X (ws3), X (wg), X (w7)} in this graph.

Consider the position cuts Ry = {wo}, R1 = {w1,ws}, Re = {ws3, wa, ws},
R3; = {ws,ws, w7, ws, wg} of C. Then as Figure 3 depicts a conditioned
CEG Cy for the intrinsic event A, Corollary 1 gives us that

Y(Ro) (Y (R2),Y (Rs)) | A

Now the CEG C from Figure 1 does not have a natural product space
structure, but this is no obstacle to our using Corollary 3 here. As Cy does
admit a product space structure we can impose this onto C by for example
defining A=Y (Ry),B=Y(Ry), D =Y (R3) and

1 if sup(X(w3), X (wyg)) =1
C= .
2 otherwise
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Fic 3. C conditioned on displayed symptom S before puberty

This allows us to use Corollary 3 and gives us that
AT(C,D) | (B =1)

which in our medical context reads as whether an individual develops the
condition and whether they die before 50 are independent of their gender
given that they displayed symptom S before puberty.

4. Regular CEGs. Although SCEGs form an important class of graph-
ical model, by adding extra structure to them we can make them even more
expressive. We do this by colouring positions and edges. The resultant graph
is called a regular Chain Event Graph (RCEG). We note that coloured
graphs have recently been found to provide a valuable embellishment to
other graphical models (see for example [9]).

An RCEG is a coloured SCEG C where the set V(C) has an associated
partition U(C) = {u1, us, ... us} for which each set u C V(C) is regular. The
set u is called a stage and is such that for each w € u the distribution function
of X(w) | (I(w) = 1) is dependent only on u and not on the particular w € u.

DEFINITION 4. wj,wy € V(C)\{ww} are in the same stage u if there
exists a bijection 1(wi, wy) between E(wi) and E(ws) such that if ¢ :
ex(w1) = ex(w2) then p(A(eg(wn)) | A(wi)) = p(A(es(ws)) | Alws)).

The positions wy, we have the same colour if they are in the same stage,
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FiGc 4. The RCEG for Example 4.1

and the edges e, (w1), e;(w9) have the same colour if wy, w9 are in the same
stage and e, (w1) maps to e, (w9) under this bijection.

The existence or otherwise of a bijection between two edge sets is normally
apparent from the context of the problem. Note that if e, (w7 ) maps to e, (ws)
under a bijection 1, then these edges must correspond to the same outcome
(for example patient dies) given the two histories A(wq) and A(ws). We call
the colouring of the RCEG the stage-structure of the graph.

EXAMPLE 4.1. Producing an RCEG from the SCEG in Figure 1 we
can add the extra information that the positions w3 and w4 are in the same
stage — that is the probability of developing the condition (or not) is the same
whether a member of the population has attributes corresponding to the sub-
paths (e1(wo), e1(w1)), (e1(wo), e2(w1)), (e2(wo), e1(w2)) or (ea(wo), e2(w2)).
The RCEG C is given in Figure 4.

This additional structure allows us to express a richer set of context-
specific properties and sample space information than we can with the
SCEG. The class of models expressible as an RCEG includes as a proper
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subset the class of models expressible as faithful regular or context-specific
BNs on finite variables. Unlike the BN, the RCEG embodies the structure of
the model state space and any context-specific information in its topology
and colouring.

RCEGs are route-compatible and have the monomial property for a pop-
ulation W if their underlying SCEG does, and hence are valid for a popula-
tion W if their underlying SCEG is. The subgraph Cp of an RCEG C con-
ditioned on an intrinsic event A is an RCEG. Theorem 1 holds for RCEGs.
Note however that Cx may not have the same stage-stucture as C in that po-
sitions or edges which have the same colour in C may have different colours
in Cx. Lemma 1 and the position independence property hold for RCEGs.

The conditions stipulated in Corollaries 1 and 3 can now be relaxed. It is
sufficient that Cy should be simple (rather than C) for these results to hold.

The subgraph of a CEG which consists of a position w, the sink-node wq,
and all edges and positions which lie on a w — wy subpath is called the
subgraph rooted in w. When the CEG is used as a practical tool it is im-
portant to maximise its representational efficiency. So if in the subgraph Cy,
the subgraphs rooted in the positions w, and wg have identical topologies
and colouring we can combine the positions w, and wg into a single posi-
tion [30]. Note that if we do this then Cp although now minimal, is no longer
a subgraph of C (see Definition 3).

Following the ideas of section 3, we let

J(u) = sup I(w) and Y (u) = sup X (w)

wWEU weu

The RCEG is also a powerful tool for interrogation purposes, but to max-
imise its potential in this area we use the Augmented Chain FEvent Graph
(ACEG) described in the next section.

5. Augmented CEGs.

5.1. Definition of an Augmented CEG. Analogously to the definition
of X4, let Y4 ={Y(u):ue€ A} and J4 = {J(u) : u € A}. Since the
CEG C is a DAG, there exists a partial order of the stages in the set U(C).
Let P(u) be the set of all u’ stages that precede v in this partial order. Let
Y o(u) be a minimal subset of ¥ p(,) such that

J(u) Y pry | Y

DEFINITION 5.  An augmented CEG (ACEG) A(C) is a function of the
CEG C with vertex set V(A(C)) ={J(u) :u € U(C)} U{Y (u) : uw € U(C)}.
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Fic 5. The RCEG for Ezample 5.1

The edge set E(A(C)) consists of directed edges connecting the parents
of any vertex in V(A(C)) to that vertex. Each vertex Y (u) has a single
parent J(u), and the parents of J(u) are precisely those Y (u') vertices that
are members of Y (,).

EXAMPLE 5.1. A research group has taken a sample from the popu-
lation described in Section 2.1 which contains only people who displayed
symptom S. Analysis of this sample suggests that whether an individual de-
velops the condition and whether they die before 50 are independent of their
gender given when they displayed symptom S. The RCEG for this is given in
Figure 5. An ACEG for this graph is given in Figure 6, where for illustrative
convenience the edges emanating from Y (u) nodes have been labelled with
values of A (=Y (Ry) for Ry = {wy}), B (= Y(R;) for Ry = {w;,wy}), and
C (=Y (Ry) for Ry = {ws,wa}).

