
Submitted to the Annals of StatistisSEPARATION THEOREMS FOR CHAIN EVENT GRAPHSBy Peter A. Thwaites� and Jim Q. Smith�University of WarwikA separation theorem on a graphial model allows an analyst toidentify the onditional independene statements it logially entailsusing only the topology of the graph. In this paper we prove separa-tion theorems assoiated with a new oloured graphial model alleda Chain Event Graph (CEG). The lass of CEG models generalisesthe lass of �nite disrete Bayesian Network models. Here we formallyde�ne this model lass, and onsider the set of permissible onditionalindependene queries on this graph. We provide neessary and suf-�ient onditions for these onditional independene statements tohold on a sublass of unoloured CEGs alled simple CEGs. We thenprove suÆient onditions for suh statements to hold on a muhlarger sublass alled regular CEGs. The paper is illustrated with arunning example demonstrating the appliation of these theorems.1. Introdution. If the DAG (direted ayli graph) G of a BayesianNetwork (BN) has a vertex set fX1;X2; : : : ;Xng, then there are n on-ditional independene assertions whih an simply be read o� the graph.These are the properties that state that a vertex-variable is independentof its non-desendants given its parents (the direted loal Markov prop-erty [14℄). Answering most onditional independene queries however, is notso straightforward. The d-separation theorem for BNs was �rst proved byVerma and Pearl [31℄, and an alternative version onsidered in [15, 14, 5℄. Thetheorem addresses whether the onditional independene query AqB j C ?an be answered from the topology of the DAG of a BN, where A;B;C aredisjoint subsets of the set of vertex-variables of the DAG. It allows the BN tobe interrogated and irrelevanes heked before any quantitative embellish-ments of distribution on its onditional probability tables are added. Thisprovides a valuable tool in the proess of disovering requisite models [21℄,as well as a logial framework for propagation algorithms and learning (seefor example [5℄ and the TETRAD software of Sheines et al).However for many problems the available quantitative dependene infor-mation annot all be embodied in the DAG of a BN. Separation theorems�This researh is supported by EPSRC grant no. EP/F036752/1AMS 2000 subjet lassi�ations: Primary 68T30, 68T37; seondary 62F30, 68R10Keywords and phrases: Bayesian Network, Chain Event Graph, onditional indepen-dene, direted ayli graph, graphial model, separation theorem1
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2 THWAITES & SMITHhave been proved for more general lasses of graphial model inluding haingraphs [3℄, alternative hain graphs [2℄, and anestral graphs [23℄. In thispaper we prove separation theorems for a partiularly expressive graphialmodel { the Chain Event Graph (CEG).Our motivation for the development of this lass is that CEGs are proba-bly the most natural graphial models for disrete proesses when eliitationinvolves questions about how situations might unfold. Although the topol-ogy of these graphs is more ompliated than that of the BN, they are muhmore expressive, as they allow us to represent all strutural quantitativeinformation within the graph itself. Context-spei� symmetries whih arenot intrinsi to the struture of the BN [4, 16, 22, 24℄ are fully expressed inthe topology of the CEG, whih also reognises logial zeros in probabilitytables, and the numbers of levels taken by problem-variables. This last hasbeen found to be essential to understanding the geometry of BN modelswith hidden variables [1, 18℄.The CEG has already been demonstrated to be a useful inferential frame-work for appliations as diverse as forensi siene [26℄, biologial regulatorymodels [27℄, and eduation [8℄. The graphs provide a framework for repre-sentation [27℄, probability propagation [29℄, learning and model seletion [8℄,and for ausal analysis [30℄.These papers onentrate on the appliation of CEG-based tehniques.Whilst they use the onditional independene properties of the graph, theydo not provide a full formal development for the lass of CEG models. Thispaper reti�es this lak. In doing so we identify the form of the types ofonditional independene statements it is natural to query, and also provea number of separation theorems whih allow us to answer eah query asalways true or not, solely on the basis of the topology of the graph.We note that, even more so than is the ase with BNs, there are a numberof onditional independene properties whih an simply be read o� theCEG. These are desribed in Setions 2.4 and 5.2, and given the tree-basednature of the CEG these properties are naturally ontext-spei�. That is tosay they are properties of the form AqB j � for some event �. An analogousstatement for a disrete BN would be of the formp(A = a j B = b; C = ) = p(A = a j C = )for some subsets of variables A;B;C, some spei� vetor value  of C andall vetor values a of A and b of B. The lass of onditioning events we antakle with a CEG is however muh riher than that generally onsideredwhen using BN-based analysis.
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SEPARATION THEOREMS FOR CEGS 3
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Fig 1. An SCEG C2. The Simple Chain Event Graph.2.1. The basi de�nition of an SCEG. The Chain Event Graph C(V;E)is a direted ayli graph (DAG), whih is onneted with a unique rootvertex (with no inoming edges) and a unique sink vertex (with no outgoingedges). Unlike the BN more than one edge an exist between two verties ofa CEG. The regular Chain Event Graph (RCEG) disussed in setion 4 alsohas its verties and edges oloured.We �rst onsider a sublass of the lass of CEGs alled a simple ChainEvent Graph (SCEG). Neither the verties (alled positions) w 2 V (C), northe edges e(w;w0) 2 E(C) of an SCEG are oloured. An example of an SCEGis given in Figure 1.The root and sink verties of a CEG are labelledw0 and w1. Eah positionw 2 V (C)nfw1g has a set E(w) of k(w) outgoing edges, whih when we wishto emphasise their onnetion with the position w, may be labelled fex(w) :x = 1; 2; : : : ; k(w)g.A direted w0 ! w1 path � in C is alled a route. The set of routes of Cis labelled �(C) (and orresponds to the set of atoms of the �nite disrete
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4 THWAITES & SMITHTable 1Context for Figure 1Desriptor Edgesmale e1(w0)female e2(w0)displayed symptom S before puberty e1(w1); e1(w2)displayed symptom S after puberty e2(w1); e2(w2)never displayed symptom S e3(w1); e3(w2)developed ondition e1(w3); e1(w4)did not develop ondition e2(w3); e2(w4)died before the age of 50 e1(w5); e1(w6); e1(w7);e1(w8); e1(w9)died at the age of 50 or older e2(w5); e2(w6); e2(w7);e2(w8); e2(w9)probability spae represented by C { see below). Note that eah route isuniquely determined by a sequene of edges. Thus in the CEG in Figure 1,one suh route is �1 � fe1(w0); e1(w1); e1(w3); e1(w6)g. It is easy to hekthat C here has 20 suh routes. We write w � w0 when the position wpreedes the position w0 on a route.When our CEG is applied to a population, eah route orresponds to apossible set of attributes that a member of the population ould take. Forexample, if the CEG in Figure 1 is applied to a population of people whoseparents su�erered from an inherited medial ondition, and the edges of theCEG arry the desriptors given in Table 1, then the route �1 desribedabove orresponds to male, displayed symptom S before puberty, developedondition, died before the age of 50.An SCEG is route ompatible for a population of units 	 if eah possiblehistory of a unit in the population (or atom of the event spae) orrespondsto the unit passing along one of the routes � 2 �(C). We use F(C) to denotethe sigma �eld of events formed by these atoms. F(C) orresponds to thepower set of �(C). Sine eah atom of this event spae odes what mighthappen to a unit in 	, the SCEG enodes an additional longitudinal devel-opment depiting the possible ways the future might unfold, not enoded bythe sigma �eld F(C) alone (see [25℄).We label an event in F(C) by �, and note that beause the CEG's atomshave this impliit longitudinal development assoiated with them, ertainevents in F(C) are partiularly important. Let �(w) denote the event thata unit takes a route that passes through the position w 2 V (C). �(w;w0)is then the union of all routes passing through the positions w and w0,�(e(w;w0)) is the union of all routes passing through the edge e(w;w0), and�(�(w;w0)) is the union of all routes utilising the subpath �(w;w0).
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SEPARATION THEOREMS FOR CEGS 5Certain subsets of the set of positions also have an important status inthis ontext. In this paper we will all a set R � V (C) a regular subset ifthe events f�(w) : w 2 Rg are disjoint. Note that R is regular if and only ifthere is no route � 2 �(C) ontaining more than one position w 2 R. CallR a position-ut if f�(w) : w 2 Rg forms a partition of �(C). A position-utan be assoiated with a random variable that labels whih of a lass ofdevelopments a unit might take (see setion 3).2.2. Probabilities on an SCEG. Underlying the SCEG there is a prob-ability spae whih is spei�ed by assigning probabilities to the atoms. Wedo this as follows: For eah position w 2 V (C)nfw1g and edge e(w;w0) em-anating from w, we all �e(w0 j w) a primitive probability if �e(w0 j w) � 0and Pw0 �e(w0 j w) = 1.Definition 1. A probability mass funtion p(�); � 2 �(C) is said tohave the monomial property for a population 	 if there exists a set of prim-itive probabilities � = f�e(w0 j w) : e(w;w0) 2 E(w); w 2 V (C)nfw1gg onthe edges of C suh that for all routes � 2 �(C)p(�) = Ye(w;w0)2� �e(w0 j w) (2:1)where e(w;w0) 2 � means that the edge e(w;w0) lies on the route �.Note that (2.1) fully de�nes a probability measure over F(C) by speifyingeah atomi probability as a funtion of its primitive probabilities.The assignment of probabilities (2.1), determined by � impliitly de-mands a Markov property over the ow of the units through the graph.Thus, in the ontext of our medial example, the probablility of an indi-vidual with attributes (male, displayed symptom S before puberty), (male,displayed symptom S after puberty) or (female, displayed symptom S beforepuberty) developing the ondition depends only on the fat that the subpathsorresponding to these pairs of attributes terminate at the position w3, andnot on the partiular subpath leading to w3. The probability this individualdevelops the ondition is then �e(w6 j w3) � p(�(e(w3; w6)) j �(w3)). So weonly need to know the position a unit has reahed in order to predit as wellas is possible what the next unfolding of its development will be.This Markov hypothesis looks strong but in fat holds for many families ofstatistial model. For example all event tree desriptions of a problem satisfythis property, all �nite state spae ontext spei� Bayesian Networks as wellas many other strutures [27℄.
