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sSEPARATION THEOREMS FOR CHAIN EVENT GRAPHSBy Peter A. Thwaites� and Jim Q. Smith�University of Warwi
kA separation theorem on a graphi
al model allows an analyst toidentify the 
onditional independen
e statements it logi
ally entailsusing only the topology of the graph. In this paper we prove separa-tion theorems asso
iated with a new 
oloured graphi
al model 
alleda Chain Event Graph (CEG). The 
lass of CEG models generalisesthe 
lass of �nite dis
rete Bayesian Network models. Here we formallyde�ne this model 
lass, and 
onsider the set of permissible 
onditionalindependen
e queries on this graph. We provide ne
essary and suf-�
ient 
onditions for these 
onditional independen
e statements tohold on a sub
lass of un
oloured CEGs 
alled simple CEGs. We thenprove suÆ
ient 
onditions for su
h statements to hold on a mu
hlarger sub
lass 
alled regular CEGs. The paper is illustrated with arunning example demonstrating the appli
ation of these theorems.1. Introdu
tion. If the DAG (dire
ted a
y
li
 graph) G of a BayesianNetwork (BN) has a vertex set fX1;X2; : : : ;Xng, then there are n 
on-ditional independen
e assertions whi
h 
an simply be read o� the graph.These are the properties that state that a vertex-variable is independentof its non-des
endants given its parents (the dire
ted lo
al Markov prop-erty [14℄). Answering most 
onditional independen
e queries however, is notso straightforward. The d-separation theorem for BNs was �rst proved byVerma and Pearl [31℄, and an alternative version 
onsidered in [15, 14, 5℄. Thetheorem addresses whether the 
onditional independen
e query AqB j C ?
an be answered from the topology of the DAG of a BN, where A;B;C aredisjoint subsets of the set of vertex-variables of the DAG. It allows the BN tobe interrogated and irrelevan
es 
he
ked before any quantitative embellish-ments of distribution on its 
onditional probability tables are added. Thisprovides a valuable tool in the pro
ess of dis
overing requisite models [21℄,as well as a logi
al framework for propagation algorithms and learning (seefor example [5℄ and the TETRAD software of S
heines et al).However for many problems the available quantitative dependen
e infor-mation 
annot all be embodied in the DAG of a BN. Separation theorems�This resear
h is supported by EPSRC grant no. EP/F036752/1AMS 2000 subje
t 
lassi�
ations: Primary 68T30, 68T37; se
ondary 62F30, 68R10Keywords and phrases: Bayesian Network, Chain Event Graph, 
onditional indepen-den
e, dire
ted a
y
li
 graph, graphi
al model, separation theorem1
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2 THWAITES & SMITHhave been proved for more general 
lasses of graphi
al model in
luding 
haingraphs [3℄, alternative 
hain graphs [2℄, and an
estral graphs [23℄. In thispaper we prove separation theorems for a parti
ularly expressive graphi
almodel { the Chain Event Graph (CEG).Our motivation for the development of this 
lass is that CEGs are proba-bly the most natural graphi
al models for dis
rete pro
esses when eli
itationinvolves questions about how situations might unfold. Although the topol-ogy of these graphs is more 
ompli
ated than that of the BN, they are mu
hmore expressive, as they allow us to represent all stru
tural quantitativeinformation within the graph itself. Context-spe
i�
 symmetries whi
h arenot intrinsi
 to the stru
ture of the BN [4, 16, 22, 24℄ are fully expressed inthe topology of the CEG, whi
h also re
ognises logi
al zeros in probabilitytables, and the numbers of levels taken by problem-variables. This last hasbeen found to be essential to understanding the geometry of BN modelswith hidden variables [1, 18℄.The CEG has already been demonstrated to be a useful inferential frame-work for appli
ations as diverse as forensi
 s
ien
e [26℄, biologi
al regulatorymodels [27℄, and edu
ation [8℄. The graphs provide a framework for repre-sentation [27℄, probability propagation [29℄, learning and model sele
tion [8℄,and for 
ausal analysis [30℄.These papers 
on
entrate on the appli
ation of CEG-based te
hniques.Whilst they use the 
onditional independen
e properties of the graph, theydo not provide a full formal development for the 
lass of CEG models. Thispaper re
ti�es this la
k. In doing so we identify the form of the types of
onditional independen
e statements it is natural to query, and also provea number of separation theorems whi
h allow us to answer ea
h query asalways true or not, solely on the basis of the topology of the graph.We note that, even more so than is the 
ase with BNs, there are a numberof 
onditional independen
e properties whi
h 
an simply be read o� theCEG. These are des
ribed in Se
tions 2.4 and 5.2, and given the tree-basednature of the CEG these properties are naturally 
ontext-spe
i�
. That is tosay they are properties of the form AqB j � for some event �. An analogousstatement for a dis
rete BN would be of the formp(A = a j B = b; C = 
) = p(A = a j C = 
)for some subsets of variables A;B;C, some spe
i�
 ve
tor value 
 of C andall ve
tor values a of A and b of B. The 
lass of 
onditioning events we 
anta
kle with a CEG is however mu
h ri
her than that generally 
onsideredwhen using BN-based analysis.

CRiSM Paper No. 11-09, www.warwick.ac.uk/go/crism



SEPARATION THEOREMS FOR CEGS 3
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Fig 1. An SCEG C2. The Simple Chain Event Graph.2.1. The basi
 de�nition of an SCEG. The Chain Event Graph C(V;E)is a dire
ted a
y
li
 graph (DAG), whi
h is 
onne
ted with a unique rootvertex (with no in
oming edges) and a unique sink vertex (with no outgoingedges). Unlike the BN more than one edge 
an exist between two verti
es ofa CEG. The regular Chain Event Graph (RCEG) dis
ussed in se
tion 4 alsohas its verti
es and edges 
oloured.We �rst 
onsider a sub
lass of the 
lass of CEGs 
alled a simple ChainEvent Graph (SCEG). Neither the verti
es (
alled positions) w 2 V (C), northe edges e(w;w0) 2 E(C) of an SCEG are 
oloured. An example of an SCEGis given in Figure 1.The root and sink verti
es of a CEG are labelledw0 and w1. Ea
h positionw 2 V (C)nfw1g has a set E(w) of k(w) outgoing edges, whi
h when we wishto emphasise their 
onne
tion with the position w, may be labelled fex(w) :x = 1; 2; : : : ; k(w)g.A dire
ted w0 ! w1 path � in C is 
alled a route. The set of routes of Cis labelled �(C) (and 
orresponds to the set of atoms of the �nite dis
rete

CRiSM Paper No. 11-09, www.warwick.ac.uk/go/crism



4 THWAITES & SMITHTable 1Context for Figure 1Des
riptor Edgesmale e1(w0)female e2(w0)displayed symptom S before puberty e1(w1); e1(w2)displayed symptom S after puberty e2(w1); e2(w2)never displayed symptom S e3(w1); e3(w2)developed 
ondition e1(w3); e1(w4)did not develop 
ondition e2(w3); e2(w4)died before the age of 50 e1(w5); e1(w6); e1(w7);e1(w8); e1(w9)died at the age of 50 or older e2(w5); e2(w6); e2(w7);e2(w8); e2(w9)probability spa
e represented by C { see below). Note that ea
h route isuniquely determined by a sequen
e of edges. Thus in the CEG in Figure 1,one su
h route is �1 � fe1(w0); e1(w1); e1(w3); e1(w6)g. It is easy to 
he
kthat C here has 20 su
h routes. We write w � w0 when the position wpre
edes the position w0 on a route.When our CEG is applied to a population, ea
h route 
orresponds to apossible set of attributes that a member of the population 
ould take. Forexample, if the CEG in Figure 1 is applied to a population of people whoseparents su�erered from an inherited medi
al 
ondition, and the edges of theCEG 
arry the des
riptors given in Table 1, then the route �1 des
ribedabove 
orresponds to male, displayed symptom S before puberty, developed
ondition, died before the age of 50.An SCEG is route 
ompatible for a population of units 	 if ea
h possiblehistory of a unit in the population (or atom of the event spa
e) 
orrespondsto the unit passing along one of the routes � 2 �(C). We use F(C) to denotethe sigma �eld of events formed by these atoms. F(C) 
orresponds to thepower set of �(C). Sin
e ea
h atom of this event spa
e 
odes what mighthappen to a unit in 	, the SCEG en
odes an additional longitudinal devel-opment depi
ting the possible ways the future might unfold, not en
oded bythe sigma �eld F(C) alone (see [25℄).We label an event in F(C) by �, and note that be
ause the CEG's atomshave this impli
it longitudinal development asso
iated with them, 
ertainevents in F(C) are parti
ularly important. Let �(w) denote the event thata unit takes a route that passes through the position w 2 V (C). �(w;w0)is then the union of all routes passing through the positions w and w0,�(e(w;w0)) is the union of all routes passing through the edge e(w;w0), and�(�(w;w0)) is the union of all routes utilising the subpath �(w;w0).
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SEPARATION THEOREMS FOR CEGS 5Certain subsets of the set of positions also have an important status inthis 
ontext. In this paper we will 
all a set R � V (C) a regular subset ifthe events f�(w) : w 2 Rg are disjoint. Note that R is regular if and only ifthere is no route � 2 �(C) 
ontaining more than one position w 2 R. CallR a position-
ut if f�(w) : w 2 Rg forms a partition of �(C). A position-
ut
an be asso
iated with a random variable that labels whi
h of a 
lass ofdevelopments a unit might take (see se
tion 3).2.2. Probabilities on an SCEG. Underlying the SCEG there is a prob-ability spa
e whi
h is spe
i�ed by assigning probabilities to the atoms. Wedo this as follows: For ea
h position w 2 V (C)nfw1g and edge e(w;w0) em-anating from w, we 
all �e(w0 j w) a primitive probability if �e(w0 j w) � 0and Pw0 �e(w0 j w) = 1.Definition 1. A probability mass fun
tion p(�); � 2 �(C) is said tohave the monomial property for a population 	 if there exists a set of prim-itive probabilities � = f�e(w0 j w) : e(w;w0) 2 E(w); w 2 V (C)nfw1gg onthe edges of C su
h that for all routes � 2 �(C)p(�) = Ye(w;w0)2� �e(w0 j w) (2:1)where e(w;w0) 2 � means that the edge e(w;w0) lies on the route �.Note that (2.1) fully de�nes a probability measure over F(C) by spe
ifyingea
h atomi
 probability as a fun
tion of its primitive probabilities.The assignment of probabilities (2.1), determined by � impli
itly de-mands a Markov property over the 
ow of the units through the graph.Thus, in the 
ontext of our medi
al example, the probablility of an indi-vidual with attributes (male, displayed symptom S before puberty), (male,displayed symptom S after puberty) or (female, displayed symptom S beforepuberty) developing the 
ondition depends only on the fa
t that the subpaths
orresponding to these pairs of attributes terminate at the position w3, andnot on the parti
ular subpath leading to w3. The probability this individualdevelops the 
ondition is then �e(w6 j w3) � p(�(e(w3; w6)) j �(w3)). So weonly need to know the position a unit has rea
hed in order to predi
t as wellas is possible what the next unfolding of its development will be.This Markov hypothesis looks strong but in fa
t holds for many families ofstatisti
al model. For example all event tree des
riptions of a problem satisfythis property, all �nite state spa
e 
ontext spe
i�
 Bayesian Networks as wellas many other stru
tures [27℄.
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6 THWAITES & SMITHWe 
an go further and state that the sets of possible future developments(whether or not they developed the 
ondition and whether or not they diedbefore the age of 50) for individuals taking any of these three subpathsmust be the same. Moreover the 
onditional probability of any parti
ularsubsequent development must be the same for individuals taking any of thesethree subpaths. This a