5.2. ACEGSs are Bayesian Networks. We extend the notation of section 3
to let X pe(y) be the vector of random variables of the form X (w) associ-
ated with positions in C which do not lie downstream of the stage u. Let
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Jup)  Y(upy)

Jug,) Y(ugy)

CN)

Hugy) Y (Ugp)

Fic 6. An ACEG for the RCEG in Figure 5

Y pe(u), J pe(u) be the vectors of random variables of the form Y (u'), J(u')
associated with stages in C which do not lie downstream of the stage .

LEMMA 4. For CEG C, and stage u € U(C)
Y (u) Y peyy | J(u)

The result given in this lemma is analogous to that given in Lemma 2 for
positions, and so also to the result quoted there for BNs. It provides a set
of conditional independence statements that can simply be read from the
graph, one for each stage in U(C). A partial reading of the lemma gives us
that the immediate future for a unit at a stage u is independent of how the
unit reached that stage. The proof of the lemma is in the appendix.

By construction, if a stage u' is not downstream of u in C, then J(u'), Y (u')
are not downstream of J(u),Y (u) in A(C). Since for every stage u', J(u') is
a function of Y (u'), it follows that

Y (u) I (J peuys Y pequy) | J(u)

CRiSM Paper No. 11-09, www.warwick.ac.uk/go/crism



18 THWAITES & SMITH

and hence that
Y (u) 0 (Jp(u), Y pey) | J(u)

in any partial order of U(C). Clearly we also have that

J(u) (T puys Y pwy) | Y gu

and hence that all vertices in an ACEG A(C) are independent of their pre-
decessor vertices given their parental vertices in any partial order of U(C).

In [19] it is shown that a probability distribution P is Markov relative to a
DAG @G if and only if each variable in G is independent of all its predecessors
conditional on its parents, in some ordering of the variables that agrees with
the arrows of G. Clearly our ACEG is a DAG, and from the above reasoning
each variable in A(C) is independent of all its predecessors conditional on its
parents for all P defined on the CEG C. So our ACEG obeys what Pearl [20]
calls the ordered Markov condition, and hence also obeys the local Markov
condition [13]. Results in [10] allow us therefore to deduce that the ACEG
is itself a BN.

This deduction means that any result available for use with BNs can also
be used with ACEGs. In particular we can use d-separation to allow us to
interrogate ACEGs for conditional independence properties. The advantage
that the ACEG has here over the BN is that in the former context-specific
conditional independence properties are depicted explicitly in the topology
of the graph, and so it can be interrogated directly for such properties. We
begin however by looking at models which can be represented by BNs.

6. Models depictable by Bayesian Networks and others. If a
model has a natural product space structure and admits no context-specific
conditional independence properties then it can be depicted by a BN with-
out any further annotation. In this section we show that if our CEG is of
such a model then any separation-based conditional independence property
readable from the BN can also be read from its associated ACEG.

If our CEG is of a model which has a natural product space structure then
for each variable X; in the BN there exists a collection of vertices {.J(u;)}
in the ACEG whose members correspond to the possible configurations of
Q(X;) (the parent variables of X;), and a collection of vertices {Y (u;)} whose
members correspond to X; given those configurations.

THEOREM 3. If a model with a natural product space structure admitting
no context-specific conditional independence properties, has a BN represen-
tation G, and a CEG representation C, then:
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If {Y(u;)} is d-separated from {Y (u;)} by {Y(ug)} in A(C), then
X I X | Xy in every distribution compatible with C and G.

Conversely, if X;I1X; | Xy, holds for all distributions compatible with C and
G, then {Y (u;)} is d-separated from {Y (u;)} by {Y (ug)} in A(C).

The proof of this theorem is given in the appendix. This result can be
explained as follows: The CEG C is of a model which has a natural prod-
uct space structure admitting no context-specific conditional independence
properties, and can be depicted by a BN G. Therefore there exist (in A(C))
edges from vertices in {Y (u;)} to vertices in {J(u;)} if and only if there exists
an edge from X; to X; in G, and so there is a 1:1 correspondence between the
parental conditional independence statements in G and the parental condi-
tional independence statements in A(C). By [31] Corollary 1, the conditional
independence statements in a DAG can be derived from d-separation if and
only if they can be derived from the list of parental conditional indepen-
dence statements using the semi-graphoid axioms [28]. As both G and A(C)
are DAGs, we can infer that there is a 1:1 correspondence between the con-
ditional independence statements derived from d-separation in G and the
conditional independence statements derived from d-separation in A(C).

Essentially, Theorem 3 allows us to use the collections {Y (u;)} in the
ACEG as surrogates for X; in the BN, when answering conditional indepen-
dence queries.

ExampPLE 6.1. For the RCEG in Figure 5, let A, B,C be as in Exam-
ple 5.1, Ry = {ws, wgs, w7, ws} and D = Y (R3). Then using Theorem 3 on
the ACEG for this RCEG (given in Figure 6), we see that

Y (ua) is d-separated from {Y (u¢),Y (up)} by {Y(up)} = AL (C,D) | B
{Y(ua),Y (up)} are d-separated from {Y (uc)} = (A4,B) 1 C
Y (u4) is not d-separated from Y (uc) by {Y(up)} = AL C | D
Y (up) is not d-separated from Y (uc) by {Y(up)} = BII C | D

develops the condition and whether they die before the age of 50 are inde-
pendent of their gender given when they displayed symptom S; whether they
develop the condition is independent of their gender and when they displayed
symptom S; but whether they develop the condition is not independent of
either their gender or when they displayed symptom S given whether or not
they die before the age of 50, for the sample considered in Example 5.1.
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COROLLARY 4. If X;, X;, X}, are distinct subsets of the vertex-variables
of G, and {Y (u;)},{Y (uj)},{Y (ux)} are the corresponding collections in
A(C), then the results of Theorem 3 still hold.