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6 THWAITES & SMITHWe an go further and state that the sets of possible future developments(whether or not they developed the ondition and whether or not they diedbefore the age of 50) for individuals taking any of these three subpathsmust be the same. Moreover the onditional probability of any partiularsubsequent development must be the same for individuals taking any of thesethree subpaths. This aounts for the term position for a (non-sink) vertex.In this paper we disuss minimal CEGs where if positions w� and w�are suh that the sets of possible future developments from w� and w� areidential, and the onditional probability distributions over these sets areidential, then w� and w� are the same position. Any referene to a CEG,SCEG or RCEG should therefore be taken to mean a minimal CEG, SCEGor RCEG.Definition 2. An SCEG C is said to be valid for a population 	 if itis route ompatible and has the monomial property for 	.Note that like the BN, the SCEG an be valid without its assoiatedprimitive probabilities being known. We just need to believe that some set� exists so that the assoiated Markov hypothesis holds. We are free toassign any set of probabilities � to the edges of a valid SCEG within thesimplex onditions above. So in partiular the probability model spae of avalid C an be de�ned as the produt spae of these jV (C))j � 1 di�erentsimplies where the simplex assoiated with w 2 V (C)nfw1g has Eulideandimension k(w) � 1: The probability of any event � in F(C) is then of theform p(�) = X�2� p(�) = X�2� Ye(w;w0)2� �e(w0 j w)where � 2 � means that � is one of the omponent atoms of the event �.In this paper we will also use the following further notation:��(w0 j w) � p(�(�(w;w0)) j �(w)) denotes the probability of utilising thesubpath �(w;w0) (onditional on passing through w),�(w0 j w) � p(�(w;w0) j �(w)) = P� ��(w0 j w) denotes the probability ofarriving at w0 onditional on passing through w.2.3. Conditioning on intrinsi events. In this paper we are interested inonditioning sets whih give rise to onditional independene queries thatan be answered purely by inspeting the topology of an SCEG C. An im-portant sublass of these are events in F(C) whih are alled intrinsi.Definition 3. An intrinsi event � in F(C) is a set of routes of C whihare also routes of C� where C� is a subgraph of C that ontains the root vertex
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SEPARATION THEOREMS FOR CEGS 7w0 and the sink vertex w1 of C in its vertex set, and where w0 is the onlyvertex in V (C�) with no parent, and w1 is the only vertex in V (C�) withno hild. Call suh a subgraph C� a sub SCEG.Note that the sub SCEG C� is itself an SCEG. All atoms of F(C) areintrinsi, as are �(w) and �(w;w0) (provided this is non-empty) for allw;w0 2 V (C), and as is the exhaustive set �(w0). If we inlude the emptyset in the set of intrinsi events then we note that intrinsi sets are losedunder intersetion and so tehnially form a �-system (see for example [12℄)we an assoiate with the SCEG C.Not all events in F(C) are neessarily intrinsi beause the lass of intrin-si events is not losed under union. For example, for the CEG in Figure 1,the event � onsisting of the union of the two atoms (e1(w0); e1(w1); e1(w3);e1(w6)) and (e1(w0); e2(w1); e1(w3); e2(w6)) produes a subgraph C� whihhas four distint routes, so � is not intrinsi. However the lass of intrinsievents is rih enough to enompass virtually all of the onditioning eventsin the onditional independene statements we would like to query. In par-tiular, if our model an be expressed as a BN then any set of observationsexpressible in the form O(A) = fXj 2 Ajg (for subsets fAjg of the samplespaes of fXjg, the vertex-variables of the BN) is a proper subset of the setof intrinsi events de�ned on the CEG of our model [29℄.The �rst important property of the lass of valid SCEG models is thatthey are losed under onditioning by an intrinsi event:Theorem 1. If an SCEG C is valid on a population 	 then the proba-bility model on F(Cj�) of any of its sub SCEGs C� is a probability model onF(C�) whih is also valid.The obvious set of primitive probabilities for the sub-SCEG C� is given by�� = ���e(w0 j w) : e(w;w0) 2 E(w); w 2 V (C)nfw1g	where ��e(w0 j w) = p(� j �(e(w;w0)))p(� j �(w)) �e(w0 j w)providing this is well-de�ned. A proof of this theorem an be found in theappendix. We note that this property has now been suessfuly used todevelop fast propagation algorithms for CEGs (see [29℄).Note that the probability of an atom � in C onditioned on the intrinsievent � is the probability of that atom in the SCEG C�. We denote thisprobability p�(�). It is then trivially the ase that the probability of anevent in C onditioned on the event � is the probability of that event in theSCEG C�.
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8 THWAITES & SMITH2.4. Random variables on an SCEG.. Random variables measurable withrespet to F(C) partition the set of atoms into events. So for example, wean de�ne variables X;Y , measurable with respet to F(C), whih partitionthe set of atoms into events f�Xg; f�Y g. Moreover for an event � (withp(�) 6= 0) we an write X q Y j � if p(X = x j Y = y;�) = p(X = x j �)for all values x of X and y of Y (see for example [7℄).Lemma 1. For a CEG C, variables X;Y measurable with respet to F(C),and intrinsi onditioning event �, the statement X q Y j � is true if andonly if X q Y is true in the CEG C�.The proof of this lemma is in the appendix. This is a partiularly usefulproperty beause it allows us to hek any ontext-spei� onditional inde-pendene property by heking a non-onditional independene property ona sub-SCEG.We now turn our attention to two types of elementary random variables,measurable with respet to F(C), that an be identi�ed with eah positionw 2 V (C)nfw1g. These are the variables fI(w) : w 2 V (C)nfw1gg de�nedby I(w) = ( 1 if � passes through w0 otherwiseand the variables fX(w) : w 2 V (C)nfw1gg de�ned byX(w) = ( x if � passes along edge ex(w) 2 E(w)0 if the position w does not lie on �where x = 1; 2; : : : k(w) index the edges emanating from w. Notie thatsine I(w) is learly a funtion of X(w), to speify a full joint distributionover f(I(w);X(w)) : w 2 V (C)nfw1gg it is suÆient to speify the jointdistribution of fX(w) : w 2 V (C)nfw1gg. Note that all atomi events � anbe expressed as the intersetion of events� = \w2� fX(w) = x�gand events in F(C) as the union of these atomi events� = [�2�8<:\w2� fX(w) = x�g9=;where w 2 � denotes that the position w lies on the route �, and x� 6= 0 isthe unique value of X(w) of the edge in the route �.