ounts for the term position for a (non-sink) vertex.In this paper we dis
uss minimal CEGs where if positions w� and w�are su
h that the sets of possible future developments from w� and w� areidenti
al, and the 
onditional probability distributions over these sets areidenti
al, then w� and w� are the same position. Any referen
e to a CEG,SCEG or RCEG should therefore be taken to mean a minimal CEG, SCEGor RCEG.Definition 2. An SCEG C is said to be valid for a population 	 if itis route 
ompatible and has the monomial property for 	.Note that like the BN, the SCEG 
an be valid without its asso
iatedprimitive probabilities being known. We just need to believe that some set� exists so that the asso
iated Markov hypothesis holds. We are free toassign any set of probabilities � to the edges of a valid SCEG within thesimplex 
onditions above. So in parti
ular the probability model spa
e of avalid C 
an be de�ned as the produ
t spa
e of these jV (C))j � 1 di�erentsimpli
es where the simplex asso
iated with w 2 V (C)nfw1g has Eu
lideandimension k(w) � 1: The probability of any event � in F(C) is then of theform p(�) = X�2� p(�) = X�2� Ye(w;w0)2� �e(w0 j w)where � 2 � means that � is one of the 
omponent atoms of the event �.In this paper we will also use the following further notation:��(w0 j w) � p(�(�(w;w0)) j �(w)) denotes the probability of utilising thesubpath �(w;w0) (
onditional on passing through w),�(w0 j w) � p(�(w;w0) j �(w)) = P� ��(w0 j w) denotes the probability ofarriving at w0 
onditional on passing through w.2.3. Conditioning on intrinsi
 events. In this paper we are interested in
onditioning sets whi
h give rise to 
onditional independen
e queries that
an be answered purely by inspe
ting the topology of an SCEG C. An im-portant sub
lass of these are events in F(C) whi
h are 
alled intrinsi
.Definition 3. An intrinsi
 event � in F(C) is a set of routes of C whi
hare also routes of C� where C� is a subgraph of C that 
ontains the root vertex
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SEPARATION THEOREMS FOR CEGS 7w0 and the sink vertex w1 of C in its vertex set, and where w0 is the onlyvertex in V (C�) with no parent, and w1 is the only vertex in V (C�) withno 
hild. Call su
h a subgraph C� a sub SCEG.Note that the sub SCEG C� is itself an SCEG. All atoms of F(C) areintrinsi
, as are �(w) and �(w;w0) (provided this is non-empty) for allw;w0 2 V (C), and as is the exhaustive set �(w0). If we in
lude the emptyset in the set of intrinsi
 events then we note that intrinsi
 sets are 
losedunder interse
tion and so te
hni
ally form a �-system (see for example [12℄)we 
an asso
iate with the SCEG C.Not all events in F(C) are ne
essarily intrinsi
 be
ause the 
lass of intrin-si
 events is not 
losed under union. For example, for the CEG in Figure 1,the event � 
onsisting of the union of the two atoms (e1(w0); e1(w1); e1(w3);e1(w6)) and (e1(w0); e2(w1); e1(w3); e2(w6)) produ
es a subgraph C� whi
hhas four distin
t routes, so � is not intrinsi
. However the 
lass of intrinsi
events is ri
h enough to en
ompass virtually all of the 
onditioning eventsin the 
onditional independen
e statements we would like to query. In par-ti
ular, if our model 
an be expressed as a BN then any set of observationsexpressible in the form O(A) = fXj 2 Ajg (for subsets fAjg of the samplespa
es of fXjg, the vertex-variables of the BN) is a proper subset of the setof intrinsi
 events de�ned on the CEG of our model [29℄.The �rst important property of the 
lass of valid SCEG models is thatthey are 
losed under 
onditioning by an intrinsi
 event:Theorem 1. If an SCEG C is valid on a population 	 then the proba-bility model on F(Cj�) of any of its sub SCEGs C� is a probability model onF(C�) whi
h is also valid.The obvious set of primitive probabilities for the sub-SCEG C� is given by�� = ���e(w0 j w) : e(w;w0) 2 E(w); w 2 V (C)nfw1g	where ��e(w0 j w) = p(� j �(e(w;w0)))p(� j �(w)) �e(w0 j w)providing this is well-de�ned. A proof of this theorem 
an be found in theappendix. We note that this property has now been su

essfuly used todevelop fast propagation algorithms for CEGs (see [29℄).Note that the probability of an atom � in C 
onditioned on the intrinsi
event � is the probability of that atom in the SCEG C�. We denote thisprobability p�(�). It is then trivially the 
ase that the probability of anevent in C 
onditioned on the event � is the probability of that event in theSCEG C�.
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8 THWAITES & SMITH2.4. Random variables on an SCEG.. Random variables measurable withrespe
t to F(C) partition the set of atoms into events. So for example, we
an de�ne variables X;Y , measurable with respe
t to F(C), whi
h partitionthe set of atoms into events f�Xg; f�Y g. Moreover for an event � (withp(�) 6= 0) we 
an write X q Y j � if p(X = x j Y = y;�) = p(X = x j �)for all values x of X and y of Y (see for example [7℄).Lemma 1. For a CEG C, variables X;Y measurable with respe
t to F(C),and intrinsi
 
onditioning event �, the statement X q Y j � is true if andonly if X q Y is true in the CEG C�.The proof of this lemma is in the appendix. This is a parti
ularly usefulproperty be
ause it allows us to 
he
k any 
ontext-spe
i�
 