This follows from the proof of Theorem 3 (which does not depend on
Xi, X, X}, being single variables).

We have called the collections {Y (u;)} in A(C) surrogates for X; in G,
but when we replace the statement “X; I1 X; | X in G” by “{Y(u;)} is
d-separated from {Y (uj)} by {Y (ur)} in A(C)”, only {Y (uy)} is actually
a surrogate. This is because the latter statement implies that {Y (u;)} 11
{Y (uj)} | {Y(ug)} (since A(C) is a BN), and if this statement is true then
X; I X | {Y(ug)} since X; ( = supY(u;)) is a function of {Y(u;)}. By
construction only one Y (u;) within the set {Y (u;)} can take a non-zero
value, and the value this variable takes is equal to the value taken by X;.

Note that the ACEG has J(u) and Y (u) nodes for each stage u € U(C),
and each stage u in a CEG is associated with a particular collection of
parents the set of v’ € U(C) corresponding to Y o(u) in the ACEG. Indeed,
if our CEG has sufficient symmetry to be embedded into a family of models
with a product space structure, then the positions constituting each stage u
are members of a specific orthogonal cut R (section 2.1), and u encodes a
particular configuration of the parental variables of Y (R).

For this reason an ACEG has many more nodes than a standard BN,
and so admits a far larger collection of conditional independence state-
ments. This collection includes many context-specific properties which can
only be represented in BNs by modifying their structure [4, 16, 22, 24]. It
also includes many counterfactual statements of the type described in Sec-
tion 2.5 on SCEGs. So for example, if we consider the CEG in Figure 2, but
combine the positions wg, w7, wg and wg into a sink-node wy,, we get the
ACEG depicted in Figure 7, where for convenience we have let A = Y (Ry),
B =Y(Ry), C =Y (Ry) with Ry, Ry, Ry defined as in Example 5.1 above.

Using the ACEG in Figure 7 we can deduce that CII B | (A = 1) —
whether an individual develops the condition is independent of when they
displayed symptom S given that their gender is male (and symptom S was
displayed), and that C I1 A | (B = 1) — whether they develop the condition
is independent of their gender given that they displayed symptom S before
puberty. But we also have statements such as Y (uce) Y (upi) | Y(ua),
which has no obvious meaning in the context of the problem.

7. More on context-specific conditional independence. One of
the distinct advantages of the CEG when representing and analysing asym-
metric problems is that we can examine the effects of conditioning on a
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J(uBl) Y (UB;L) ‘](uc1) Y (ucz)

Xuy)

W) YU O Ny YU

Fic 7. An ACEG for the adapted CEG from Figure 2

specific event, perhaps a specific value of a variable, and use the CEG’s
topology to discover conditional independencies which would not exist if we
were to condition on a related event, such as a different value of our vari-
able. If we are interested in these context-specific conditional independence
properties then in this discrete context we need to concentrate our attention
on statements where the conditioning element is an event. In most cases
this event will be expressible as a value of a single Y (u) (or J(u)) variable,
and so queries can be checked directly on an ACEG without the need of
the surrogate argument of the last section. What happens in cases where
our conditioning event cannot be expressed as a value of a Y (u) (or J(u))
variable? An example of this is the event A = (B = 1) for the model de-
picted in Figure 4. We could draw an ACEG for the full CEG C here, but
the ACEG for Cp is much more useful. The sub-CEG Cp for this event is
given in Figure 3. Note that the edge-probabilities on this graph are now
A=1|B =1 A=2| B =1 for the edges leaving wg; 1 for the edges
leaving wy & w9 (the positions wy & ws could be combined into a single
position as suggested in Section 4); C = 1, C' = 2 for the edges leaving ws;
D=1|B=1C=1, D=2|B=1C=1, D=1|B=1,C=2
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Jup)  Y(upy)

Fic 8. An ACEG for the sub-CEG from Figure 3

and D =2 | B =1,C = 2 for the edges leaving ws & wg (see Section 2.3
and [29]).

An ACEG for Cy is given in Figure 8. Notice that unlike in Figure 6,
J(u4) is not a root-vertex as A is now dependent on B. Also, because we
have conditioned on the event (B = 1), the set of Y (upg) vertices has become
a single vertex Y (up—1) with no ancestors except J(up—1). We now use
d-separation to read that

{Y(uc),Y (up)} are d-separated from Y (ua) by Y(up=1)

= (Y(uc),{Y(up)}) WY (ua) | Y(up=1)
= (O,D) IoIA ‘ Y(Ule)

since the ACEG is a BN, and A, C, D are functions of Y (u4), Y (uc), {Y (up)
AlsoY(up=1) =1 < B =1, so this in turn implies that (C, D)IIA | (B =1
without the use of the surrogate argument.

This method will always work for cases like this since conditioning on an
event such as B = 1 always produces a single vertex of the form Y (up—1),
which takes the value 1 if and only if B = 1.
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As with SCEGs (see Section 3), standard conditional independence queries
on an RCEG can generally be answered by looking at context-specific condi-
tional independence queries on subgraphs of the CEG which are often simple.
Such conditioning can only remove colouring from the graph and not add
it. Because of the way CEGs are constructed, the conditioning event in a
context-specific conditional independence query can very often be written
as A(w) for some w € V(C). But if we condition on an event A = A(w), we
can read conditional independence properties off the graph Cp even if Cy is
not simple.

COROLLARY 5. Let C be an RCEG with position cuts R, = {wa},
Ry = {wp}. If wg, wy are separated by a stalk, for any w, € Ry, wy € Ry, then
Y(R) 1Y (Ry).

The proof of this corollary is in the appendix. This result can obviously
be extended to give sufficient conditions for Y (R,) Il Y(R) | A just as
Corollary 1 extends the result for SCEGs.