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SEPARATION THEOREMS FOR CEGS 9
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2Fig 2. C onditioned on the event that displayed symptom SFigure 2 shows the SCEG C from Figure 1 onditioned on the intrinsievent � = (X(w1) = 1) [ (X(w1) = 2) [ (X(w2) = 1) [ (X(w2) = 2) or inthe ontext of our medial example, displayed symptom S.For any set A � V (C), letXA denote the set of random variables fX(w) :w 2 Ag and IA the set fI(w) : w 2 Ag. Also, for any w 2 V (C), let U(w) bethe set of positions in V (C) whih lie upstream of the position w, D(w) theset of positions whih lie downstream of w, U (w) the set of positions whihdo not lie upstream of w, and D(w) the set of positions whih do not liedownstream of w.Lemma 2. For any SCEG C and position w 2 V (C)nfw1g, the variablesI(w);X(w) exhibit the position independene property thatX(w) qXD(w) j I(w)The result given in this lemma is analogous to that whih Pearl [20℄ uses tode�ne BNs, whih states that a BN vertex-variable is independent of its non-desendants given its parents. It provides a set of onditional independenestatements that an simply be read from the graph, one for eah positionin V (C). The proof of the lemma is in the appendix.The statement that X(w) qXD(w) j (I(w) = 1) an be read as: Givena unit reahes a position w 2 V (C), whatever happens immediately after wis independent of not only all developments through whih that position was
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10 THWAITES & SMITHreahed, but also of all positions that logially have not happened or ouldnot now happen beause the unit has passed through w. Thus, in the senseabove, the position of a valid SCEG C is suÆient to desribe the futuredevelopment of units passing through it.As already noted, the produt spae de�ned by f(I(w);X(w)) :w 2 V (C)g is over spei�ed. This is so �rstly beause I(w) = 0, X(w) = 0and I(w) = 1 ) X(w0) = 0 for w0 2 D(w) \ U (w). Probability dis-tributions exist whih satisfy the set of statements of the form X(w) qXD(w) j I(w) whih do not obey these impliations, but suh distributionsannot be represented on an SCEG.More signi�antly, if the SCEG is used for the purpose for whih it wasintended, as a representation of an asymmetri proess or problem, thenthere will be many probabilities in the joint probability tables over the spaede�ned by f(I(w);X(w)) : w 2 V (C)g whih are identially zero. The jointmass funtion is then extremely sparse. These zeros orrespond to impossibleevents whih nonetheless are given equal signi�ane with possible events ina BN-representation of the problem. In many ases these events are notjust impossible but meaningless. For example if X(wa) = 1 orresponds topatient dies, X(wb) = 1 orresponds to patient is given treatment 2, andwa � wb, then the event (X(wa) = 1;X(wb) = 1) has no logial meaning.As the set of statements of the form f(I(w);X(w)) : w 2 V (C)g do not de-�ne the SCEG, these additional ounterfatual statements produed by theprodut spae representation are not an integral part of the CEG-framework.The produt spae de�ned by the full set of statements is nevertheless a use-ful onstrut beause it allows us to enode sets of onditional independenestatements into a valid SCEG and so allows us to quikly prove separationtheorems for suh graphs.The struture of the CEG illustrates a further aspet of the graphialmodelling proess whih is not transparent in the topology of the BN. TheCEG depits all possible histories of a unit in a population, and gives aprobability distribution over these histories. However, when a single unittraverses one of the routes in the CEG, values are assigned to I(w);X(w) forall positions w 2 V (C). Those onditional independene statements enodedby the positions and edges through whih our unit has not passed are nowtruly ounterfatual [6℄ in that they answer queries of the form If X hadnot been the ase, what would be the hane of Y happening? So the CEGsimultaneously depits both the \reality" and the ounterfatual aspetsof the problem one we start to observe the atual behaviour of units inthe population. It also makes it a powerful framework for expressing rihvarieties of ausal hypotheses [30℄.
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SEPARATION THEOREMS FOR CEGS 113. A separation theorem for Simple CEGs. We all a positionw 2 V (C) a stalk if the removal of w from V (C) would result in a graph withtwo disonneted omponents. In (non-probabilisti) graph theory suh avertex is alled a ut vertex (see for example [11℄).Theorem 2. In an SCEG C with w1; w2 2 V (C) and w2 6� w1,X(w1) q X(w2) if and only if either w2 is a stalk, or there exists a stalkdownstream of w1 and upstream of w2, for w0 � w1 � w1; w0 � w2 � w1.The proof of this theorem is in the appendix. Theorem 2 has a numberof powerful orollaries, whih we give after introduing two new variables.Call J(R) the inidene variable of a regular subset R ifJ(R) � Xw2R I(w) � supw2R I(w)and all Y (R) the riterion variable of a regular subset R ifY (R) � Xw2RX(w) � supw2RX(w)Lemma 3. For an SCEG C with position uts Ra = fwag; Rb = fwbg:If X(wa) q X(wb) for any wa 2 Ra; wb 2 Rb, then Y (Ra) q Y (Rb) inevery distribution ompatible with C.Conversely, if Y (Ra)qY (Rb) holds for all distributions ompatible with C ,then X(wa) qX(wb) for all wa 2 Ra; wb 2 Rb.This lemma and Corollary 5 in Setion 7 formalise and generalise theresult given in [27℄ Theorem 2. The proof of the lemma is in the appendix.The onverse result is somewhat surprising, but is a onsequene of thepartiular struture of the sigma �eld assoiated with an SCEG.Corollary 1. Let C be an SCEG, � an intrinsi event, Ra = fwag;Rb = fwbg be position uts of C.If in the sub-CEG C�, wa and wb are separated by a stalk, for any wa 2 Ra;wb 2 Rb, wa; wb 2 V (C�), then Y (Ra) q Y (Rb) j �.The proof of this orollary is in the appendix. This has major onsequenesfor models whih admit a produt spae struture, where othogonal uts ofthe CEG have a natural meaning orresponding to measurement variablesof the problem. Models of this sort an be represented as BNs, with possibleannotation of ontext-spei� onditional independene properties.
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12 THWAITES & SMITHCorollary 2. If an SCEG C is of a model whih admits a produtspae struture, A;B are measurement variables of the model, and Ra; Rbare the position uts of C orreponding to these variables, then:If X(wa) q X(wb) for any wa 2 Ra; wb 2 Rb, then A q B in everydistribution ompatible with C.Conversely, if A q B holds for all distributions ompatible with C, thenX(wa)qX(wb) for all wa 2 Ra; wb 2 Rb.The proof of this follows immediately from Lemma 3.Corollary 3. Let C be an SCEG of a model whih admits a produtspae struture, A;B be measurement variables of the model, � an intrinsievent, Ra; Rb be position uts of C orreponding to the variables A and B.If in the sub-CEG C�, wa and wb are separated by a stalk, for any wa 2 Ra;wb 2 Rb, wa; wb 2 V (C�), then AqB j �.The proof of this follows diretly from Corollaries 1 and 2. In the asewhere our model has a natural produt spae struture, the topology ofthe SCEG allows us to replae onditional independene queries suh asAqB j C ? by sets of ontext-spei� queries suh as fAqB j (C = ) ?g,allowing us to interrogate the graph using Corollary 3. If in addition ourmodel admits no ontext-spei� onditional independene properties, thenthe symmetries in the SCEG mean that we need only hek the answer to asingle query, for instane Aq B j (C = 1) ?Example 3.1. Figure 3 shows the SCEG C from Figure 1 onditioned onthe intrinsi event � = (X(w1) = 1) [ (X(w2) = 1) or displayed symptom Sbefore puberty. This graph has a stalk at w3, and by Theorem 2 we have thatX(w0)q fX(w3);X(w6);X(w7)g in this graph.Consider the position uts R0 = fw0g; R1 = fw1; w2g; R2 = fw3; w4; w5g;R3 = fw5; w6; w7; w8; w9g of C. Then as Figure 3 depits a onditionedCEG C� for the intrinsi event �, Corollary 1 gives us thatY (R0)q (Y (R2); Y (R3)) j �Now the CEG C from Figure 1 does not have a natural produt spaestruture, but this is no obstale to our using Corollary 3 here. As C� doesadmit a produt spae struture we an impose this onto C by for examplede�ning A � Y (R0); B � Y (R1), D � Y (R3) andC = ( 1 if sup(X(w3);X(w4)) = 12 otherwise
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Fig 3. C onditioned on displayed symptom S before pubertyThis allows us to use Corollary 3 and gives us thatA q (C;D) j (B = 1)whih in our medial ontext reads as whether an individual develops theondition and whether they die before 50 are independent of their gendergiven that they displayed symptom S before puberty.4. Regular CEGs. Although SCEGs form an important lass of graph-ial model, by adding extra struture to them we an make them even moreexpressive. We do this by olouring positions and edges. The resultant graphis alled a regular Chain Event Graph (RCEG). We note that olouredgraphs have reently been found to provide a valuable embellishment toother graphial models (see for example [9℄).An RCEG is a oloured SCEG C where the set V (C) has an assoiatedpartition U(C) = fu1; u2; : : : utg for whih eah set u � V (C) is regular. Theset u is alled a stage and is suh that for eah w 2 u the distribution funtionof X(w) j (I(w) = 1) is dependent only on u and not on the partiular w 2 u.Definition 4. w1; w2 2 V (C)nfw1g are in the same stage u if thereexists a bijetion  (w1; w2) between E(w1) and E(w2) suh that if  :ex(w1) 7! ex(w2) then p(�(ex(w1)) j �(w1)) = p(�(ex(w2)) j �(w2)).The positions w1; w2 have the same olour if they are in the same stage,
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Fig 4. The RCEG for Example 4.1and the edges ex(w1); ex(w2) have the same olour if w1; w2 are in the samestage and ex(w1) maps to ex(w2) under this bijetion.The existene or otherwise of a bijetion between two edge sets is normallyapparent from the ontext of the problem. Note that if ex(w1) maps to ex(w2)under a bijetion  , then these edges must orrespond to the same outome(for example patient dies) given the two histories �(w1) and �(w2). We allthe olouring of the RCEG the stage-struture of the graph.Example 4.1. Produing an RCEG from the SCEG in Figure 1 wean add the extra information that the positions w3 and w4 are in the samestage { that is the probability of developing the ondition (or not) is the samewhether a member of the population has attributes orresponding to the sub-paths (e1(w0); e1(w1)); (e1(w0); e2(w1)); (e2(w0); e1(w2)) or (e2(w0); e2(w2)).The RCEG C is given in Figure 4.This additional struture allows us to express a riher set of ontext-spei� properties and sample spae information than we an with theSCEG. The lass of models expressible as an RCEG inludes as a proper
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SEPARATION THEOREMS FOR CEGS 15subset the lass of models expressible as faithful regular or ontext-spei�BNs on �nite variables. Unlike the BN, the RCEG embodies the struture ofthe model state spae and any ontext-spei� information in its topologyand olouring.RCEGs are route-ompatible and have the monomial property for a pop-ulation 	 if their underlying SCEG does, and hene are valid for a popula-tion 	 if their underlying SCEG is. The subgraph C� of an RCEG C on-ditioned on an intrinsi event � is an RCEG. Theorem 1 holds for RCEGs.Note however that C� may not have the same stage-stuture as C in that po-sitions or edges whih have the same olour in C may have di�erent oloursin C�. Lemma 1 and the position independene property hold for RCEGs.The onditions stipulated in Corollaries 1 and 3 an now be relaxed. It issuÆient that C� should be simple (rather than C) for these results to hold.The subgraph of a CEG whih onsists of a position w, the sink-node w1,and all edges and positions whih lie on a w ! w1 subpath is alled thesubgraph rooted in w. When the CEG is used as a pratial tool it is im-portant to maximise its representational eÆieny. So if in the subgraph C�,the subgraphs rooted in the positions w� and w� have idential topologiesand olouring we an ombine the positions w� and w� into a single posi-tion [30℄. Note that if we do this then C� although now minimal, is no longera subgraph of C (see De�nition 3).Following the ideas of setion 3, we letJ(u) = supw2u I(w) and Y (u) = supw2uX(w)The RCEG is also a powerful tool for interrogation purposes, but to max-imise its potential in this area we use the Augmented Chain Event Graph(ACEG) desribed in the next setion.5. Augmented CEGs.5.1. De�nition of an Augmented CEG. Analogously to the de�nitionof XA, let Y A = fY (u) : u 2 Ag and JA = fJ(u) : u 2 Ag. Sine theCEG C is a DAG, there exists a partial order of the stages in the set U(C).Let P (u) be the set of all u0 stages that preede u in this partial order. LetY Q(u) be a minimal subset of Y P (u) suh thatJ(u) q Y P (u) j Y Q(u)Definition 5. An augmented CEG (ACEG) A(C) is a funtion of theCEG C with vertex set V (A(C)) = fJ(u) : u 2 U(C)g [ fY (u) : u 2 U(C)g.