onditional inde-penden
e property by 
he
king a non-
onditional independen
e property ona sub-SCEG.We now turn our attention to two types of elementary random variables,measurable with respe
t to F(C), that 
an be identi�ed with ea
h positionw 2 V (C)nfw1g. These are the variables fI(w) : w 2 V (C)nfw1gg de�nedby I(w) = ( 1 if � passes through w0 otherwiseand the variables fX(w) : w 2 V (C)nfw1gg de�ned byX(w) = ( x if � passes along edge ex(w) 2 E(w)0 if the position w does not lie on �where x = 1; 2; : : : k(w) index the edges emanating from w. Noti
e thatsin
e I(w) is 
learly a fun
tion of X(w), to spe
ify a full joint distributionover f(I(w);X(w)) : w 2 V (C)nfw1gg it is suÆ
ient to spe
ify the jointdistribution of fX(w) : w 2 V (C)nfw1gg. Note that all atomi
 events � 
anbe expressed as the interse
tion of events� = \w2� fX(w) = x�gand events in F(C) as the union of these atomi
 events� = [�2�8<:\w2� fX(w) = x�g9=;where w 2 � denotes that the position w lies on the route �, and x� 6= 0 isthe unique value of X(w) of the edge in the route �.
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SEPARATION THEOREMS FOR CEGS 9
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2Fig 2. C 
onditioned on the event that displayed symptom SFigure 2 shows the SCEG C from Figure 1 
onditioned on the intrinsi
event � = (X(w1) = 1) [ (X(w1) = 2) [ (X(w2) = 1) [ (X(w2) = 2) or inthe 
ontext of our medi
al example, displayed symptom S.For any set A � V (C), letXA denote the set of random variables fX(w) :w 2 Ag and IA the set fI(w) : w 2 Ag. Also, for any w 2 V (C), let U(w) bethe set of positions in V (C) whi
h lie upstream of the position w, D(w) theset of positions whi
h lie downstream of w, U 
(w) the set of positions whi
hdo not lie upstream of w, and D
(w) the set of positions whi
h do not liedownstream of w.Lemma 2. For any SCEG C and position w 2 V (C)nfw1g, the variablesI(w);X(w) exhibit the position independen
e property thatX(w) qXD
(w) j I(w)The result given in this lemma is analogous to that whi
h Pearl [20℄ uses tode�ne BNs, whi
h states that a BN vertex-variable is independent of its non-des
endants given its parents. It provides a set of 
onditional independen
estatements that 
an simply be read from the graph, one for ea
h positionin V (C). The proof of the lemma is in the appendix.The statement that X(w) qXD
(w) j (I(w) = 1) 
an be read as: Givena unit rea
hes a position w 2 V (C), whatever happens immediately after wis independent of not only all developments through whi
h that position was
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10 THWAITES & SMITHrea
hed, but also of all positions that logi
ally have not happened or 
ouldnot now happen be
ause the unit has passed through w. Thus, in the senseabove, the position of a valid SCEG C is suÆ
ient to des
ribe the futuredevelopment of units passing through it.As already noted, the produ
t spa
e de�ned by f(I(w);X(w)) :w 2 V (C)g is over spe
i�ed. This is so �rstly be
ause I(w) = 0, X(w) = 0and I(w) = 1 ) X(w0) = 0 for w0 2 D
(w) \ U 
(w). Probability dis-tributions exist whi
h satisfy the set of statements of the form X(w) qXD
(w) j I(w) whi
h do not obey these impli
ations, but su
h distributions
annot be represented on an SCEG.More signi�
antly, if the SCEG is used for the purpose for whi
h it wasintended, as a representation of an asymmetri
 pro
ess or problem, thenthere will be many probabilities in the joint probability tables over the spa
ede�ned by f(I(w);X(w)) : w 2 V (C)g whi
h are identi
ally zero. The jointmass fun
tion is then extremely sparse. These zeros 
orrespond to impossibleevents whi
h nonetheless are given equal signi�
an
e with possible events ina BN-representation of the problem. In many 
ases these events are notjust impossible but meaningless. For example if X(wa) = 1 
orresponds topatient dies, X(wb) = 1 
orresponds to patient is given treatment 2, andwa � wb, then the event (X(wa) = 1;X(wb) = 1) has no logi
al meaning.As the set of statements of the form f(I(w);X(w)) : w 2 V (C)g do not de-�ne the SCEG, these additional 
ounterfa
tual statements produ
ed by theprodu
t spa
e representation are not an integral part of the CEG-framework.The produ
t spa
e de�ned by the full set of statements is nevertheless a use-ful 
onstru
t be
ause it allows us to en
ode sets of 
onditional independen
estatements into a valid SCEG and so allows us to qui
kly prove separationtheorems for su
h graphs.The stru
ture of the CEG illustrates a further aspe
t of the graphi
almodelling pro
ess whi
h is not transparent in the topology of the BN. TheCEG depi
ts all possible histories of a unit in a population, and gives aprobability distribution over these histories. However, when a single unittraverses one of the routes in the CEG, values are assigned to I(w);X(w) forall positions w 2 V (C). Those 
onditional independen
e statements en
odedby the positions and edges through whi
h our unit has not passed are nowtruly 
ounterfa
tual [6℄ in that they answer queries of the form If X hadnot been the 
ase, what would be the 
han
e of Y happening? So the CEGsimultaneously depi
ts both the \reality" and the 
ounterfa
tual aspe
tsof the problem on
e we start to observe the a
tual behaviour of units inthe population. It also makes it a powerful framework for expressing ri
hvarieties of 
ausal hypotheses [30℄.
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SEPARATION THEOREMS FOR CEGS 113. A separation theorem for Simple CEGs. We 
all a positionw 2 V (C) a stalk if the removal of w from V (C) would result in a graph withtwo dis
onne
ted 
omponents. In (non-probabilisti
) graph theory su
h avertex is 
alled a 
ut vertex (see for example [11℄).Theorem 2. In an SCEG C with w1; w2 2 V (C) and w2 6� w1,X(w1) q X(w2) if and only if either w2 is a stalk, or there exists a stalkdownstream of w1 and upstream of w2, for w0 � w1 � w1; w0 � w2 � w1.The proof of this theorem is in the appendix. Theorem 2 has a numberof powerful 
orollaries, whi
h we give after introdu
ing two new variables.Call J(R) the in
iden
e variable of a regular subset R ifJ(R) � Xw2R I(w) � supw2R I(w)and 
all Y (R) the 
riterion variable of a regular subset R ifY (R) � Xw2RX(w) � supw2RX(w)Lemma 3. For an SCEG C with position 
uts Ra = fwag; Rb = fwbg:If X(wa) q X(wb) for any wa 2 Ra; wb 2 Rb, then Y (Ra) q Y (Rb) inevery distribution 
ompatible with C.Conversely, if Y (Ra)qY (Rb) holds for all distributions 
ompatible with C ,then X(wa) qX(wb) for all wa 2 Ra; wb 2 Rb.This lemma and Corollary 5 in Se
tion 7 formalise and generalise theresult given in [27℄ Theorem 2. The proof of the lemma is in the appendix.The 
onverse result is somewhat surprising, but is a 
onsequen
e of theparti
ular stru
ture of the sigma �eld asso
iated with an SCEG.Corollary 1. Let C be an SCEG, � an intrinsi
 event, Ra = fwag;Rb = fwbg be position 
uts of C.If in the sub-CEG C�, wa and wb are separated by a stalk, for any wa 2 Ra;wb 2 Rb, wa; wb 2 V (C�), then Y (Ra) q Y (Rb) j �.The proof of this 
orollary is in the appendix. This has major 
onsequen
esfor models whi
h admit a produ
t spa
e stru
ture, where othogonal 
uts ofthe CEG have a natural meaning 
orresponding to measurement variablesof the problem. Models of this sort 
an be represented as BNs, with possibleannotation of 
ontext-spe
i�
 
onditional independen
e properties.
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12 THWAITES & SMITHCorollary 2. If an SCEG C is of a model whi
h admits a produ
tspa
e stru
ture, A;B are measurement variables of the model, and Ra; Rbare the position 
uts of C 
orreponding to these variables, then:If X(wa) q X(wb) for any wa 2 Ra; wb 2 Rb, then A q B in everydistribution 
ompatible with C.Conversely, if A q B holds for all distributions 
ompatible with C, thenX(wa)qX(wb) for all wa 2 Ra; wb 2 Rb.The proof of this follows immediately from Lemma 3.Corollary 3. Let C be an SCEG of a model whi
h admits a produ
tspa
e stru
ture, A;B be measurement variables of the model, � an intrinsi
event, Ra; Rb be position 
uts of C 
orreponding to the variables A and B.If in the sub-CEG C�, wa and wb are separated by a stalk, for any wa 2 Ra;wb 2 Rb, wa; wb 2 V (C�), then AqB j �.The proof of this follows dire
tly from Corollaries 1 and 2. In the 
asewhere our model has a natural produ
t spa
e stru
ture, the topology ofthe SCEG allows us to repla
e 
onditional independen
e queries su
h asAqB j C ? by sets of 
ontext-spe
i�
 queries su
h as fAqB j (C = 
) ?g,allowing us to interrogate the graph using Corollary 3. If in addition ourmodel admits no 
ontext-spe
i�
 