So if A = A(w) for some w € V(C), then w is a stalk in Cj, and in
this graph, Y (R,) L1 Y(Ry) for any position cuts R, upstream of w, and R,
downstream of w. Hence Y (R,) 1Y (R;) | A providing we have defined these
variables consistently on the CEGs C and Cy (see proof of Corollary 1).

ExAMPLE 7.1. Consider the RCEG from Figure 4 conditioned on the
event A = (X (wy) = 1)U (X(w1) = 2) U (X(wg) =1) U (X (wg) = 2). The
RCEG for this is given in Figure 9.

Ignoring the medical context here, we note that in this graph the event
A = A(w3) can be characterised as (min(A, B) = 1). If we condition on this
event we get Cp as in Figure 10, which as already noted must have a stalk.
For illustrative convenience edges in Figure 10 have been given probability
labels.

Using Corollary 5 we get (C,D) 11 (A, B) | (min(A4, B) = 1), and con-
ditioning on A = A(w4) we get a CEG from which we can trivially read
that (C,D) 11 (A, B) | (min(A, B) = 2). Combining these we get (C, D) II
(A, B) | min(A, B).

8. Conclusion. In summary, the results of section 3 give us conditions
for the truth of AIIl B statements on SCEGs which are directly analogous to
those given in (for example Pearl’s [20] or Lauritzen’s [14] versions of) the
d-separation theorem for BNs. Corollary 1 also gives us sufficient conditions
for AII B | A statements to hold. Subsequent sections give us sufficient
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Fic 9. The RCEG for Ezample 7.1

conditions for A Il B | A statements to hold on RCEGs. Queries such as
Al B | C 7 where the conditioning element is also a variable (or collection
of variables) can generally be answered by considering sets of queries of the
form AII B | A 7 Methods for doing this are suggested at various points in
the text, but in the special case where the RCEG describes a model which
can be depicted by a BN, Theorem 3 gives conditions for AIl B | C directly
analogous to those given in the d-separation theorem for BNs. The ACEG
from Section 5 is very useful for all types of conditional independence query,
but is particularly useful for queries of the form AII B | A 7 in situations
where using other techniques is not straightforward. The fact that the ACEG
is itself a BN opens up an exciting range of possibilities still to be explored.

Analysts working with BNs have found that attempts to feed back to
a user all the implicit conditional independencies associated with a given
graph can be rather overwhelming unless the BN is very simple. Clearly
this would also be the case with CEG-based models. However, within any
given context the types of independencies that it is natural for the user to
be able to understand, examine and verify are small in number. Since the
identification of such natural relationships is dependent on the domain of
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Fiag 10. The RCEG from Figure 9 conditioned on A = A(ws3)

application of the CEG we defer this discussion to a future paper.
APPENDIX 1: PROOFS AND ONE ADDITIONAL LEMMA

LIMITED MEMORY LEMMA.  For any CEG C, wi,wse, w3 € V(C) with

w; < we < ws,
Iws) W (ws) | (I(wg) = 1)

PROOF. It is sufficient to prove that
p(I(wsg) =1 | I(wy) =1,1(we) = 1) = p(I(w3) =1 | I(wg) = 1)

So consider a single route A passing through wy, w9, ws. This route consists
of a set of edges and by construction the probability p(\) of the route is equal
to the product of the probabilities labelling each of these edges. Moreover,
the probability of any subpath of A is equal to the product of the proba-
bilities labelling each of its edges. So p(A) can be written as the product of
the probabilities of four subpaths: pg(wg,w1), p1(wy,ws), po(ws, ws), and
w3 (w3, ws ). Thus

p(>‘) = 7Tuo(wl ‘ ’wo) Ty (wQ | wl) 7Tl12(w3 ‘ w2) Ty (wOO ‘ w3)

Consider now the event (I(wy) = 1,I(wa) = 1,I(w3) = 1) or A(wy, wa,ws),
which is the union of all wy — wq, routes passing through wi, ws, w3. Then

CRiSM Paper No. 11-09, www.warwick.ac.uk/go/crism



26 THWAITES & SMITH

since A(wq,ws, w3) is an intrinsic event we can write

P(A(wi,wa,wz)) = (D mug(wn | wo)) (D 7y (w2 | wr))

o €My 1 €My

X (Y mu(ws fw2)) (D muy(wee | w3))

2 €My u3€EMs

where M; (i = 0,1,2) is the set of all subpaths from w; to w;1, and Mj is
the set of all subpaths from ws to wee. But 3, cpry Tuo (w1 | wo) is simply
the probability of reaching wy from wq, or 7(wy | wy), so

p(A(wr, we,w3)) = w(wy | wy) m(wy | wy) w(ws | we) T(wee | w3)

=7(wy | wy) m(wy | wi) w(ws | we) x 1
since all paths passing through w; terminate in wy,. Therefore

p(A(wy, wa, w3))
p(A(wy, wy))
~ m(wy | wo) w(wsy | wi) w(wsz | we) x 1

p(I(wg) =1 | I(w) =1,I(wg) =1) =

m(wy | wo) m(we | wy) x 1
= m(ws | wa)
=p(I(ws) =1 I(wy) =1) O
If we replace I(w;) = 1 by A(u(wg,wsy)) for any subpath u(wg,ws), and
I(w3) =1 by A(e(wy, w))) for some edge e(wq, wh) then we obtain

COROLLARY A.  For any CEG C with w € V(C)

p(A(e(w,w')) | A(u(wo, w)), A(w)) = p(A(e(w, w")) | A(w))

Similarly, if w}] < wy and we replace I(w1) = 1 by A(e(wy,w))) (X (w1) = 21
for some 1 € 1,...k(wy)), and I(ws) =1 by A(e(ws,w})) (X (ws) = x5 for
some z3 € 1,...k(ws)) then we obtain

COROLLARY B.  For any CEG C, wi,ws, w3 € V(C), with w} < wy < ws

p(A(e(ws,wh)) | Ale(wr,w))). Aws)) = p(Ale(ws, wh)) | Aluws))
(P(X(ws) = @5 | X(wr) = @1, I(ws) = 1) = p(X (wy) = w5 | [(wy) =1) )