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Fig 5. The RCEG for Example 5.1The edge set E(A(C)) onsists of direted edges onneting the parentsof any vertex in V (A(C)) to that vertex. Eah vertex Y (u) has a singleparent J(u), and the parents of J(u) are preisely those Y (u0) verties thatare members of Y Q(u).Example 5.1. A researh group has taken a sample from the popu-lation desribed in Setion 2.1 whih ontains only people who displayedsymptom S. Analysis of this sample suggests that whether an individual de-velops the ondition and whether they die before 50 are independent of theirgender given when they displayed symptom S. The RCEG for this is given inFigure 5. An ACEG for this graph is given in Figure 6, where for illustrativeonveniene the edges emanating from Y (u) nodes have been labelled withvalues of A (= Y (R0) for R0 = fw0g), B (= Y (R1) for R1 = fw1; w2g), andC (= Y (R2) for R2 = fw3; w4g).5.2. ACEGs are Bayesian Networks. We extend the notation of setion 3to let XD(u) be the vetor of random variables of the form X(w) assoi-ated with positions in C whih do not lie downstream of the stage u. Let
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Fig 6. An ACEG for the RCEG in Figure 5Y D(u);JD(u) be the vetors of random variables of the form Y (u0); J(u0)assoiated with stages in C whih do not lie downstream of the stage u.Lemma 4. For CEG C, and stage u 2 U(C)Y (u) q Y D(u) j J(u)The result given in this lemma is analogous to that given in Lemma 2 forpositions, and so also to the result quoted there for BNs. It provides a setof onditional independene statements that an simply be read from thegraph, one for eah stage in U(C). A partial reading of the lemma gives usthat the immediate future for a unit at a stage u is independent of how theunit reahed that stage. The proof of the lemma is in the appendix.By onstrution, if a stage u0 is not downstream of u in C, then J(u0); Y (u0)are not downstream of J(u); Y (u) in A(C). Sine for every stage u0, J(u0) isa funtion of Y (u0), it follows thatY (u) q (JD(u);Y D(u)) j J(u)
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18 THWAITES & SMITHand hene that Y (u) q (JP (u);Y P (u)) j J(u)in any partial order of U(C). Clearly we also have thatJ(u) q (JP (u);Y P (u)) j Y Q(u)and hene that all verties in an ACEG A(C) are independent of their pre-deessor verties given their parental verties in any partial order of U(C).In [19℄ it is shown that a probability distribution P is Markov relative to aDAG G if and only if eah variable in G is independent of all its predeessorsonditional on its parents, in some ordering of the variables that agrees withthe arrows of G. Clearly our ACEG is a DAG, and from the above reasoningeah variable in A(C) is independent of all its predeessors onditional on itsparents for all P de�ned on the CEG C. So our ACEG obeys what Pearl [20℄alls the ordered Markov ondition, and hene also obeys the loal Markovondition [13℄. Results in [10℄ allow us therefore to dedue that the ACEGis itself a BN.This dedution means that any result available for use with BNs an alsobe used with ACEGs. In partiular we an use d-separation to allow us tointerrogate ACEGs for onditional independene properties. The advantagethat the ACEG has here over the BN is that in the former ontext-spei�onditional independene properties are depited expliitly in the topologyof the graph, and so it an be interrogated diretly for suh properties. Webegin however by looking at models whih an be represented by BNs.6. Models depitable by Bayesian Networks and others. If amodel has a natural produt spae struture and admits no ontext-spei�onditional independene properties then it an be depited by a BN with-out any further annotation. In this setion we show that if our CEG is ofsuh a model then any separation-based onditional independene propertyreadable from the BN an also be read from its assoiated ACEG.If our CEG is of a model whih has a natural produt spae struture thenfor eah variable Xi in the BN there exists a olletion of verties fJ(ui)gin the ACEG whose members orrespond to the possible on�gurations ofQ(Xi) (the parent variables ofXi), and a olletion of verties fY (ui)g whosemembers orrespond to Xi given those on�gurations.Theorem 3. If a model with a natural produt spae struture admittingno ontext-spei� onditional independene properties, has a BN represen-tation G, and a CEG representation C, then:
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SEPARATION THEOREMS FOR CEGS 19If fY (ui)g is d-separated from fY (uj)g by fY (uk)g in A(C), thenXi qXj j Xk in every distribution ompatible with C and G.Conversely, if XiqXj j Xk holds for all distributions ompatible with C andG, then fY (ui)g is d-separated from fY (uj)g by fY (uk)g in A(C).The proof of this theorem is given in the appendix. This result an beexplained as follows: The CEG C is of a model whih has a natural prod-ut spae struture admitting no ontext-spei� onditional independeneproperties, and an be depited by a BN G. Therefore there exist (in A(C))edges from verties in fY (ui)g to verties in fJ(uj)g if and only if there existsan edge from Xi to Xj in G, and so there is a 1:1 orrespondene between theparental onditional independene statements in G and the parental ondi-tional independene statements in A(C). By [31℄ Corollary 1, the onditionalindependene statements in a DAG an be derived from d-separation if andonly if they an be derived from the list of parental onditional indepen-dene statements using the semi-graphoid axioms [28℄. As both G and A(C)are DAGs, we an infer that there is a 1:1 orrespondene between the on-ditional independene statements derived from d-separation in G and theonditional independene statements derived from d-separation in A(C).Essentially, Theorem 3 allows us to use the olletions fY (ui)g in theACEG as surrogates for Xi in the BN, when answering onditional indepen-dene queries.Example 6.1. For the RCEG in Figure 5, let A;B;C be as in Exam-ple 5.1, R3 = fw5; w6; w7; w8g and D = Y (R3). Then using Theorem 3 onthe ACEG for this RCEG (given in Figure 6), we see thatY (uA) is d-separated from fY (uC); Y (uD)g by fY (uB)g ) Aq (C;D) j BfY (uA); Y (uB)g are d-separated from fY (uC)g ) (A;B) q CY (uA) is not d-separated from Y (uC) by fY (uD)g ) A /q C j DY (uB) is not d-separated from Y (uC) by fY (uD)g ) B /q C j Dfor the RCEG in Figure 5. In our medial ontext whether an individualdevelops the ondition and whether they die before the age of 50 are inde-pendent of their gender given when they displayed symptom S; whether theydevelop the ondition is independent of their gender and when they displayedsymptom S; but whether they develop the ondition is not independent ofeither their gender or when they displayed symptom S given whether or notthey die before the age of 50, for the sample onsidered in Example 5.1.