onditional independen
e properties, thenthe symmetries in the SCEG mean that we need only 
he
k the answer to asingle query, for instan
e Aq B j (C = 1) ?Example 3.1. Figure 3 shows the SCEG C from Figure 1 
onditioned onthe intrinsi
 event � = (X(w1) = 1) [ (X(w2) = 1) or displayed symptom Sbefore puberty. This graph has a stalk at w3, and by Theorem 2 we have thatX(w0)q fX(w3);X(w6);X(w7)g in this graph.Consider the position 
uts R0 = fw0g; R1 = fw1; w2g; R2 = fw3; w4; w5g;R3 = fw5; w6; w7; w8; w9g of C. Then as Figure 3 depi
ts a 
onditionedCEG C� for the intrinsi
 event �, Corollary 1 gives us thatY (R0)q (Y (R2); Y (R3)) j �Now the CEG C from Figure 1 does not have a natural produ
t spa
estru
ture, but this is no obsta
le to our using Corollary 3 here. As C� doesadmit a produ
t spa
e stru
ture we 
an impose this onto C by for examplede�ning A � Y (R0); B � Y (R1), D � Y (R3) andC = ( 1 if sup(X(w3);X(w4)) = 12 otherwise
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Fig 3. C 
onditioned on displayed symptom S before pubertyThis allows us to use Corollary 3 and gives us thatA q (C;D) j (B = 1)whi
h in our medi
al 
ontext reads as whether an individual develops the
ondition and whether they die before 50 are independent of their gendergiven that they displayed symptom S before puberty.4. Regular CEGs. Although SCEGs form an important 
lass of graph-i
al model, by adding extra stru
ture to them we 
an make them even moreexpressive. We do this by 
olouring positions and edges. The resultant graphis 
alled a regular Chain Event Graph (RCEG). We note that 
olouredgraphs have re
ently been found to provide a valuable embellishment toother graphi
al models (see for example [9℄).An RCEG is a 
oloured SCEG C where the set V (C) has an asso
iatedpartition U(C) = fu1; u2; : : : utg for whi
h ea
h set u � V (C) is regular. Theset u is 
alled a stage and is su
h that for ea
h w 2 u the distribution fun
tionof X(w) j (I(w) = 1) is dependent only on u and not on the parti
ular w 2 u.Definition 4. w1; w2 2 V (C)nfw1g are in the same stage u if thereexists a bije
tion  (w1; w2) between E(w1) and E(w2) su
h that if  :ex(w1) 7! ex(w2) then p(�(ex(w1)) j �(w1)) = p(�(ex(w2)) j �(w2)).The positions w1; w2 have the same 
olour if they are in the same stage,
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14 THWAITES & SMITH
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Fig 4. The RCEG for Example 4.1and the edges ex(w1); ex(w2) have the same 
olour if w1; w2 are in the samestage and ex(w1) maps to ex(w2) under this bije
tion.The existen
e or otherwise of a bije
tion between two edge sets is normallyapparent from the 
ontext of the problem. Note that if ex(w1) maps to ex(w2)under a bije
tion  , then these edges must 
orrespond to the same out
ome(for example patient dies) given the two histories �(w1) and �(w2). We 
allthe 
olouring of the RCEG the stage-stru
ture of the graph.Example 4.1. Produ
ing an RCEG from the SCEG in Figure 1 we
an add the extra information that the positions w3 and w4 are in the samestage { that is the probability of developing the 
ondition (or not) is the samewhether a member of the population has attributes 
orresponding to the sub-paths (e1(w0); e1(w1)); (e1(w0); e2(w1)); (e2(w0); e1(w2)) or (e2(w0); e2(w2)).The RCEG C is given in Figure 4.This additional stru
ture allows us to express a ri
her set of 
ontext-spe
i�
 properties and sample spa
e information than we 
an with theSCEG. The 
lass of models expressible as an RCEG in
ludes as a proper
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SEPARATION THEOREMS FOR CEGS 15subset the 
lass of models expressible as faithful regular or 
ontext-spe
i�
BNs on �nite variables. Unlike the BN, the RCEG embodies the stru
ture ofthe model state spa
e and any 
ontext-spe
i�
 information in its topologyand 
olouring.RCEGs are route-
ompatible and have the monomial property for a pop-ulation 	 if their underlying SCEG does, and hen
e are valid for a popula-tion 	 if their underlying SCEG is. The subgraph C� of an RCEG C 
on-ditioned on an intrinsi
 event � is an RCEG. Theorem 1 holds for RCEGs.Note however that C� may not have the same stage-stu
ture as C in that po-sitions or edges whi
h have the same 
olour in C may have di�erent 
oloursin C�. Lemma 1 and the position independen
e property hold for RCEGs.The 
onditions stipulated in Corollaries 1 and 3 
an now be relaxed. It issuÆ
ient that C� should be simple (rather than C) for these results to hold.The subgraph of a CEG whi
h 
onsists of a position w, the sink-node w1,and all edges and positions whi
h lie on a w ! w1 subpath is 
alled thesubgraph rooted in w. When the CEG is used as a pra
ti
al tool it is im-portant to maximise its representational eÆ
ien
y. So if in the subgraph C�,the subgraphs rooted in the positions w� and w� have identi
al topologiesand 
olouring we 
an 
ombine the positions w� and w� into a single posi-tion [30℄. Note that if we do this then C� although now minimal, is no longera subgraph of C (see De�nition 3).Following the ideas of se
tion 3, we letJ(u) = supw2u I(w) and Y (u) = supw2uX(w)The RCEG is also a powerful tool for interrogation purposes, but to max-imise its potential in this area we use the Augmented Chain Event Graph(ACEG) des
ribed in the next se
tion.5. Augmented CEGs.5.1. De�nition of an Augmented CEG. Analogously to the de�nitionof XA, let Y A = fY (u) : u 2 Ag and JA = fJ(u) : u 2 Ag. Sin
e theCEG C is a DAG, there exists a partial order of the stages in the set U(C).Let P (u) be the set of all u0 stages that pre
ede u in this partial order. LetY Q(u) be a minimal subset of Y P (u) su
h thatJ(u) q Y P (u) j Y Q(u)Definition 5. An augmented CEG (ACEG) A(C) is a fun
tion of theCEG C with vertex set V (A(C)) = fJ(u) : u 2 U(C)g [ fY (u) : u 2 U(C)g.
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Fig 5. The RCEG for Example 5.1The edge set E(A(C)) 
onsists of dire
ted edges 
onne
ting the parentsof any vertex in V (A(C)) to that vertex. Ea
h vertex Y (u) has a singleparent J(u), and the parents of J(u) are pre
isely those Y (u0) verti
es thatare members of Y Q(u).Example 5.1. A resear
h group has taken a sample from the popu-lation des
ribed in Se
tion 2.1 whi
h 
ontains only people who displayedsymptom S. Analysis of this sample suggests that whether an individual de-velops the 
ondition and whether they die before 50 are independent of theirgender given when they displayed symptom S. The RCEG for this is given inFigure 5. An ACEG for this graph is given in Figure 6, where for illustrative
onvenien
e the edges emanating from Y (u) nodes have been labelled withvalues of A (= Y (R0) for R0 = fw0g), B (= Y (R1) for R1 = fw1; w2g), andC (= Y (R2) for R2 = fw3; w4g).5.2. ACEGs are Bayesian Networks. We extend the notation of se
tion 3to let XD
(u) be the ve
tor of random variables of the form X(w) asso
i-ated with positions in C whi
h do not lie downstream of the stage u. Let
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A=1

B=1

C=1

C=1
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B=2B=2
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Y(uC)

J(uB2) Y(uB2)
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Fig 6. An ACEG for the RCEG in Figure 5Y D
(u);JD
(u) be the ve
tors of random variables of the form Y (u0); J(u0)asso
iated with stages in C whi
h do not lie downstream of the stage u.Lemma 4. For CEG C, and stage u 2 U(C)Y (u) q Y D
(u) j J(u)The result given in this lemma is analogous to that given in Lemma 2 forpositions, and so also to the result quoted there for BNs. It provides a setof 
onditional independen
e statements that 
an simply be read from thegraph, one for ea
h stage in U(C). A partial reading of the lemma gives usthat the immediate future for a unit at a stage u is independent of how theunit rea
hed that stage. The proof of the lemma is in the appendix.By 
onstru
tion, if a stage u0 is not downstream of u in C, then J(u0); Y (u0)are not downstream of J(u); Y (u) in A(C). Sin
e for every stage u0, J(u0) isa fun
tion of Y (u0), it follows thatY (u) q (JD
(u);Y D
(u)) j J(u)
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18 THWAITES & SMITHand hen
e that Y (u) q (JP (u);Y P (u)) j J(u)in any partial order of U(C). Clearly we also have thatJ(u) q (JP (u);Y P (u)) j Y Q(u)and hen
e that all verti
es in an ACEG A(C) are independent of their pre-de
essor verti
es given their parental verti
es in any partial order of U(C).In [19℄ it is shown that a probability distribution P is Markov relative to aDAG G if and only if ea
h variable in G is independent of all its prede
essors
onditional on its parents, in some ordering of the variables that agrees withthe arrows of G. Clearly our ACEG is a DAG, and from the above reasoningea
h variable in A(C) is independent of all its prede
essors 
onditional on itsparents for all P de�ned on the CEG C. So our ACEG obeys what Pearl [20℄
alls the ordered Markov 
ondition, and hen
e also obeys the lo
al Markov
ondition [13℄. Results in [10℄ allow us therefore to dedu
e that the ACEGis itself a BN.This dedu
tion means that any result available for use with BNs 
an alsobe used with ACEGs. In parti
ular we 
an use d-separation to allow us tointerrogate ACEGs for 
onditional independen
e properties. The advantagethat the ACEG has here over the BN is that in the former 
ontext-spe
i�

onditional independen
e properties are depi
ted expli
itly in the topologyof the graph, and so it 
an be interrogated dire
tly for su
h properties. Webegin however by looking at models whi
h 
an be represented by BNs.6. Models depi
table by Bayesian Networks and others. If amodel has a natural produ
t spa
e stru
ture and admits no 
ontext-spe
i�

onditional independen
e properties then it 
an be depi
ted by a BN with-out any further annotation. In this se
tion we show that if our CEG is ofsu
h a model then any separation-based 
onditional independen
e propertyreadable from the BN 
an also be read from its asso
iated ACEG.If our CEG is of a model whi
h has a natural produ
t spa
e stru
ture thenfor ea
h variable Xi in the BN there exists a 
olle
tion of verti
es fJ(ui)gin the ACEG whose members 
orrespond to the possible 
on�gurations ofQ(Xi) (the parent variables ofXi), and a 
olle
tion of verti
es fY (ui)g whosemembers 
orrespond to Xi given those 
on�gurations.Theorem 3. If a model with a natural produ
t spa
e stru
ture admittingno 
ontext-spe
i�
 
onditional independen
e properties, has a BN represen-tation G, and a CEG representation C, then:
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SEPARATION THEOREMS FOR CEGS 19If fY (ui)g is d-separated from fY (uj)g by fY (uk)g in A(C), thenXi qXj j Xk in every distribution 
ompatible with C and G.Conversely, if XiqXj j Xk holds for all distributions 
ompatible with C andG, then fY (ui)g is d-separated from fY (uj)g by fY (uk)g in A(C).The proof of this theorem is given in the appendix. This result 
an beexplained as follows: The CEG C is of a model whi
h has a natural prod-u
t spa
e stru
ture admitting no 
ontext-spe
i�
 