PROOF OF THEOREM 1.  Since the atoms of F(C|A) are routes in Cj,
F(C|A) = F(Cx), and so the conditioned model is route compatible (sec-
tion 2.1). For each atom A € A, the probability mass function of this atom
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in Cy is given by pa(A) = p(A]A) which equals

p(A(wg), Ale(wg, wr)), Ale(wr, ws)), ... Ale(wm, ws)) | A)
= pa(A(wo), Ale(wg, wr)), Ale(wr, w2)), ... Ale(wn, weo)))
= pa(A(wo)) pa(Ale(wo, wr) | A(wp))

x pa(A(e(wr, ws) [ A(wo), Ale(wo,wr))

X .o pa(A(e(wm, weo)) | Awyg), ... Ale(wm—1,wm)))

which by Corollary A of the Limited Memory Lemma equals

1 x pa(A(e(wg,wy) | Alwg)) pa(Ale(wr, wa) | A(wy))
X pa(Ae(wz, w3) | A(wz)) X ... pa(Ale(wm, weo)) | Alwm))

= H pa(Ale(w,w")) | A(w))
e(w,w')eX

So letting 7} (w' | w) = pa(A(e(w,w")) | A(w)) we have
p(A|A) = H i (w' | w)
e(w,w')eX

and the probability mass function p(A|A) has the monomial property. Hence
Cy is a valid SCEG.
O

Note that as stated in section 2.3

pa(A(e(w, w")) | A(w)) = p(A(e(w,w")) |
_ p(A ] Afw), Ale(w, w')))
p(A | Aw)

A, Aw))

me(w' | w)

PROOF OF LEMMA 1. X,Y partition the set of atoms of C, and since
A C A(C), X,Y also partition the set of atoms of C,. Consider arbi-
trary events Ay and Ay from the sets {Ax} and {Ay} (partitions of the
set of atoms of C), and the event Ay = Ax N Ay. Then p(Ax | A) =
pa(Ax), p(Ay | A) = pa(Ay) and p(Ax, Ay | A) =p(Aa | A) = pa(Aa) =
pAa(Ax, Ay). The statement

p(Ax,Ay | A) =p(Ax | A) p(Ay | A)
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is then true if and only if the statement

pA(Ax, Ay) = pa(Ax) pa(Ay)

is true; and this holds for all Ax € {Ax} Ay € {Ay}. O

PROOF OF LEMMA 2. By definition I(w) = 0 = X(w) = 0, so if
I(w) = 0, X(w) is known and so in particular is independent of all other
variables. If I(w) = 1 then X (w') = 0 for all w' € D(w) N U(w).

So consider I(w) = 1 and w' € U(w). We now use the monomial property
to show that X (w) I Xy, | (I(w) = 1).

The primitive probability m.(w™ | w) is a factor of the probability p())
for a number of routes. Consider one of these routes and denote the subpath
of this route between wy and w by p(wg, w). Then by Corollary A of the
Limited Memory Lemma, we can write

me(w™ | w) = p(Ae(w,w™)) | A(w))

and this is clearly true for all subpaths between wy and w. But the set of
these subpaths is in 1:1 correspondence with the set of vectors of values of
X ¢/(w) which are consistent with the topology of the SCEG and with the
event I(w) = 1. The event A(w) can be written as I(w) = 1, and the event
Ale(w,w")) as X (w) = z for some z > 0. Hence

p(X(w) =2 | I(w) = 1) = p(X (w) =2 | Xy, [(w) = 1)

and X (w) I X () | (I(w) = 1).
Combining this with the two previous results we therefore have

X(w) HXDC(w) | I(w) (I

PROOF OF THEOREM 2. (1) SUFFICIENT CONDITIONS FOR INDEPENDENCE

Consider an SCEG C, and two positions wy,ws € V(C), where wy 4 wy,
and by construction I(w;) Z 0, I(wsy) Z 0.

Suppose there exists a stalk downstream of w; and upstream of ws. Label
this position w. Then all paths passing through w; pass through w, all paths
passing through ws pass through w, and necessarily w; < w < wsy. Also

p(X(we) = o | X(wn) =x1) = p(X(we) =9 | X(wy) =z, I(w) =1)
=p(X(wg) =9 | I(w) =1)
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since wy < w < we, and using Corollary B of the Limited Memory Lemma

(X(
(X(

) =z | X(wr) =2}, I(w) =1)
) = x5 | X(w) = z})

p w2
p w2

for all values 1,2} of X(wy) and all values zo of X (wy)

= X(wy) I X (ws)

If woy is itself a stalk, then we replace I(w) = 1 by I(wy) = 1 in the above
argument with the same result.

So a sufficient condition for X (w;) II X (wq) is that either wq is itself a
stalk, or there exists a stalk downstream of wy and upstream of ws.

(2) NECESSARY CONDITIONS FOR INDEPENDENCE

Let X (wq) I X (ws) (and since I(w) is a function of X (w), X (wy) I (ws)
and I(wq)I1I(wy)). Let the set of routes of C be partitioned into four subsets.
Call a route Type A if it passes through ws, but not through wy, Type B
if it passes through neither wy nor wy, Type C' if it passes through both w;
and we, and Type D if it passes through wy, but not through wy. Our proof
proceeds as follows:
(a) We show that we must have w; < wy (ie. the set of Type C routes is
non-empty.
(b) We show that every route intersects with every other route at some
point downstream of wy and upstream of wys. If two wy — wee routes
share no vertices except wg and wee, we call them internally disjoint (see
for example [11]). So we can say that there cannot be two internally disjoint
directed routes in C
(c) We show that there cannot be two internally disjoint routes in the undi-
rected version of the CEG (the CEG with its edge arrows removed), and
that therefore there must be a stalk between wy and wee.
(d) We show that either w; is a stalk or wy is a stalk, or there exists a stalk
downstream of w; and upstream of ws.
(e) Finally we show that if wy is a stalk then there must also either be a
stalk at ws or a stalk downstream of w; and upstream of ws.