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20 THWAITES & SMITHCorollary 4. If Xi;Xj ;Xk are distint subsets of the vertex-variablesof G, and fY (ui)g; fY (uj)g; fY (uk)g are the orresponding olletions inA(C), then the results of Theorem 3 still hold.This follows from the proof of Theorem 3 (whih does not depend onXi;Xj ;Xk being single variables).We have alled the olletions fY (ui)g in A(C) surrogates for Xi in G,but when we replae the statement \Xi q Xj j Xk in G" by \fY (ui)g isd-separated from fY (uj)g by fY (uk)g in A(C)", only fY (uk)g is atuallya surrogate. This is beause the latter statement implies that fY (ui)g qfY (uj)g j fY (uk)g (sine A(C) is a BN), and if this statement is true thenXi q Xj j fY (uk)g sine Xi � � supY (ui)� is a funtion of fY (ui)g. Byonstrution only one Y (ui) within the set fY (ui)g an take a non-zerovalue, and the value this variable takes is equal to the value taken by Xi.Note that the ACEG has J(u) and Y (u) nodes for eah stage u 2 U(C),and eah stage u in a CEG is assoiated with a partiular olletion ofparents { the set of u0 2 U(C) orresponding to Y Q(u) in the ACEG. Indeed,if our CEG has suÆient symmetry to be embedded into a family of modelswith a produt spae struture, then the positions onstituting eah stage uare members of a spei� orthogonal ut R (setion 2.1), and u enodes apartiular on�guration of the parental variables of Y (R).For this reason an ACEG has many more nodes than a standard BN,and so admits a far larger olletion of onditional independene state-ments. This olletion inludes many ontext-spei� properties whih anonly be represented in BNs by modifying their struture [4, 16, 22, 24℄. Italso inludes many ounterfatual statements of the type desribed in Se-tion 2.5 on SCEGs. So for example, if we onsider the CEG in Figure 2, butombine the positions w6; w7; w8 and w9 into a sink-node w1, we get theACEG depited in Figure 7, where for onveniene we have let A = Y (R0);B = Y (R1); C = Y (R2) with R0; R1; R2 de�ned as in Example 5.1 above.Using the ACEG in Figure 7 we an dedue that C q B j (A = 1) {whether an individual develops the ondition is independent of when theydisplayed symptom S given that their gender is male (and symptom S wasdisplayed), and that C q A j (B = 1) { whether they develop the onditionis independent of their gender given that they displayed symptom S beforepuberty. But we also have statements suh as Y (uC2) q Y (uB1) j Y (uA),whih has no obvious meaning in the ontext of the problem.7. More on ontext-spei� onditional independene. One ofthe distint advantages of the CEG when representing and analysing asym-metri problems is that we an examine the e�ets of onditioning on a
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B=2Fig 7. An ACEG for the adapted CEG from Figure 2spei� event, perhaps a spei� value of a variable, and use the CEG'stopology to disover onditional independenies whih would not exist if wewere to ondition on a related event, suh as a di�erent value of our vari-able. If we are interested in these ontext-spei� onditional independeneproperties then in this disrete ontext we need to onentrate our attentionon statements where the onditioning element is an event. In most asesthis event will be expressible as a value of a single Y (u) (or J(u)) variable,and so queries an be heked diretly on an ACEG without the need ofthe surrogate argument of the last setion. What happens in ases whereour onditioning event annot be expressed as a value of a Y (u) (or J(u))variable? An example of this is the event � = (B = 1) for the model de-pited in Figure 4. We ould draw an ACEG for the full CEG C here, butthe ACEG for C� is muh more useful. The sub-CEG C� for this event isgiven in Figure 3. Note that the edge-probabilities on this graph are nowA = 1 j B = 1, A = 2 j B = 1 for the edges leaving w0; 1 for the edgesleaving w1 & w2 (the positions w1 & w2 ould be ombined into a singleposition as suggested in Setion 4); C = 1; C = 2 for the edges leaving w3;D = 1 j B = 1; C = 1; D = 2 j B = 1; C = 1; D = 1 j B = 1; C = 2
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Fig 8. An ACEG for the sub-CEG from Figure 3and D = 2 j B = 1; C = 2 for the edges leaving w5 & w6 (see Setion 2.3and [29℄).An ACEG for C� is given in Figure 8. Notie that unlike in Figure 6,J(uA) is not a root-vertex as A is now dependent on B. Also, beause wehave onditioned on the event (B = 1), the set of Y (uB) verties has beomea single vertex Y (uB=1) with no anestors exept J(uB=1). We now used-separation to read thatfY (uC); Y (uD)g are d-separated from Y (uA) by Y (uB=1)) (Y (uC); fY (uD)g) q Y (uA) j Y (uB=1)) (C;D) q A j Y (uB=1)sine the ACEG is a BN, andA;C;D are funtions of Y (uA); Y (uC); fY (uD)g.Also Y (uB=1) = 1 , B = 1, so this in turn implies that (C;D)qA j (B = 1)without the use of the surrogate argument.This method will always work for ases like this sine onditioning on anevent suh as B = 1 always produes a single vertex of the form Y (uB=1),whih takes the value 1 if and only if B = 1.
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SEPARATION THEOREMS FOR CEGS 23As with SCEGs (see Setion 3), standard onditional independene querieson an RCEG an generally be answered by looking at ontext-spei� ondi-tional independene queries on subgraphs of the CEG whih are often simple.Suh onditioning an only remove olouring from the graph and not addit. Beause of the way CEGs are onstruted, the onditioning event in aontext-spei� onditional independene query an very often be writtenas �(w) for some w 2 V (C). But if we ondition on an event � = �(w), wean read onditional independene properties o� the graph C� even if C� isnot simple.Corollary 5. Let C be an RCEG with position uts Ra = fwag;Rb = fwbg. If wa; wb are separated by a stalk, for any wa 2 Ra; wb 2 Rb, thenY (Ra) q Y (Rb).The proof of this orollary is in the appendix. This result an obviouslybe extended to give suÆient onditions for Y (Ra) q Y (Rb) j � just asCorollary 1 extends the result for SCEGs.So if � = �(w) for some w 2 V (C), then w is a stalk in C�, and inthis graph, Y (Ra)q Y (Rb) for any position uts Ra upstream of w, and Rbdownstream of w. Hene Y (Ra)qY (Rb) j � providing we have de�ned thesevariables onsistently on the CEGs C and C� (see proof of Corollary 1).Example 7.1. Consider the RCEG from Figure 4 onditioned on theevent � = (X(w1) = 1) [ (X(w1) = 2) [ (X(w2) = 1) [ (X(w2) = 2). TheRCEG for this is given in Figure 9.Ignoring the medial ontext here, we note that in this graph the event� = �(w3) an be haraterised as (min(A;B) = 1). If we ondition on thisevent we get C� as in Figure 10, whih as already noted must have a stalk.For illustrative onveniene edges in Figure 10 have been given probabilitylabels.Using Corollary 5 we get (C;D) q (A;B) j (min(A;B) = 1), and on-ditioning on � = �(w4) we get a CEG from whih we an trivially readthat (C;D) q (A;B) j (min(A;B) = 2). Combining these we get (C;D) q(A;B) j min(A;B).8. Conlusion. In summary, the results of setion 3 give us onditionsfor the truth of AqB statements on SCEGs whih are diretly analogous tothose given in (for example Pearl's [20℄ or Lauritzen's [14℄ versions of) thed-separation theorem for BNs. Corollary 1 also gives us suÆient onditionsfor A q B j � statements to hold. Subsequent setions give us suÆient
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Fig 9. The RCEG for Example 7.1onditions for A q B j � statements to hold on RCEGs. Queries suh asAqB j C ? where the onditioning element is also a variable (or olletionof variables) an generally be answered by onsidering sets of queries of theform A qB j � ? Methods for doing this are suggested at various points inthe text, but in the speial ase where the RCEG desribes a model whihan be depited by a BN, Theorem 3 gives onditions for AqB j C diretlyanalogous to those given in the d-separation theorem for BNs. The ACEGfrom Setion 5 is very useful for all types of onditional independene query,but is partiularly useful for queries of the form A q B j � ? in situationswhere using other tehniques is not straightforward. The fat that the ACEGis itself a BN opens up an exiting range of possibilities still to be explored.Analysts working with BNs have found that attempts to feed bak toa user all the impliit onditional independenies assoiated with a givengraph an be rather overwhelming unless the BN is very simple. Clearlythis would also be the ase with CEG-based models. However, within anygiven ontext the types of independenies that it is natural for the user tobe able to understand, examine and verify are small in number. Sine theidenti�ation of suh natural relationships is dependent on the domain of