onditional independen
eproperties, and 
an be depi
ted by a BN G. Therefore there exist (in A(C))edges from verti
es in fY (ui)g to verti
es in fJ(uj)g if and only if there existsan edge from Xi to Xj in G, and so there is a 1:1 
orresponden
e between theparental 
onditional independen
e statements in G and the parental 
ondi-tional independen
e statements in A(C). By [31℄ Corollary 1, the 
onditionalindependen
e statements in a DAG 
an be derived from d-separation if andonly if they 
an be derived from the list of parental 
onditional indepen-den
e statements using the semi-graphoid axioms [28℄. As both G and A(C)are DAGs, we 
an infer that there is a 1:1 
orresponden
e between the 
on-ditional independen
e statements derived from d-separation in G and the
onditional independen
e statements derived from d-separation in A(C).Essentially, Theorem 3 allows us to use the 
olle
tions fY (ui)g in theACEG as surrogates for Xi in the BN, when answering 
onditional indepen-den
e queries.Example 6.1. For the RCEG in Figure 5, let A;B;C be as in Exam-ple 5.1, R3 = fw5; w6; w7; w8g and D = Y (R3). Then using Theorem 3 onthe ACEG for this RCEG (given in Figure 6), we see thatY (uA) is d-separated from fY (uC); Y (uD)g by fY (uB)g ) Aq (C;D) j BfY (uA); Y (uB)g are d-separated from fY (uC)g ) (A;B) q CY (uA) is not d-separated from Y (uC) by fY (uD)g ) A /q C j DY (uB) is not d-separated from Y (uC) by fY (uD)g ) B /q C j Dfor the RCEG in Figure 5. In our medi
al 
ontext whether an individualdevelops the 
ondition and whether they die before the age of 50 are inde-pendent of their gender given when they displayed symptom S; whether theydevelop the 
ondition is independent of their gender and when they displayedsymptom S; but whether they develop the 
ondition is not independent ofeither their gender or when they displayed symptom S given whether or notthey die before the age of 50, for the sample 
onsidered in Example 5.1.
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20 THWAITES & SMITHCorollary 4. If Xi;Xj ;Xk are distin
t subsets of the vertex-variablesof G, and fY (ui)g; fY (uj)g; fY (uk)g are the 
orresponding 
olle
tions inA(C), then the results of Theorem 3 still hold.This follows from the proof of Theorem 3 (whi
h does not depend onXi;Xj ;Xk being single variables).We have 
alled the 
olle
tions fY (ui)g in A(C) surrogates for Xi in G,but when we repla
e the statement \Xi q Xj j Xk in G" by \fY (ui)g isd-separated from fY (uj)g by fY (uk)g in A(C)", only fY (uk)g is a
tuallya surrogate. This is be
ause the latter statement implies that fY (ui)g qfY (uj)g j fY (uk)g (sin
e A(C) is a BN), and if this statement is true thenXi q Xj j fY (uk)g sin
e Xi � � supY (ui)� is a fun
tion of fY (ui)g. By
onstru
tion only one Y (ui) within the set fY (ui)g 
an take a non-zerovalue, and the value this variable takes is equal to the value taken by Xi.Note that the ACEG has J(u) and Y (u) nodes for ea
h stage u 2 U(C),and ea
h stage u in a CEG is asso
iated with a parti
ular 
olle
tion ofparents { the set of u0 2 U(C) 
orresponding to Y Q(u) in the ACEG. Indeed,if our CEG has suÆ
ient symmetry to be embedded into a family of modelswith a produ
t spa
e stru
ture, then the positions 
onstituting ea
h stage uare members of a spe
i�
 orthogonal 
ut R (se
tion 2.1), and u en
odes aparti
ular 
on�guration of the parental variables of Y (R).For this reason an ACEG has many more nodes than a standard BN,and so admits a far larger 
olle
tion of 
onditional independen
e state-ments. This 
olle
tion in
ludes many 
ontext-spe
i�
 properties whi
h 
anonly be represented in BNs by modifying their stru
ture [4, 16, 22, 24℄. Italso in
ludes many 
ounterfa
tual statements of the type des
ribed in Se
-tion 2.5 on SCEGs. So for example, if we 
onsider the CEG in Figure 2, but
ombine the positions w6; w7; w8 and w9 into a sink-node w1, we get theACEG depi
ted in Figure 7, where for 
onvenien
e we have let A = Y (R0);B = Y (R1); C = Y (R2) with R0; R1; R2 de�ned as in Example 5.1 above.Using the ACEG in Figure 7 we 
an dedu
e that C q B j (A = 1) {whether an individual develops the 
ondition is independent of when theydisplayed symptom S given that their gender is male (and symptom S wasdisplayed), and that C q A j (B = 1) { whether they develop the 
onditionis independent of their gender given that they displayed symptom S beforepuberty. But we also have statements su
h as Y (uC2) q Y (uB1) j Y (uA),whi
h has no obvious meaning in the 
ontext of the problem.7. More on 
ontext-spe
i�
 
onditional independen
e. One ofthe distin
t advantages of the CEG when representing and analysing asym-metri
 problems is that we 
an examine the e�e
ts of 
onditioning on a
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B
=1

B=2Fig 7. An ACEG for the adapted CEG from Figure 2spe
i�
 event, perhaps a spe
i�
 value of a variable, and use the CEG'stopology to dis
over 
onditional independen
ies whi
h would not exist if wewere to 
ondition on a related event, su
h as a di�erent value of our vari-able. If we are interested in these 
ontext-spe
i�
 
onditional independen
eproperties then in this dis
rete 
ontext we need to 
on
entrate our attentionon statements where the 
onditioning element is an event. In most 
asesthis event will be expressible as a value of a single Y (u) (or J(u)) variable,and so queries 
an be 
he
ked dire
tly on an ACEG without the need ofthe surrogate argument of the last se
tion. What happens in 
ases whereour 
onditioning event 
annot be expressed as a value of a Y (u) (or J(u))variable? An example of this is the event � = (B = 1) for the model de-pi
ted in Figure 4. We 
ould draw an ACEG for the full CEG C here, butthe ACEG for C� is mu
h more useful. The sub-CEG C� for this event isgiven in Figure 3. Note that the edge-probabilities on this graph are nowA = 1 j B = 1, A = 2 j B = 1 for the edges leaving w0; 1 for the edgesleaving w1 & w2 (the positions w1 & w2 
ould be 
ombined into a singleposition as suggested in Se
tion 4); C = 1; C = 2 for the edges leaving w3;D = 1 j B = 1; C = 1; D = 2 j B = 1; C = 1; D = 1 j B = 1; C = 2
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B=1

C=1

B=1
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B=1

J(uA) Y(uA)J(uB=1)

Y(uB=1)

J(uC)
Y(uC)
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Fig 8. An ACEG for the sub-CEG from Figure 3and D = 2 j B = 1; C = 2 for the edges leaving w5 & w6 (see Se
tion 2.3and [29℄).An ACEG for C� is given in Figure 8. Noti
e that unlike in Figure 6,J(uA) is not a root-vertex as A is now dependent on B. Also, be
ause wehave 
onditioned on the event (B = 1), the set of Y (uB) verti
es has be
omea single vertex Y (uB=1) with no an
estors ex
ept J(uB=1). We now used-separation to read thatfY (uC); Y (uD)g are d-separated from Y (uA) by Y (uB=1)) (Y (uC); fY (uD)g) q Y (uA) j Y (uB=1)) (C;D) q A j Y (uB=1)sin
e the ACEG is a BN, andA;C;D are fun
tions of Y (uA); Y (uC); fY (uD)g.Also Y (uB=1) = 1 , B = 1, so this in turn implies that (C;D)qA j (B = 1)without the use of the surrogate argument.This method will always work for 
ases like this sin
e 
onditioning on anevent su
h as B = 1 always produ
es a single vertex of the form Y (uB=1),whi
h takes the value 1 if and only if B = 1.
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SEPARATION THEOREMS FOR CEGS 23As with SCEGs (see Se
tion 3), standard 
onditional independen
e querieson an RCEG 
an generally be answered by looking at 
ontext-spe
i�
 
ondi-tional independen
e queries on subgraphs of the CEG whi
h are often simple.Su
h 
onditioning 
an only remove 
olouring from the graph and not addit. Be
ause of the way CEGs are 
onstru
ted, the 
onditioning event in a
ontext-spe
i�
 