(a) Suppose that w; A we (and recall that wy A w;). Then
p(I(wg) = 1| I(wy) = 1) = 0. I(wy) I I(wy) = p(I{(we) = 1) = 0
= I(w9) = 0. This is impossible by construction. Therefore wy < ws.

(b) We first show that each Type C route intersects with every other
route at wy or at ws or at some point between these positions.
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p = arbitrary probability in (0,1)

Fia 11. Illustration for Type C and Type B routes

Let A1 be a Type C route, and p(w,ws) the subpath coincident with A\q
between wy and we. If the set of Type B routes is non-empty then let Ao
be a Type B route which does not intersect with u; (ie. Ay and p; have no
positions in common).

Consider a distribution P which (1) assigns a probability of 1 to every edge
of the subpath pj(wy,ws), and (2) an arbitrary probability greater than 0
and less than 1 to each edge of the route Xy (Figure 11). If our SCEG
is minimal and A9 does not intersect with p; then this is always possible.
Under P, assignment (1) gives us that

pI(wg) =1 [ I(w) =1) =1
and I(wq) II I(wy) implies that under this P
p(I(we) =1|I(wy) =0)=1 = p((we) =0 | I(w;) =0)=0
But assignment (2) gives us that p(I(wq) =0 | I(w;) =0) >0 %

The assumption I(wq) II I(ws) is incompatible with the assignments of (1)
and (2). But these assignments are always possible if Ay does not intersect
with pq. Hence A9 must intersect with pu;.
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Fic 12. Illustration for non-Type C routes: wa, < wam

Hence each Type C' route intersects with every Type B route at some point
downstream of w; and upstream of ws. Also each Type C route intersects
with every Type A route (at wy), with every Type D route (at wy) and with
every other Type C route (at both wy and ws).

We now consider routes that are not of Type C'. If the set of non-Type C
routes is non-empty let A3, Ay be members of this set which do not intersect
except at wg and ws. Let p(wq, we) be a subpath between wy and ws.
From above both A3 and A4 must intersect with yu. Let A3 intersect with p
only at the positions wsi,...ws,, where wg; < -+ < w3y,; and let A4 in-
tersect with p only at the positions wyy, ... wys,, where wy < -+ < wWyy.
Without loss of generality let w; = w31 < wgq; = ws, so that A3 could be a
route of Type B or Type D, and A4 could be a route of Type A or Type B.
Suppose that wg, < w3, (Figure 12). Consider the subpath ps(w;,ws)
which coincides with g from wq to wsy (if w3 # wy), coincides with A3 from
w31 t0 w3y, and coincides with p from ws,, to we. This subpath us does
not intersect with the route A4. This is impossible since every route in C
intersects with every u(wi,ws) subpath.

Suppose therefore that ws,, < w4, (Figure 13). Consider the subpath
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Fic 13. Illustration for non-Type C routes: simplest case of wam < Wan

g (w1, wse) which coincides with g from wy to wsy (if wsy # wq) and coin-
cides with A3 from w3; t0 weo; and the subpath pz(wg,ws) which coincides
with Ay from wg to wy, and coincides with p from wy, to wo (if wyy, # ws).
Consider also a distribution P which (1) assigns a probability of 1 to every
edge of ug, and (2) an arbitrary probability in (0,1) to each edge of u7. If
our SCEG is minimal and A3 and A4y do not intersect then this is always
possible. Under P, assignment (1) gives us that

p(I(we) =0 | I(wy) =1) =1
and I(wy) IT I(w9) implies that under this P
p(I(we) =0 | I(wy) =0)=1 = pl(we) =1|I(wy) =0)=0

But assignment (2) gives us that p(I(wy) =1 | I(w;) =0) >0 Pl

The assumption I(w) IT I(ws) is incompatible with the assignments of (1)
and (2). But these assignments are always possible if A3 and Ay do not
intersect. Hence A3 and )4 must intersect.
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Hence each Type B route intersects with every Type A, Type B or Type D
route, and each Type A route intersects with every Type D route. Also, each
Type A route intersects with every other Type A route (at ws), and each
Type D route intersects with every other Type D route (at w;). So each
route in C intersects with every other route downstream of wg and upstream
of wye.

Hence there cannot be two internally disjoint directed routes from wy
10 Weo-

(¢) Suppose that in the undirected version of the CEG C there are two
internally disjoint paths between wy and ws. One of these necessarily cor-
responds to a representative directed wyg — wy route A in C. The other
must correspond to a path (not a route) in C consisting of edges some of
which meet head to head. In the simplest possible case this latter path will
consist of a directed wy — w4 subpath (uq(wp, wa)), a directed wp — weo
subpath (uq(wp,ws)), and a subpath joining w4 to wp but directed
wpg — wy, for some positions w4 and wpg.

In a CEG all positions lie on a directed wy — wy route. So there must exist
a directed subpath from wy to wg (ug(wo, wg)) and a directed subpath from
wa 10 Wee (Hp(wa, Ws)).

Suppose these subpaths pg(wy, wp) and pg(wa,ws) intersect at a posi-
tion w (wy < w < wp, wg < W < W). Then there exists a cycle in C:
w — wp — wa — w. This is impossible since a CEG is a directed acyclic
graph.

Suppose therefore that pg(wo, wn) and pg(wa, ws) do not intersect.

If the subpath pg(wo, wp) intersects with our original directed route A but
pp(wa, weo) does not, or if neither of these subpaths intersects with A, then
the directed route (pq(wo, wa), pg(wa, wss)) is internally disjoint from A.
If the subpath pg(wa, ws) intersects with A but ug(wy, wp) does not, then
the directed route (ug(wo, wn), pa(wn,ws)) is internally disjoint from A.
If both the subpaths pig(wo, wp) and pg(wa, ws) intersect with A then the
two routes (uq(wo, wa), pg(wa, ws)) and (pug(wo, wB), pa(WB, W) are in-
ternally disjoint.