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Fig 10. The RCEG from Figure 9 onditioned on � = �(w3)appliation of the CEG we defer this disussion to a future paper.APPENDIX 1: PROOFS AND ONE ADDITIONAL LEMMALIMITED MEMORY LEMMA. For any CEG C, w1; w2; w3 2 V (C) withw1 � w2 � w3, I(w3) q I(w1) j (I(w2) = 1)PROOF. It is suÆient to prove thatp(I(w3) = 1 j I(w1) = 1; I(w2) = 1) = p(I(w3) = 1 j I(w2) = 1)So onsider a single route � passing through w1; w2; w3. This route onsistsof a set of edges and by onstrution the probability p(�) of the route is equalto the produt of the probabilities labelling eah of these edges. Moreover,the probability of any subpath of � is equal to the produt of the proba-bilities labelling eah of its edges. So p(�) an be written as the produt ofthe probabilities of four subpaths: �0(w0; w1), �1(w1; w2), �2(w2; w3), and�3(w3; w1). Thusp(�) = ��0(w1 j w0) ��1(w2 j w1) ��2(w3 j w2) ��3(w1 j w3)Consider now the event (I(w1) = 1; I(w2) = 1; I(w3) = 1) or �(w1; w2; w3),whih is the union of all w0 ! w1 routes passing through w1; w2; w3. Then
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26 THWAITES & SMITHsine �(w1; w2; w3) is an intrinsi event we an writep(�(w1; w2; w3)) = � X�02M0��0(w1 j w0)�� X�12M1 ��1(w2 j w1)�� � X�22M2 ��2(w3 j w2)�� X�32M3 ��3(w1 j w3)�where Mi (i = 0; 1; 2) is the set of all subpaths from wi to wi+1, and M3 isthe set of all subpaths from w3 to w1. But P�02M0 ��0(w1 j w0) is simplythe probability of reahing w1 from w0, or �(w1 j w0), sop(�(w1; w2; w3)) = �(w1 j w0) �(w2 j w1) �(w3 j w2) �(w1 j w3)= �(w1 j w0) �(w2 j w1) �(w3 j w2)� 1sine all paths passing through w3 terminate in w1. Thereforep(I(w3) = 1 j I(w1) = 1; I(w2) = 1) = p(�(w1; w2; w3))p(�(w1; w2))= �(w1 j w0) �(w2 j w1) �(w3 j w2)� 1�(w1 j w0) �(w2 j w1) � 1= �(w3 j w2)= p(I(w3) = 1 j I(w2) = 1) �If we replae I(w1) = 1 by �(�(w0; w2)) for any subpath �(w0; w2), andI(w3) = 1 by �(e(w2; w02)) for some edge e(w2; w02) then we obtainCOROLLARY A. For any CEG C with w 2 V (C)p(�(e(w;w0)) j �(�(w0; w));�(w)) = p(�(e(w;w0)) j �(w))Similarly, if w01 � w2 and we replae I(w1) = 1 by �(e(w1; w01)) (X(w1) = x1for some x1 2 1; : : : k(w1)), and I(w3) = 1 by �(e(w3; w03)) (X(w3) = x3 forsome x3 2 1; : : : k(w3)) then we obtainCOROLLARY B. For any CEG C, w1; w2; w3 2 V (C), with w01 � w2 � w3p(�(e(w3; w03)) j �(e(w1; w01));�(w2)) = p(�(e(w3; w03)) j �(w2))� p(X(w3) = x3 j X(w1) = x1; I(w2) = 1) = p(X(w3) = x3 j I(w2) = 1) �PROOF OF THEOREM 1. Sine the atoms of F(Cj�) are routes in C�,F(Cj�) = F(C�), and so the onditioned model is route ompatible (se-tion 2.1). For eah atom � 2 �, the probability mass funtion of this atom
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SEPARATION THEOREMS FOR CEGS 27in C� is given by p�(�) = p(�j�) whih equalsp(�(w0);�(e(w0; w1));�(e(w1; w2)); : : :�(e(wm; w1)) j �)= p�(�(w0);�(e(w0; w1));�(e(w1; w2)); : : :�(e(wm; w1)))= p�(�(w0)) p�(�(e(w0; w1) j �(w0))� p�(�(e(w1; w2) j �(w0);�(e(w0; w1))� : : : p�(�(e(wm; w1)) j �(w0); : : : �(e(wm�1; wm)))whih by Corollary A of the Limited Memory Lemma equals1� p�(�(e(w0; w1) j �(w0)) p�(�(e(w1; w2) j �(w1))� p�(�(e(w2; w3) j �(w2))� : : : p�(�(e(wm; w1)) j �(wm))= Ye(w;w0)2� p�(�(e(w;w0)) j �(w))So letting ��e(w0 j w) = p�(�(e(w;w0)) j �(w)) we havep(�j�) = Ye(w;w0)2���e(w0 j w)and the probability mass funtion p(�j�) has the monomial property. HeneC� is a valid SCEG. �Note that as stated in setion 2.3p�(�(e(w;w0)) j �(w)) = p(�(e(w;w0)) j �;�(w))= p(� j �(w);�(e(w;w0)))p(� j �(w)) p(�(e(w;w0)) j �(w))= p(� j �(w);�(e(w;w0)))p(� j �(w)) �e(w0 j w)PROOF OF LEMMA 1. X;Y partition the set of atoms of C, and sine� � �(C), X;Y also partition the set of atoms of C�. Consider arbi-trary events �X and �Y from the sets f�Xg and f�Y g (partitions of theset of atoms of C), and the event �A = �X \ �Y . Then p(�X j �) =p�(�X); p(�Y j �) = p�(�Y ) and p(�X ;�Y j �) = p(�A j �) = p�(�A) =p�(�X ;�Y ). The statementp(�X ;�Y j �) = p(�X j �) p(�Y j �)
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28 THWAITES & SMITHis then true if and only if the statementp�(�X ;�Y ) = p�(�X) p�(�Y )is true; and this holds for all �X 2 f�Xg �Y 2 f�Y g. �PROOF OF LEMMA 2. By de�nition I(w) = 0 ) X(w) = 0, so ifI(w) = 0, X(w) is known and so in partiular is independent of all othervariables. If I(w) = 1 then X(w0) = 0 for all w0 2 D(w) \ U (w).So onsider I(w) = 1 and w0 2 U(w). We now use the monomial propertyto show that X(w) qXU(w) j (I(w) = 1).The primitive probability �e(w+ j w) is a fator of the probability p(�)for a number of routes. Consider one of these routes and denote the subpathof this route between w0 and w by �(w0; w). Then by Corollary A of theLimited Memory Lemma, we an write�e(w+ j w) = p(�(e(w;w+)) j �(w))= p(�(e(w;w+)) j �(�(w0; w));�(w))and this is learly true for all subpaths between w0 and w. But the set ofthese subpaths is in 1:1 orrespondene with the set of vetors of values ofXU(w) whih are onsistent with the topology of the SCEG and with theevent I(w) = 1. The event �(w) an be written as I(w) = 1, and the event�(e(w;w0)) as X(w) = x for some x > 0. Henep(X(w) = x j I(w) = 1) = p(X(w) = x j XU(w); I(w) = 1)and X(w) qXU(w) j (I(w) = 1).Combining this with the two previous results we therefore haveX(w) qXD(w) j I(w) �PROOF OF THEOREM 2. (1) SUFFICIENT CONDITIONS FOR INDEPENDENCEConsider an SCEG C, and two positions w1; w2 2 V (C), where w2 6� w1,and by onstrution I(w1) 6� 0; I(w2) 6� 0.Suppose there exists a stalk downstream of w1 and upstream of w2. Labelthis position w. Then all paths passing through w1 pass through w, all pathspassing through w2 pass through w, and neessarily w1 � w � w2. Alsop(X(w2) = x2 j X(w1) = x1) = p(X(w2) = x2 j X(w1) = x1; I(w) = 1)= p(X(w2) = x2 j I(w) = 1)
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SEPARATION THEOREMS FOR CEGS 29sine w1 � w � w2, and using Corollary B of the Limited Memory Lemma= p(X(w2) = x2 j X(w1) = x01; I(w) = 1)= p(X(w2) = x2 j X(w1) = x01)for all values x1; x01 of X(w1) and all values x2 of X(w2)) X(w1)qX(w2)If w2 is itself a stalk, then we replae I(w) = 1 by I(w2) = 1 in the aboveargument with the same result.So a suÆient ondition for X(w1) qX(w2) is that either w2 is itself astalk, or there exists a stalk downstream of w1 and upstream of w2.(2) NECESSARY CONDITIONS FOR INDEPENDENCELet X(w1)qX(w2) (and sine I(w) is a funtion of X(w), X(w1)qI(w2)and I(w1)qI(w2)). Let the set of routes of C be partitioned into four subsets.Call a route Type A if it passes through w2, but not through w1, Type Bif it passes through neither w1 nor w2, Type C if it passes through both w1and w2, and Type D if it passes through w1, but not through w2. Our proofproeeds as follows:(a) We show that we must have w1 � w2 (ie. the set of Type C routes isnon-empty.(b) We show that every route intersets with every other route at somepoint downstream of w0 and upstream of w1. If two w0 ! w1 routesshare no verties exept w0 and w1, we all them internally disjoint (seefor example [11℄). So we an say that there annot be two internally disjointdireted routes in C() We show that there annot be two internally disjoint routes in the undi-reted version of the CEG (the CEG with its edge arrows removed), andthat therefore there must be a stalk between w0 and w1.(d) We show that either w1 is a stalk or w2 is a stalk, or there exists a stalkdownstream of w1 and upstream of w2.(e) Finally we show that if w1 is a stalk then there must also either be astalk at w2 or a stalk downstream of w1 and upstream of w2.(a) Suppose that w1 6� w2 (and reall that w2 6� w1). Thenp(I(w2) = 1 j I(w1) = 1) � 0. I(w1) q I(w2) ) p(I(w2) = 1) � 0) I(w2) � 0. This is impossible by onstrution. Therefore w1 � w2.(b) We �rst show that eah Type C route intersets with every otherroute at w1 or at w2 or at some point between these positions.