onditional independen
e query 
an very often be writtenas �(w) for some w 2 V (C). But if we 
ondition on an event � = �(w), we
an read 
onditional independen
e properties o� the graph C� even if C� isnot simple.Corollary 5. Let C be an RCEG with position 
uts Ra = fwag;Rb = fwbg. If wa; wb are separated by a stalk, for any wa 2 Ra; wb 2 Rb, thenY (Ra) q Y (Rb).The proof of this 
orollary is in the appendix. This result 
an obviouslybe extended to give suÆ
ient 
onditions for Y (Ra) q Y (Rb) j � just asCorollary 1 extends the result for SCEGs.So if � = �(w) for some w 2 V (C), then w is a stalk in C�, and inthis graph, Y (Ra)q Y (Rb) for any position 
uts Ra upstream of w, and Rbdownstream of w. Hen
e Y (Ra)qY (Rb) j � providing we have de�ned thesevariables 
onsistently on the CEGs C and C� (see proof of Corollary 1).Example 7.1. Consider the RCEG from Figure 4 
onditioned on theevent � = (X(w1) = 1) [ (X(w1) = 2) [ (X(w2) = 1) [ (X(w2) = 2). TheRCEG for this is given in Figure 9.Ignoring the medi
al 
ontext here, we note that in this graph the event� = �(w3) 
an be 
hara
terised as (min(A;B) = 1). If we 
ondition on thisevent we get C� as in Figure 10, whi
h as already noted must have a stalk.For illustrative 
onvenien
e edges in Figure 10 have been given probabilitylabels.Using Corollary 5 we get (C;D) q (A;B) j (min(A;B) = 1), and 
on-ditioning on � = �(w4) we get a CEG from whi
h we 
an trivially readthat (C;D) q (A;B) j (min(A;B) = 2). Combining these we get (C;D) q(A;B) j min(A;B).8. Con
lusion. In summary, the results of se
tion 3 give us 
onditionsfor the truth of AqB statements on SCEGs whi
h are dire
tly analogous tothose given in (for example Pearl's [20℄ or Lauritzen's [14℄ versions of) thed-separation theorem for BNs. Corollary 1 also gives us suÆ
ient 
onditionsfor A q B j � statements to hold. Subsequent se
tions give us suÆ
ient
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Fig 9. The RCEG for Example 7.1
onditions for A q B j � statements to hold on RCEGs. Queries su
h asAqB j C ? where the 
onditioning element is also a variable (or 
olle
tionof variables) 
an generally be answered by 
onsidering sets of queries of theform A qB j � ? Methods for doing this are suggested at various points inthe text, but in the spe
ial 
ase where the RCEG des
ribes a model whi
h
an be depi
ted by a BN, Theorem 3 gives 
onditions for AqB j C dire
tlyanalogous to those given in the d-separation theorem for BNs. The ACEGfrom Se
tion 5 is very useful for all types of 
onditional independen
e query,but is parti
ularly useful for queries of the form A q B j � ? in situationswhere using other te
hniques is not straightforward. The fa
t that the ACEGis itself a BN opens up an ex
iting range of possibilities still to be explored.Analysts working with BNs have found that attempts to feed ba
k toa user all the impli
it 
onditional independen
ies asso
iated with a givengraph 
an be rather overwhelming unless the BN is very simple. Clearlythis would also be the 
ase with CEG-based models. However, within anygiven 
ontext the types of independen
ies that it is natural for the user tobe able to understand, examine and verify are small in number. Sin
e theidenti�
ation of su
h natural relationships is dependent on the domain of
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Fig 10. The RCEG from Figure 9 
onditioned on � = �(w3)appli
ation of the CEG we defer this dis
ussion to a future paper.APPENDIX 1: PROOFS AND ONE ADDITIONAL LEMMALIMITED MEMORY LEMMA. For any CEG C, w1; w2; w3 2 V (C) withw1 � w2 � w3, I(w3) q I(w1) j (I(w2) = 1)PROOF. It is suÆ
ient to prove thatp(I(w3) = 1 j I(w1) = 1; I(w2) = 1) = p(I(w3) = 1 j I(w2) = 1)So 
onsider a single route � passing through w1; w2; w3. This route 
onsistsof a set of edges and by 
onstru
tion the probability p(�) of the route is equalto the produ
t of the probabilities labelling ea
h of these edges. Moreover,the probability of any subpath of � is equal to the produ
t of the proba-bilities labelling ea
h of its edges. So p(�) 
an be written as the produ
t ofthe probabilities of four subpaths: �0(w0; w1), �1(w1; w2), �2(w2; w3), and�3(w3; w1). Thusp(�) = ��0(w1 j w0) ��1(w2 j w1) ��2(w3 j w2) ��3(w1 j w3)Consider now the event (I(w1) = 1; I(w2) = 1; I(w3) = 1) or �(w1; w2; w3),whi
h is the union of all w0 ! w1 routes passing through w1; w2; w3. Then
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26 THWAITES & SMITHsin
e �(w1; w2; w3) is an intrinsi
 event we 
an writep(�(w1; w2; w3)) = � X�02M0��0(w1 j w0)�� X�12M1 ��1(w2 j w1)�� � X�22M2 ��2(w3 j w2)�� X�32M3 ��3(w1 j w3)�where Mi (i = 0; 1; 2) is the set of all subpaths from wi to wi+1, and M3 isthe set of all subpaths from w3 to w1. But P�02M0 ��0(w1 j w0) is simplythe probability of rea
hing w1 from w0, or �(w1 j w0), sop(�(w1; w2; w3)) = �(w1 j w0) �(w2 j w1) �(w3 j w2) �(w1 j w3)= �(w1 j w0) �(w2 j w1) �(w3 j w2)� 1sin
e all paths passing through w3 terminate in w1. Thereforep(I(w3) = 1 j I(w1) = 1; I(w2) = 1) = p(�(w1; w2; w3))p(�(w1; w2))= �(w1 j w0) �(w2 j w1) �(w3 j w2)� 1�(w1 j w0) �(w2 j w1) � 1= �(w3 j w2)= p(I(w3) = 1 j I(w2) = 1) �If we repla
e I(w1) = 1 by �(�(w0; w2)) for any subpath �(w0; w2), andI(w3) = 1 by �(e(w2; w02)) for some edge e(w2; w02) then we obtainCOROLLARY A. For any CEG C with w 2 V (C)p(�(e(w;w0)) j �(�(w0; w));�(w)) = p(�(e(w;w0)) j �(w))Similarly, if w01 � w2 and we repla
e I(w1) = 1 by �(e(w1; w01)) (X(w1) = x1for some x1 2 1; : : : k(w1)), and I(w3) = 1 by �(e(w3; w03)) (X(w3) = x3 forsome x3 2 1; : : : k(w3)) then we obtainCOROLLARY B. For any CEG C, w1; w2; w3 2 V (C), with w01 � w2 � w3p(�(e(w3; w03)) j �(e(w1; w01));�(w2)) = p(�(e(w3; w03)) j �(w2))� p(X(w3) = x3 j X(w1) = x1; I(w2) = 1) = p(X(w3) = x3 j I(w2) = 1) �PROOF OF THEOREM 1. Sin
e the atoms of F(Cj�) are routes in C�,F(Cj�) = F(C�), and so the 
onditioned model is route 
ompatible (se
-tion 2.1). For ea
h atom � 2 �, the probability mass fun
tion of this atom
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SEPARATION THEOREMS FOR CEGS 27in C� is given by p�(�) = p(�j�) whi
h equalsp(�(w0);�(e(w0; w1));�(e(w1; w2)); : : :�(e(wm; w1)) j �)= p�(�(w0);�(e(w0; w1));�(e(w1; w2)); : : :�(e(wm; w1)))= p�(�(w0)) p�(�(e(w0; w1) j �(w0))� p�(�(e(w1; w2) j �(w0);�(e(w0; w1))� : : : p�(�(e(wm; w1)) j �(w0); : : : �(e(wm�1; wm)))whi
h by Corollary A of the Limited Memory Lemma equals1� p�(�(e(w0; w1) j �(w0)) p�(�(e(w1; w2) j �(w1))� p�(�(e(w2; w3) j �(w2))� : : : p�(�(e(wm; w1)) j �(wm))= Ye(w;w0)2� p�(�(e(w;w0)) j �(w))So letting ��e(w0 j w) = p�(�(e(w;w0)) j �(w)) we havep(�j�) = Ye(w;w0)2���e(w0 j w)and the probability mass fun
tion p(�j�) has the monomial property. Hen
eC� is a valid SCEG. �Note that as stated in se
tion 2.3p�(�(e(w;w0)) j �(w)) = p(�(e(w;w0)) j �;�(w))= p(� j �(w);�(e(w;w0)))p(� j �(w)) p(�(e(w;w0)) j �(w))= p(� j �(w);�(e(w;w0)))p(� j �(w)) �e(w0 j w)PROOF OF LEMMA 1. X;Y partition the set of atoms of C, and sin
e� � �(C), X;Y also partition the set of atoms of C�. Consider arbi-trary events �X and �Y from the sets f�Xg and f�Y g (partitions of theset of atoms of C), and the event �A = �X \ �Y . Then p(�X j �) =p�(�X); p(�Y j �) = p�(�Y ) and p(�X ;�Y j �) = p(�A j �) = p�(�A) =p�(�X ;�Y ). The statementp(�X ;�Y j �) = p(�X j �) p(�Y j �)
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28 THWAITES & SMITHis then true if and only if the statementp�(�X ;�Y ) = p�(�X) p�(�Y )is true; and this holds for all �X 2 f�Xg �Y 2 f�Y g. �PROOF OF LEMMA 2. By de�nition I(w) = 0 ) X(w) = 0, so ifI(w) = 0, X(w) is known and so in parti
ular is independent of all othervariables. If I(w) = 1 then X(w0) = 0 for all w0 2 D
(w) \ U 
(w).So 
onsider I(w) = 1 and w0 2 U(w). We now use the monomial propertyto show that X(w) qXU(w) j (I(w) = 1).The primitive probability �e(w+ j w) is a fa
tor of the probability p(�)for a number of routes. Consider one of these routes and denote the subpathof this route between w0 and w by �(w0; w). Then by Corollary A of theLimited Memory Lemma, we 
an write�e(w+ j w) = p(�(e(w;w+)) j �(w))= p(�(e(w;w+)) j �(�(w0; w));�(w))and this is 
learly true for all subpaths between w0 and w. But the set ofthese subpaths is in 1:1 
orresponden
e with the set of ve
tors of values ofXU(w) whi
h are 
onsistent with the topology of the SCEG and with theevent I(w) = 1. The event �(w) 
an be written as I(w) = 1, and the event�(e(w;w0)) as X(w) = x for some x > 0. Hen
ep(X(w) = x j I(w) = 1) = p(X(w) = x j XU(w); I(w) = 1)and X(w) qXU(w) j (I(w) = 1).Combining this with the two previous results we therefore haveX(w) qXD
(w) j I(w) �PROOF OF THEOREM 2. (1) SUFFICIENT CONDITIONS FOR INDEPENDENCEConsider an SCEG C, and two positions w1; w2 2 V (C), where w2 6� w1,and by 
onstru
tion I(w1) 6� 0; I(w2) 6� 0.Suppose there exists a stalk downstream of w1 and upstream of w2. Labelthis position w. Then all paths passing through w1 pass through w, all pathspassing through w2 pass through w, and ne
essarily w1 � w � w2. Alsop(X(w2) = x2 j X(w1) = x1) = p(X(w2) = x2 j X(w1) = x1; I(w) = 1)= p(X(w2) = x2 j I(w) = 1)
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SEPARATION THEOREMS FOR CEGS 29sin
e w1 � w � w2, and using Corollary B of the Limited Memory Lemma= p(X(w2) = x2 j X(w1) = x01; I(w) = 1)= p(X(w2) = x2 j X(w1) = x01)for all values x1; x01 of X(w1) and all values x2 of X(w2)) X(w1)qX(w2)If w2 is itself a stalk, then we repla
e I(w) = 1 by I(w2) = 1 in the aboveargument with the same result.So a suÆ
ient 
ondition for X(w1) qX(w2) is that either w2 is itself astalk, or there exists a stalk downstream of w1 and upstream of w2.(2) NECESSARY CONDITIONS FOR INDEPENDENCELet X(w1)qX(w2) (and sin