So in this simplest possible case, if there exist two internally disjoint
undirected paths between wg and wy then there exist two internally disjoint
directed routes. Clearly if we assume that there are more than two internally
disjoint undirected paths between wy and wy, then this argument still holds.
If we allow our second path to have more than one reversed section, we
simply let w4 be the first position w on the path where edges meet head to
head, and wp the last position w on the path where both edges are directed
away from w. Doing this our argument is then identical to that given above.
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Hence there cannot be two internally disjoint routes in the undirected
version of the CEG.

LEMMA. An undirected graph G has no stalk between the vertices v and w
if and only if there exist at least two internally disjoint paths between v
and w.

This is a corollary of Whitney’s [32] Theorem 7, which is sometimes de-
scribed as the 2nd wvariation of Menger’s Theorem [17]. A proof can be
found in [11] where it appears as Theorem 7.4.

Hence there is a stalk lying downstream of wy and upstream of wye.

(d) Suppose there exists a stalk upstream of w;. Then relabel this stalk
as wy and repeat the argument of (b)(c) to show that there exists a stalk
between this new wg and wy. Since the number of positions in C is finite,
repeated use of this argument shows us that either w; is a stalk or there
exists a stalk downstream of w;. A complementary argument shows that
there exists a stalk at wo or upstream of ws.

(e) Suppose w; is a stalk. We know that w; < we so there must exist

a position exactly one edge downstream of w; which lies on a w; — ws
subpath. Call this position w}. Then w} < wy.
Now I(w}) is a function of X (wy) (because wy is a stalk): If X (w) takes
a value corresponding to an edge from wy to wi then I(w]) = 1; otherwise
I(w]) = 0. So X (wy) T X (wsg) = X (wy) I (wy) = I(w])III(ws), and using
the argument of (b)(c)(d) above there must be a stalk at w] or at wy or
between them.

Therefore there exists a stalk downstream of w;, either at or upstream
of w2.

O

PROOF OF LEMMA 3.  Let X (wg) IT X (wyp) for some w, € Ry, wy € Ry.
Then w, is separated from wy, by a stalk (from Theorem 2). So since R,, Ry
are position cuts, each element of R, is separated from each element of R
by a stalk, and X (w,) II X (wy) for any pair of positions w, € Ry, wy € Ry.
Hence X g, 1 X g,. But Y(R,)( = sup,¢cp, X(w)) is a function of X g, , and
hence Y(R,) I Y (Ry).

Since our SCEG is minimal we can let the distribution P impose the
probabilities

p(X(wy) =) = YV w, €R,
p(X(wp) =) = VY wy € Ry
(X (wg) = xg, X(wp) =xp) =7 Y wy € Ry, wp € Ry.
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for some specified z,,z, > 0 (o, 5,7 > 0).

Now suppose that X (wg) Il X (wy) for some w, € R,, wy, € Ry. Then there
is no stalk between w, and wy, and hence no stalk between R, and Ry. So
by Theorem 2 p(X(wg) = @4, X (wp) = xp) cannot equal p(X (w,) = x4)
X p(X (wp) = xp) for all wg € Ry, wp € Ry. Hence v # ap.

Now for any .,z > 0 (greater than zero since R,, R, are position cuts)

p(Y(Ra) = x4, Y (Rp) = xp) = p( sup X(wg) = zq, sup X(wp) = zy)
Wa € Ra wp € Ry,
= p((X(wa1) = Ta, X (wy1) = xp) or (X (wa1) = xa, X (wp2) = xp)
cor (X (we2) = xa, X (wp1) = )

. or X(wa\Ra\) = maaX(wa\Rb\) = 1))
(noting that X (wq1) = 2, © X(wa1) = x4, X (wy;) = 0 for any j # 1)

= p(X(wa1) = zq, X (wp1) = xp) + p(X(wa1) = Tq, X (wp2) = xp)
-+ (X (wa2) = Ta, X(wp1) = )
-+ (X (wq|r,|) = Tas X (War,)) = Tb)

= [Ral|Ry|

Similarly p(Y (Ra) = z4) p(Y (Ry) = 2p) = |Ra| @ [R| B-
Now v # aB = p(Y(R.) = za) p(Y(Ry) = z) # p(Y(Ra) = Za,
Y (Ry) = xp). So under this P, X (w,) I X (wy) (for some w, € Ry, wy € Ry)
necessitates that Y (R,) II Y (R,). Hence if X(w,) II X(wp) then
Y(R,)IL Y (Ry) in at least one distribution compatible with C.

So if Y(R,) LI Y(Rp) holds for all distributions compatible with C then
X (wa) 11X (u0p).

|

PROOF OF COROLLARY 1.  Since the event A is intrinsic, Cp is a subgraph
of C and V(Cp) C V(C). Let R, in Cp be the set of w, € V(Cyp) that are
members of R, in C. Then X (w,) and R, are well-defined on Cj.

Y (R,) is measurable with respect to F(C) so it partitions the set of atoms
of C. Since A C A(C) it also partitions the set of atoms of Cp, and is well-
defined on Cy as

Y(R,) = sup X (wg)
Wa € Rq
wq € V(Cyp)

Hence pA(Y(Ra) = z4) = p(Y(Ra) = x4 | A), and all necessary terms are
defined on C, consistently with their definitions on C.
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In Cy, w, and w, are separated by a stalk, so by Theorem 2, X (w,) II
X (wp) in Cp, and by Lemma 3, Y(R,) 1 Y(Ryp) in Cp, and by Lemma 1,
Y(R,)IY(Ry) | A in C.

O

PROOF OF LEMMA 4.