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30 THWAITES & SMITH
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Fig 11. Illustration for Type C and Type B routesLet �1 be a Type C route, and �1(w1; w2) the subpath oinident with �1between w1 and w2. If the set of Type B routes is non-empty then let �2be a Type B route whih does not interset with �1 (ie. �2 and �1 have nopositions in ommon).Consider a distribution P whih (1) assigns a probability of 1 to every edgeof the subpath �1(w1; w2), and (2) an arbitrary probability greater than 0and less than 1 to eah edge of the route �2 (Figure 11). If our SCEGis minimal and �2 does not interset with �1 then this is always possible.Under P , assignment (1) gives us thatp(I(w2) = 1 j I(w1) = 1) = 1and I(w1) q I(w2) implies that under this Pp(I(w2) = 1 j I(w1) = 0) = 1 ) p(I(w2) = 0 j I(w1) = 0) = 0But assignment (2) gives us that p(I(w2) = 0 j I(w1) = 0) > 0 ¸The assumption I(w1) q I(w2) is inompatible with the assignments of (1)and (2). But these assignments are always possible if �2 does not intersetwith �1. Hene �2 must interset with �1.
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SEPARATION THEOREMS FOR CEGS 31
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Fig 12. Illustration for non-Type C routes: w4n � w3mHene eah Type C route intersets with every Type B route at some pointdownstream of w1 and upstream of w2. Also eah Type C route intersetswith every Type A route (at w2), with every Type D route (at w1) and withevery other Type C route (at both w1 and w2).We now onsider routes that are not of Type C. If the set of non-Type Croutes is non-empty let �3; �4 be members of this set whih do not intersetexept at w0 and w1. Let �(w1; w2) be a subpath between w1 and w2.From above both �3 and �4 must interset with �. Let �3 interset with �only at the positions w31; : : : w3m, where w31 � � � � � w3m; and let �4 in-terset with � only at the positions w41; : : : w4n, where w41 � � � � � w4n.Without loss of generality let w1 � w31 � w41 � w2, so that �3 ould be aroute of Type B or Type D, and �4 ould be a route of Type A or Type B.Suppose that w4n � w3m (Figure 12). Consider the subpath �5(w1; w2)whih oinides with � from w1 to w31 (if w31 6= w1), oinides with �3 fromw31 to w3m, and oinides with � from w3m to w2. This subpath �5 doesnot interset with the route �4. This is impossible sine every route in Cintersets with every �(w1; w2) subpath.Suppose therefore that w3m � w4n (Figure 13). Consider the subpath
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32 THWAITES & SMITH
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Fig 13. Illustration for non-Type C routes: simplest ase of w3m � w4n�6(w1; w1) whih oinides with � from w1 to w31 (if w31 6= w1) and oin-ides with �3 from w31 to w1; and the subpath �7(w0; w2) whih oinideswith �4 from w0 to w4n and oinides with � from w4n to w2 (if w4n 6= w2).Consider also a distribution P whih (1) assigns a probability of 1 to everyedge of �6, and (2) an arbitrary probability in (0; 1) to eah edge of �7. Ifour SCEG is minimal and �3 and �4 do not interset then this is alwayspossible. Under P , assignment (1) gives us thatp(I(w2) = 0 j I(w1) = 1) = 1and I(w1) q I(w2) implies that under this Pp(I(w2) = 0 j I(w1) = 0) = 1 ) p(I(w2) = 1 j I(w1) = 0) = 0But assignment (2) gives us that p(I(w2) = 1 j I(w1) = 0) > 0 ¸The assumption I(w1) q I(w2) is inompatible with the assignments of (1)and (2). But these assignments are always possible if �3 and �4 do notinterset. Hene �3 and �4 must interset.
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SEPARATION THEOREMS FOR CEGS 33Hene eah Type B route intersets with every Type A, Type B or Type Droute, and eah Type A route intersets with every Type D route. Also, eahType A route intersets with every other Type A route (at w2), and eahType D route intersets with every other Type D route (at w1). So eahroute in C intersets with every other route downstream of w0 and upstreamof w1.Hene there annot be two internally disjoint direted routes from w0to w1.() Suppose that in the undireted version of the CEG C there are twointernally disjoint paths between w0 and w1. One of these neessarily or-responds to a representative direted w0 ! w1 route � in C. The othermust orrespond to a path (not a route) in C onsisting of edges some ofwhih meet head to head. In the simplest possible ase this latter path willonsist of a direted w0 ! wA subpath (��(w0; wA)), a direted wB ! w1subpath (��(wB ; w1)), and a subpath joining wA to wB but diretedwB ! wA, for some positions wA and wB.In a CEG all positions lie on a direted w0 ! w1 route. So there must exista direted subpath from w0 to wB (��(w0; wB)) and a direted subpath fromwA to w1 (��(wA; w1)).Suppose these subpaths ��(w0; wB) and ��(wA; w1) interset at a posi-tion w (w0 � w � wB, wA � w � w1). Then there exists a yle in C:w ! wB ! wA ! w. This is impossible sine a CEG is a direted ayligraph.Suppose therefore that ��(w0; wB) and ��(wA; w1) do not interset.If the subpath ��(w0; wB) intersets with our original direted route � but��(wA; w1) does not, or if neither of these subpaths intersets with �, thenthe direted route (��(w0; wA); ��(wA; w1)) is internally disjoint from �.If the subpath ��(wA; w1) intersets with � but ��(w0; wB) does not, thenthe direted route (��(w0; wB); ��(wB ; w1)) is internally disjoint from �.If both the subpaths ��(w0; wB) and ��(wA; w1) interset with � then thetwo routes (��(w0; wA); ��(wA; w1)) and (��(w0; wB); ��(wB ; w1)) are in-ternally disjoint.So in this simplest possible ase, if there exist two internally disjointundireted paths between w0 and w1 then there exist two internally disjointdireted routes. Clearly if we assume that there are more than two internallydisjoint undireted paths between w0 and w1 then this argument still holds.If we allow our seond path to have more than one reversed setion, wesimply let wA be the �rst position w on the path where edges meet head tohead, and wB the last position w on the path where both edges are diretedaway from w. Doing this our argument is then idential to that given above.