(A) If J(u) = 0 then Y (u) = 0, so Y (u) I X pe(y | (J(u) =0) (1)

(B) Let J(u) = 1. From section 3 we have X (w) I X pey,y | I(w), so in
particular, since I(w) = 1 implies both that J(u) = 1 for w € u and that
X(w') =0 for all w' € u, w' #w

X(w) T X peyy | (T(w) =1) = X (w) 11X peqyy | (T(w) = 1,7 (u) = 1)
= X, 11X pew) | (T(w) = 1,7 (u) = 1)

And since Y(u) ( = sup,e,X(w')) is a function of X,, and
X pe(u)y C X pe(w) for w € u, this implies that

Y (u) 1L X ey | (Iw) = 1,J(u) = 1)
S Y () X ey | (I(w) = 1,J(u) = 1)

Now suppose that u = {w;};=1, . It follows that for i =1,...n
Y(u) I X peyy | (H(wi) =1,J(u) =1) = Y(u) I Xpegyy | (J(u) =1) (2)

Combining expressions (1) and (2) gives Y (u) I X pe(yy | J(u).
But if we know X (w') for all w’ € ', then we know Y (u'); so Y (u') is a
function of the set {X (w')}wew, and Y peyy is a function of X pe(,y. Hence

Y(u) LY peqy | J(u) O

PROOF OF THEOREM 3.  We first show that {Y (u;)} is d-separated from
{Y (u;)} by {Y (ug)} in A(C) if and only if X; is d-separated from X; by X,
ingG.

Suppose X; is d-separated from X; by Xj in G, but {Y(u;)} is not
d-separated from {Y (u;)} by {Y (ug)} in A(C). Then there exists a path be-
tween {Y (u;)} and {Y (u;)} in the moralised ancestral version [14] of A(C)
which does not pass through {Y (u)}.

Now in A(C) there exist edges from each J(u) vertex to the corresponding
Y (u) vertex; and edges from Y (u,) vertices to J(up) vertices only if there
exists an edge from X, to X3 in G. When we produce the moralised ancestral
version of A(C) we introduce two sorts of undirected edges — those between
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distinct vertices belonging to the same collection {Y (u,)}, and those be-
tween Y (u,) and Y (up) vertices belonging to different collections {Y (ug)},
{Y (up)}, where Y (u,) and Y (up) are both parents of a vertex J(u.). This
latter only occurs when X, and X, are both parents of X, in the moralised
ancestral version of G. Note that we introduce no undirected edges which
connect J(u) vertices, or connect J(u) vertices to Y (u) vertices.

So in the moralised ancestral version of A(C) there only exist undirected
edges between different collections of vertices if there exist undirected edges
between the corresponding variables in the moralised ancestral version of G.
Hence there cannot be a path between {Y (u;)} and {Y (u;)} in the moralised
ancestral version of A(C) which does not pass through {Y (u)}.

Suppose instead that {Y (u;)} is d-separated from {Y (u;)} by {Y (ux)} in
A(C), but that X; is not d-separated from X; by Xj in G. Then there must
exist either a moralising edge in the moralised ancestral version of G that
has no corresponding edges in the moralised ancestral version of A(C) or a
directed edge in G that has no corresponding edges in A(C).

The latter is impossible by construction — if there are no edges from
{Y(uqs)} to {J(up)} then X, is not a parent of X;. In the former case this
would mean that there existed variables X,, X}, both parents of X,, such
that there was no J(u.) vertex which was the child of both a Y (u,) vertex
and a Y (up) vertex.

But if the CEG is of a model which has a natural product space but
which admits no context-specific conditional independence properties then
each J(u.) vertex must have as parents both Y (u,) and Y (uy) vertices, since
each J(u.) corresponds to a particular configuration of the parents of X,
which include both X, and X;. So this also is impossible.

Using the above result and results from [31] the first statement in Theo-
rem 3 holds, and also if {Y (u;)} is not d-separated from {Y (u;)} by {Y (uz)},
then X;I1 X; | X} in at least one distribution compatible with C and §.

So if X; I X; | X, holds for all distributions compatible with C and G,
then X; is d-separated from X; by Xj in G, and from above {Y (u;)} is
d-separated from {Y (u;)} by {Y (u;)} in A(C).

O

PROOF OF COROLLARY 5. If w,,w, are separated by a stalk then
X (wg) 1T X (wp), simply by replacing SCEG by RCEG in part (1) of the
proof of Theorem 2.

If w,, wy are separated by a stalk, then every w, € R, is separated from
every wy € Ry by a stalk, and hence X g, 1 X p,. Y(R,)( = sup,cg, X (w))
is a function of X g,, and hence Y (R,) LY (Ry).

O
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APPENDIX 2: A CAUTIONARY TALE

Suppose we have a CEG and an ACEG of a model which satisfies the
conditions for Theorem 3. Suppose also that in the BN-representation of this
model, A is a parent of both B and C, and B is a parent of C. Then
{Y(ue)} U {J(up)} | {Y (uB)}, since J(up) is a function of Y (up).

But in an ACEG of this model, {Y (uc)} is apparently not d-separated
from {J(up)} by {Y(up)}, since there are paths from Y (uc) vertices to
J(upg) vertices which are not blocked by {Y (ug)} see Figure 14.

Hug) Y (ug)

J(up) Y (uo)

Jua)  Y(up)

Fic 14. ACEG for example in Appendiz 2

We use the word apparently here with justification. In [31] section 4, the
authors briefly discuss D-separation (as opposed to d-separation) for graphs
where there are functional (as opposed to stochastic) dependencies. An oth-
erwise active path between two nodes is rendered inactive by a set of nodes
Z under D-separation if a node on the path is determined by Z. Here each
J(ug) is a function of its child Y (ug), so {Y(uc)} is D-separated from
{J(up)} in this example.

Note that in this paper we have, with one exception, just discussed d-
separation expressions which involve only Y (u)-type vertices; between which
there are no functional dependencies. The one exception is where we have
considered expressions of the form Y (u) 1Y pe(y) | J/(u). Here it is quite clear
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that Y (u) is d-separated from the set of vertices associated with Y pe(u) by
J(u), since J(u) is the sole parent of Y (u), and Y (u) must be d-separated
from its non-descendants by its parents.
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