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34 THWAITES & SMITHHene there annot be two internally disjoint routes in the undiretedversion of the CEG.LEMMA. An undireted graph G has no stalk between the verties v and wif and only if there exist at least two internally disjoint paths between vand w.This is a orollary of Whitney's [32℄ Theorem 7, whih is sometimes de-sribed as the 2nd variation of Menger's Theorem [17℄. A proof an befound in [11℄ where it appears as Theorem 7.4.Hene there is a stalk lying downstream of w0 and upstream of w1.(d) Suppose there exists a stalk upstream of w1. Then relabel this stalkas w0 and repeat the argument of (b)() to show that there exists a stalkbetween this new w0 and w1. Sine the number of positions in C is �nite,repeated use of this argument shows us that either w1 is a stalk or thereexists a stalk downstream of w1. A omplementary argument shows thatthere exists a stalk at w2 or upstream of w2.(e) Suppose w1 is a stalk. We know that w1 � w2 so there must exista position exatly one edge downstream of w1 whih lies on a w1 ! w2subpath. Call this position w11. Then w11 � w2.Now I(w11) is a funtion of X(w1) (beause w1 is a stalk): If X(w1) takesa value orresponding to an edge from w1 to w11 then I(w11) = 1; otherwiseI(w11) = 0. So X(w1)qX(w2)) X(w1)qI(w2)) I(w11)qI(w2), and usingthe argument of (b)()(d) above there must be a stalk at w11 or at w2 orbetween them.Therefore there exists a stalk downstream of w1, either at or upstreamof w2. �PROOF OF LEMMA 3. Let X(wa) q X(wb) for some wa 2 Ra; wb 2 Rb.Then wa is separated from wb by a stalk (from Theorem 2). So sine Ra; Rbare position uts, eah element of Ra is separated from eah element of Rbby a stalk, and X(wa) qX(wb) for any pair of positions wa 2 Ra; wb 2 Rb.Hene XRaqXRb . But Y (Ra)� = supw2Ra X(w)� is a funtion of XRa , andhene Y (Ra)q Y (Rb).Sine our SCEG is minimal we an let the distribution P impose theprobabilities p(X(wa) = xa) = � 8 wa 2 Rap(X(wb) = xb) = � 8 wb 2 Rbp(X(wa) = xa;X(wb) = xb) =  8 wa 2 Ra; wb 2 Rb:
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SEPARATION THEOREMS FOR CEGS 35for some spei�ed xa; xb > 0 (�; �;  > 0).Now suppose that X(wa) /q X(wb) for some wa 2 Ra; wb 2 Rb. Then thereis no stalk between wa and wb, and hene no stalk between Ra and Rb. Soby Theorem 2 p(X(wa) = xa;X(wb) = xb) annot equal p(X(wa) = xa)� p(X(wb) = xb) for all wa 2 Ra; wb 2 Rb. Hene  6= ��.Now for any xa; xb > 0 (greater than zero sine Ra; Rb are position uts)p(Y (Ra) = xa; Y (Rb) = xb) = p( supwa2RaX(wa) = xa; supwb2RbX(wb) = xb)= p((X(wa1) = xa;X(wb1) = xb) or (X(wa1) = xa;X(wb2) = xb): : : or (X(wa2) = xa;X(wb1) = xb): : : or X(wajRaj) = xa;X(wajRb j) = xb))(noting that X(wa1) = xa , X(wa1) = xa;X(waj) = 0 for any j 6= 1)= p(X(wa1) = xa;X(wb1) = xb) + p(X(wa1) = xa;X(wb2) = xb): : : + p(X(wa2) = xa;X(wb1) = xb): : : + p(X(wajRaj) = xa;X(wajRbj) = xb)= jRajjRbj Similarly p(Y (Ra) = xa) p(Y (Rb) = xb) = jRaj � jRbj �.Now  6= �� ) p(Y (Ra) = xa) p(Y (Rb) = xb) 6= p(Y (Ra) = xa;Y (Rb) = xb). So under this P , X(wa) /q X(wb) (for some wa 2 Ra; wb 2 Rb)neessitates that Y (Ra) /q Y (Rb). Hene if X(wa) /q X(wb) thenY (Ra) /q Y (Rb) in at least one distribution ompatible with C.So if Y (Ra) q Y (Rb) holds for all distributions ompatible with C thenX(wa)qX(wb). �PROOF OF COROLLARY 1. Sine the event � is intrinsi, C� is a subgraphof C and V (C�) � V (C). Let Ra in C� be the set of wa 2 V (C�) that aremembers of Ra in C. Then X(wa) and Ra are well-de�ned on C�.Y (Ra) is measurable with respet to F(C) so it partitions the set of atomsof C. Sine � � �(C) it also partitions the set of atoms of C�, and is well-de�ned on C� as Y (Ra) = supwa 2 Rawa 2 V (C�) X(wa)Hene p�(Y (Ra) = xa) = p(Y (Ra) = xa j �), and all neessary terms arede�ned on C� onsistently with their de�nitions on C.
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36 THWAITES & SMITHIn C�, wa and wb are separated by a stalk, so by Theorem 2, X(wa) qX(wb) in C�, and by Lemma 3, Y (Ra) q Y (Rb) in C�, and by Lemma 1,Y (Ra) q Y (Rb) j � in C. �PROOF OF LEMMA 4.(A) If J(u) = 0 then Y (u) = 0, so Y (u)qXD(u) j (J(u) = 0) (1)(B) Let J(u) = 1. From setion 3 we have X(w) qXD(w) j I(w), so inpartiular, sine I(w) = 1 implies both that J(u) = 1 for w 2 u and thatX(w0) = 0 for all w0 2 u; w0 6= wX(w) qXD(w) j (I(w) = 1)) X(w) qXD(w) j (I(w) = 1; J(u) = 1)) Xu qXD(w) j (I(w) = 1; J(u) = 1)And sine Y (u) � = supw02uX(w0)� is a funtion of Xu, andXD(u) �XD(w) for w 2 u, this implies thatY (u) qXD(w) j (I(w) = 1; J(u) = 1)) Y (u) qXD(u) j (I(w) = 1; J(u) = 1)Now suppose that u = fwigi=1;:::n. It follows that for i = 1; : : : nY (u) qXD(u) j (I(wi) = 1; J(u) = 1)) Y (u)qXD(u) j (J(u) = 1) (2)Combining expressions (1) and (2) gives Y (u) qXD(u) j J(u).But if we know X(w0) for all w0 2 u0, then we know Y (u0); so Y (u0) is afuntion of the set fX(w0)gw02u0 , and Y D(u) is a funtion of XD(u). HeneY (u) q Y D(u) j J(u) �PROOF OF THEOREM 3. We �rst show that fY (ui)g is d-separated fromfY (uj)g by fY (uk)g in A(C) if and only if Xi is d-separated from Xj by Xkin G.Suppose Xi is d-separated from Xj by Xk in G, but fY (ui)g is notd-separated from fY (uj)g by fY (uk)g in A(C). Then there exists a path be-tween fY (ui)g and fY (uj)g in the moralised anestral version [14℄ of A(C)whih does not pass through fY (uk)g.Now in A(C) there exist edges from eah J(u) vertex to the orrespondingY (u) vertex; and edges from Y (ua) verties to J(ub) verties only if thereexists an edge from Xa to Xb in G. When we produe the moralised anestralversion of A(C) we introdue two sorts of undireted edges { those between
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SEPARATION THEOREMS FOR CEGS 37distint verties belonging to the same olletion fY (ua)g, and those be-tween Y (ua) and Y (ub) verties belonging to di�erent olletions fY (ua)g,fY (ub)g, where Y (ua) and Y (ub) are both parents of a vertex J(u). Thislatter only ours when Xa and Xb are both parents of X in the moralisedanestral version of G. Note that we introdue no undireted edges whihonnet J(u) verties, or onnet J(u) verties to Y (u) verties.So in the moralised anestral version of A(C) there only exist undiretededges between di�erent olletions of verties if there exist undireted edgesbetween the orresponding variables in the moralised anestral version of G.Hene there annot be a path between fY (ui)g and fY (uj)g in the moralisedanestral version of A(C) whih does not pass through fY (uk)g.Suppose instead that fY (ui)g is d-separated from fY (uj)g by fY (uk)g inA(C), but that Xi is not d-separated from Xj by Xk in G. Then there mustexist either a moralising edge in the moralised anestral version of G thathas no orresponding edges in the moralised anestral version of A(C) or adireted edge in G that has no orresponding edges in A(C).The latter is impossible by onstrution { if there are no edges fromfY (ua)g to fJ(ub)g then Xa is not a parent of Xb. In the former ase thiswould mean that there existed variables Xa;Xb, both parents of X, suhthat there was no J(u) vertex whih was the hild of both a Y (ua) vertexand a Y (ub) vertex.But if the CEG is of a model whih has a natural produt spae butwhih admits no ontext-spei� onditional independene properties theneah J(u) vertex must have as parents both Y (ua) and Y (ub) verties, sineeah J(u) orresponds to a partiular on�guration of the parents of X,whih inlude both Xa and Xb. So this also is impossible.Using the above result and results from [31℄ the �rst statement in Theo-rem 3 holds, and also if fY (ui)g is not d-separated from fY (uj)g by fY (uk)g,then Xi /q Xj j Xk in at least one distribution ompatible with C and G.So if Xi q Xj j Xk holds for all distributions ompatible with C and G,then Xi is d-separated from Xj by Xk in G, and from above fY (ui)g isd-separated from fY (uj)g by fY (uk)g in A(C). �PROOF OF COROLLARY 5. If wa; wb are separated by a stalk thenX(wa) q X(wb), simply by replaing SCEG by RCEG in part (1) of theproof of Theorem 2.If wa; wb are separated by a stalk, then every wa 2 Ra is separated fromevery wb 2 Rb by a stalk, and hene XRa qXRb . Y (Ra)� = supw2RaX(w)�is a funtion of XRa , and hene Y (Ra) q Y (Rb). �
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38 THWAITES & SMITHAPPENDIX 2: A CAUTIONARY TALESuppose we have a CEG and an ACEG of a model whih satis�es theonditions for Theorem 3. Suppose also that in the BN-representation of thismodel, A is a parent of both B and C, and B is a parent of C. ThenfY (uC)g q fJ(uB)g j fY (uB)g, sine J(uB) is a funtion of Y (uB).But in an ACEG of this model, fY (uC)g is apparently not d-separatedfrom fJ(uB)g by fY (uB)g, sine there are paths from Y (uC) verties toJ(uB) verties whih are not bloked by fY (uB)g { see Figure 14.
J(uB) Y(uB)

J(uA) Y(uA)

J(uC) Y(uC)

Fig 14. ACEG for example in Appendix 2We use the word apparently here with justi�ation. In [31℄ setion 4, theauthors briey disuss D-separation (as opposed to d-separation) for graphswhere there are funtional (as opposed to stohasti) dependenies. An oth-erwise ative path between two nodes is rendered inative by a set of nodesZ under D-separation if a node on the path is determined by Z. Here eahJ(uB) is a funtion of its hild Y (uB), so fY (uC)g is D-separated fromfJ(uB)g in this example.Note that in this paper we have, with one exeption, just disussed d-separation expressions whih involve only Y (u)-type verties; between whihthere are no funtional dependenies. The one exeption is where we haveonsidered expressions of the form Y (u)qY D(u) j J(u). Here it is quite lear
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