e I(w) is a fun
tion of X(w), X(w1)qI(w2)and I(w1)qI(w2)). Let the set of routes of C be partitioned into four subsets.Call a route Type A if it passes through w2, but not through w1, Type Bif it passes through neither w1 nor w2, Type C if it passes through both w1and w2, and Type D if it passes through w1, but not through w2. Our proofpro
eeds as follows:(a) We show that we must have w1 � w2 (ie. the set of Type C routes isnon-empty.(b) We show that every route interse
ts with every other route at somepoint downstream of w0 and upstream of w1. If two w0 ! w1 routesshare no verti
es ex
ept w0 and w1, we 
all them internally disjoint (seefor example [11℄). So we 
an say that there 
annot be two internally disjointdire
ted routes in C(
) We show that there 
annot be two internally disjoint routes in the undi-re
ted version of the CEG (the CEG with its edge arrows removed), andthat therefore there must be a stalk between w0 and w1.(d) We show that either w1 is a stalk or w2 is a stalk, or there exists a stalkdownstream of w1 and upstream of w2.(e) Finally we show that if w1 is a stalk then there must also either be astalk at w2 or a stalk downstream of w1 and upstream of w2.(a) Suppose that w1 6� w2 (and re
all that w2 6� w1). Thenp(I(w2) = 1 j I(w1) = 1) � 0. I(w1) q I(w2) ) p(I(w2) = 1) � 0) I(w2) � 0. This is impossible by 
onstru
tion. Therefore w1 � w2.(b) We �rst show that ea
h Type C route interse
ts with every otherroute at w1 or at w2 or at some point between these positions.
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Fig 11. Illustration for Type C and Type B routesLet �1 be a Type C route, and �1(w1; w2) the subpath 
oin
ident with �1between w1 and w2. If the set of Type B routes is non-empty then let �2be a Type B route whi
h does not interse
t with �1 (ie. �2 and �1 have nopositions in 
ommon).Consider a distribution P whi
h (1) assigns a probability of 1 to every edgeof the subpath �1(w1; w2), and (2) an arbitrary probability greater than 0and less than 1 to ea
h edge of the route �2 (Figure 11). If our SCEGis minimal and �2 does not interse
t with �1 then this is always possible.Under P , assignment (1) gives us thatp(I(w2) = 1 j I(w1) = 1) = 1and I(w1) q I(w2) implies that under this Pp(I(w2) = 1 j I(w1) = 0) = 1 ) p(I(w2) = 0 j I(w1) = 0) = 0But assignment (2) gives us that p(I(w2) = 0 j I(w1) = 0) > 0 ¸The assumption I(w1) q I(w2) is in
ompatible with the assignments of (1)and (2). But these assignments are always possible if �2 does not interse
twith �1. Hen
e �2 must interse
t with �1.
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Fig 12. Illustration for non-Type C routes: w4n � w3mHen
e ea
h Type C route interse
ts with every Type B route at some pointdownstream of w1 and upstream of w2. Also ea
h Type C route interse
tswith every Type A route (at w2), with every Type D route (at w1) and withevery other Type C route (at both w1 and w2).We now 
onsider routes that are not of Type C. If the set of non-Type Croutes is non-empty let �3; �4 be members of this set whi
h do not interse
tex
ept at w0 and w1. Let �(w1; w2) be a subpath between w1 and w2.From above both �3 and �4 must interse
t with �. Let �3 interse
t with �only at the positions w31; : : : w3m, where w31 � � � � � w3m; and let �4 in-terse
t with � only at the positions w41; : : : w4n, where w41 � � � � � w4n.Without loss of generality let w1 � w31 � w41 � w2, so that �3 
ould be aroute of Type B or Type D, and �4 
ould be a route of Type A or Type B.Suppose that w4n � w3m (Figure 12). Consider the subpath �5(w1; w2)whi
h 
oin
ides with � from w1 to w31 (if w31 6= w1), 
oin
ides with �3 fromw31 to w3m, and 
oin
ides with � from w3m to w2. This subpath �5 doesnot interse
t with the route �4. This is impossible sin
e every route in Cinterse
ts with every �(w1; w2) subpath.Suppose therefore that w3m � w4n (Figure 13). Consider the subpath
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Fig 13. Illustration for non-Type C routes: simplest 
ase of w3m � w4n�6(w1; w1) whi
h 
oin
ides with � from w1 to w31 (if w31 6= w1) and 
oin-
ides with �3 from w31 to w1; and the subpath �7(w0; w2) whi
h 
oin
ideswith �4 from w0 to w4n and 
oin
ides with � from w4n to w2 (if w4n 6= w2).Consider also a distribution P whi
h (1) assigns a probability of 1 to everyedge of �6, and (2) an arbitrary probability in (0; 1) to ea
h edge of �7. Ifour SCEG is minimal and �3 and �4 do not interse
t then this is alwayspossible. Under P , assignment (1) gives us thatp(I(w2) = 0 j I(w1) = 1) = 1and I(w1) q I(w2) implies that under this Pp(I(w2) = 0 j I(w1) = 0) = 1 ) p(I(w2) = 1 j I(w1) = 0) = 0But assignment (2) gives us that p(I(w2) = 1 j I(w1) = 0) > 0 ¸The assumption I(w1) q I(w2) is in
ompatible with the assignments of (1)and (2). But these assignments are always possible if �3 and �4 do notinterse
t. Hen
e �3 and �4 must interse
t.
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SEPARATION THEOREMS FOR CEGS 33Hen
e ea
h Type B route interse
ts with every Type A, Type B or Type Droute, and ea
h Type A route interse
ts with every Type D route. Also, ea
hType A route interse
ts with every other Type A route (at w2), and ea
hType D route interse
ts with every other Type D route (at w1). So ea
hroute in C interse
ts with every other route downstream of w0 and upstreamof w1.Hen
e there 
annot be two internally disjoint dire
ted routes from w0to w1.(
) Suppose that in the undire
ted version of the CEG C there are twointernally disjoint paths between w0 and w1. One of these ne
essarily 
or-responds to a representative dire
ted w0 ! w1 route � in C. The othermust 
orrespond to a path (not a route) in C 
onsisting of edges some ofwhi
h meet head to head. In the simplest possible 
ase this latter path will
onsist of a dire
ted w0 ! wA subpath (��(w0; wA)), a dire
ted wB ! w1subpath (��(wB ; w1)), and a subpath joining wA to wB but dire
tedwB ! wA, for some positions wA and wB.In a CEG all positions lie on a dire
ted w0 ! w1 route. So there must exista dire
ted subpath from w0 to wB (��(w0; wB)) and a dire
ted subpath fromwA to w1 (��(wA; w1)).Suppose these subpaths ��(w0; wB) and ��(wA; w1) interse
t at a posi-tion w (w0 � w � wB, wA � w � w1). Then there exists a 
y
le in C:w ! wB ! wA ! w. This is impossible sin
e a CEG is a dire
ted a
y
li
graph.Suppose therefore that ��(w0; wB) and ��(wA; w1) do not interse
t.If the subpath ��(w0; wB) interse
ts with our original dire
ted route � but��(wA; w1) does not, or if neither of these subpaths interse
ts with �, thenthe dire
ted route (��(w0; wA); ��(wA; w1)) is internally disjoint from �.If the subpath ��(wA; w1) interse
ts with � but ��(w0; wB) does not, thenthe dire
ted route (��(w0; wB); ��(wB ; w1)) is internally disjoint from �.If both the subpaths ��(w0; wB) and ��(wA; w1) interse
t with � then thetwo routes (��(w0; wA); ��(wA; w1)) and (��(w0; wB); ��(wB ; w1)) are in-ternally disjoint.So in this simplest possible 
ase, if there exist two internally disjointundire
ted paths between w0 and w1 then there exist two internally disjointdire
ted routes. Clearly if we assume that there are more than two internallydisjoint undire
ted paths between w0 and w1 then this argument still holds.If we allow our se
ond path to have more than one reversed se
tion, wesimply let wA be the �rst position w on the path where edges meet head tohead, and wB the last position w on the path where both edges are dire
tedaway from w. Doing this our argument is then identi
al to that given above.
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34 THWAITES & SMITHHen
e there 
annot be two internally disjoint routes in the undire
tedversion of the CEG.LEMMA. An undire
ted graph G has no stalk between the verti
es v and wif and only if there exist at least two internally disjoint paths between vand w.This is a 
orollary of Whitney's [32℄ Theorem 7, whi
h is sometimes de-s
ribed as the 2nd variation of Menger's Theorem [17℄. A proof 
an befound in [11℄ where it appears as Theorem 7.4.Hen
e there is a stalk lying downstream of w0 and upstream of w1.(d) Suppose there exists a stalk upstream of w1. Then relabel this stalkas w0 and repeat the argument of (b)(
) to show that there exists a stalkbetween this new w0 and w1. Sin
e the number of positions in C is �nite,repeated use of this argument shows us that either w1 is a stalk or thereexists a stalk downstream of w1. A 
omplementary argument shows thatthere exists a stalk at w2 or upstream of w2.(e) Suppose w1 is a stalk. We know that w1 � w2 so there must exista position exa
tly one edge downstream of w1 whi
h lies on a w1 ! w2subpath. Call this position w11. Then w11 � w2.Now I(w11) is a fun
tion of X(w1) (be
ause w1 is a stalk): If X(w1) takesa value 
orresponding to an edge from w1 to w11 then I(w11) = 1; otherwiseI(w11) = 0. So X(w1)qX(w2)) X(w1)qI(w2)) I(w11)qI(w2), and usingthe argument of (b)(
)(d) above there must be a stalk at w11 or at w2 orbetween them.Therefore there exists a stalk downstream of w1, either at or upstreamof w2. �PROOF OF LEMMA 3. Let X(wa) q X(wb) for some wa 2 Ra; wb 2 Rb.Then wa is separated from wb by a stalk (from Theorem 2). So sin
e Ra; Rbare position 
uts, ea
h element of Ra is separated from ea
h element of Rbby a stalk, and X(wa) qX(wb) for any pair of positions wa 2 Ra; wb 2 Rb.Hen
e XRaqXRb . But Y (Ra)� = supw2Ra X(w)� is a fun
tion of XRa , andhen
e Y (Ra)q Y (Rb).Sin
e our SCEG is minimal we 
an let the distribution P impose theprobabilities p(X(wa) = xa) = � 8 wa 2 Rap(X(wb) = xb) = � 8 wb 2 Rbp(X(wa) = xa;X(wb) = xb) = 
 8 wa 2 Ra; wb 2 Rb:

CRiSM Paper No. 11-09, www.warwick.ac.uk/go/crism



SEPARATION THEOREMS FOR CEGS 35for some spe
i�ed xa; xb > 0 (�; �; 
 > 0).Now suppose that X(wa) /q X(wb) for some wa 2 Ra; wb 2 Rb. Then thereis no stalk between wa and wb, and hen
e no stalk between Ra and Rb. Soby Theorem 2 p(X(wa) = xa;X(wb) = xb) 
annot equal p(X(wa) = xa)� p(X(wb) = xb) for all wa 2 Ra; wb 2 Rb. Hen
e 
 6= ��.Now for any xa; xb > 0 (greater than zero sin
e Ra; Rb are position 
uts)p(Y (Ra) = xa; Y (Rb) = xb) = p( supwa2RaX(wa) = xa; supwb2RbX(wb) = xb)= p((X(wa1) = xa;X(wb1) = xb) or (X(wa1) = xa;X(wb2) = xb): : : or (X(wa2) = xa;X(wb1) = xb): : : or X(wajRaj) = xa;X(wajRb j) = xb))(noting that X(wa1) = xa , X(wa1) = xa;X(waj) = 0 for any j 6= 1)= p(X(wa1) = xa;X(wb1) = xb) + p(X(wa1) = xa;X(wb2) = xb): : : + p(X(wa2) = xa;X(wb1) = xb): : : + p(X(wajRaj) = xa;X(wajRbj) = xb)= jRajjRbj 
Similarly p(Y (Ra) = xa) p(Y (Rb) = xb) = jRaj � jRbj �.Now 
 6= �� ) p(Y (Ra) = xa) p(Y (Rb) = xb) 6= p(Y (Ra) = xa;Y (Rb) = xb). So under this P , X(wa) /q X(wb) (for some wa 2 Ra; wb 2 Rb)ne
essitates that Y (Ra) /q Y (Rb). Hen
e if X(wa) /q X(wb) thenY (Ra) /q Y (Rb) in at least one distribution 
ompatible with C.So if Y (Ra) q Y (Rb) holds for all distributions 
ompatible with C thenX(wa)qX(wb). �PROOF OF COROLLARY 1. Sin
e the event � is intrinsi
, C� is a subgraphof C and V (C�) � V (C). Let Ra in C� be the set of wa 2 V (C�) that aremembers of Ra in C. Then X(wa) and Ra are well-de�ned on C�.Y (Ra) is measurable with respe
t to F(C) so it partitions the set of atomsof C. Sin
e � � �(C) it also partitions the set of atoms of C�, and is well-de�ned on C� as Y (Ra) = supwa 2 Rawa 2 V (C�) X(wa)Hen
e p�(Y (Ra) = xa) = p(Y (Ra) = xa j �), and all ne
essary terms arede�ned on C� 
onsistently with their de�nitions on C.
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36 THWAITES & SMITHIn C�, wa and wb are separated by a stalk, so by Theorem 2, X(wa) qX(wb) in C�, and by Lemma 3, Y (Ra) q Y (Rb) in C�, and by Lemma 1,Y (Ra) q Y (Rb) j � in C. �PROOF OF LEMMA 4.(A) If J(u) = 0 then Y (u) = 0, so Y (u)qXD
(u) j (J(u) = 0) (1)(B) Let J(u) = 1. From se
tion 3 we have X(w) qXD
(w) j I(w), so inparti
ular, sin
e I(w) = 1 implies both that J(u) = 1 for w 2 u and thatX(w0) = 0 for all w0 2 u; w0 6= wX(w) qXD
(w) j (I(w) = 1)) X(w) qXD
(w) j (I(w) = 1; J(u) = 1)) Xu qXD
(w) j (I(w) = 1; J(u) = 1)And sin
e Y (u) � = supw02uX(w0)� is a fun
tion of Xu, andXD
(u) �XD
(w) for w 2 u, this implies thatY (u) qXD
(w) j (I(w) = 1; J(u) = 1)) Y (u) qXD
(u) j (I(w) = 1; J(u) = 1)Now suppose that u = fwigi=1;:::n. It follows that for i = 1; : : : nY (u) qXD
(u) j (I(wi) = 1; J(u) = 1)) Y (u)qXD
(u) j (J(u) = 1) (2)Combining expressions (1) and (2) gives Y (u) qXD
(u) j J(u).But if we know X(w0) for all w0 2 u0, then we know Y (u0); so Y (u0) is afun
tion of the set fX(w0)gw02u0 , and Y D
(u) is a fun
tion of XD
(u). Hen
eY (u) q Y D
(u) j J(u) �PROOF OF THEOREM 3. We �rst show that fY (ui)g is d-separated fromfY (uj)g by fY (uk)g in A(C) if and only if Xi is d-separated from Xj by Xkin G.Suppose Xi is d-separated from Xj by Xk in G, but fY (ui)g is notd-separated from fY (uj)g by fY (uk)g in A(C). Then there exists a path be-tween fY (ui)g and fY (uj)g in the moralised an
estral version [14℄ of A(C)whi
h does not pass through fY (uk)g.Now in A(C) there exist edges from ea
h J(u) vertex to the 
orrespondingY (u) vertex; and edges from Y (ua) verti
es to J(ub) verti
es only if thereexists an edge from Xa to Xb in G. When we produ
e the moralised an
estralversion of A(C) we introdu
e two sorts of undire
ted edges { those between
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SEPARATION THEOREMS FOR CEGS 37distin
t verti
es belonging to the same 
olle
tion fY (ua)g, and those be-tween Y (ua) and Y (ub) verti
es belonging to di�erent 
olle
tions fY (ua)g,fY (ub)g, where Y (ua) and Y (ub) are both parents of a vertex J(u
). Thislatter only o

urs when Xa and Xb are both parents of X
 in the moralisedan
estral version of G. Note that we introdu
e no undire
ted edges whi
h
onne
t J(u) verti
es, or 
onne
t J(u) verti
es to Y (u) verti
es.So in the moralised an
estral version of A(C) there only exist undire
tededges between di�erent 
olle
tions of verti
es if there exist undire
ted edgesbetween the 
orresponding variables in the moralised an
estral version of G.Hen
e there 
annot be a path between fY (ui)g and fY (uj)g in the moralisedan
estral version of A(C) whi
h does not pass through fY (uk)g.Suppose instead that fY (ui)g is d-separated from fY (uj)g by fY (uk)g inA(C), but that Xi is not d-separated from Xj by Xk in G. Then there mustexist either a moralising edge in the moralised an
estral version of G thathas no 
orresponding edges in the moralised an
estral version of A(C) or adire
ted edge in G that has no 
orresponding edges in A(C).The latter is impossible by 
onstru
tion { if there are no edges fromfY (ua)g to fJ(ub)g then Xa is not a parent of Xb. In the former 
ase thiswould mean that there existed variables Xa;Xb, both parents of X
, su
hthat there was no J(u
) vertex whi
h was the 
hild of both a Y (ua) vertexand a Y (ub) vertex.But if the CEG is of a model whi
h has a natural produ
t spa
e butwhi
h admits no 
ontext-spe
i�
 
onditional independen
e properties thenea
h J(u
) vertex must have as parents both Y (ua) and Y (ub) verti
es, sin
eea
h J(u
) 
orresponds to a parti
ular 
on�guration of the parents of X
,whi
h in
lude both Xa and Xb. So this also is impossible.Using the above result and results from [31℄ the �rst statement in Theo-rem 3 holds, and also if fY (ui)g is not d-separated from fY (uj)g by fY (uk)g,then Xi /q Xj j Xk in at least one distribution 
ompatible with C and G.So if Xi q Xj j Xk holds for all distributions 
ompatible with C and G,then Xi is d-separated from Xj by Xk in G, and from above fY (ui)g isd-separated from fY (uj)g by fY (uk)g in A(C). �PROOF OF COROLLARY 5. If wa; wb are separated by a stalk thenX(wa) q X(wb), simply by repla
ing SCEG by RCEG in part (1) of theproof of Theorem 2.If wa; wb are separated by a stalk, then every wa 2 Ra is separated fromevery wb 2 Rb by a stalk, and hen
e XRa qXRb . Y (Ra)� = supw2RaX(w)�is a fun
tion of XRa , and hen
e Y (Ra) q Y (Rb). �
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38 THWAITES & SMITHAPPENDIX 2: A CAUTIONARY TALESuppose we have a CEG and an ACEG of a model whi
h satis�es the
onditions for Theorem 3. Suppose also that in the BN-representation of thismodel, A is a parent of both B and C, and B is a parent of C. ThenfY (uC)g q fJ(uB)g j fY (uB)g, sin
e J(uB) is a fun
tion of Y (uB).But in an ACEG of this model, fY (uC)g is apparently not d-separatedfrom fJ(uB)g by fY (uB)g, sin
e there are paths from Y (uC) verti
es toJ(uB) verti
es whi
h are not blo
ked by fY (uB)g { see Figure 14.
J(uB) Y(uB)

J(uA) Y(uA)

J(uC) Y(uC)

Fig 14. ACEG for example in Appendix 2We use the word apparently here with justi�
ation. In [31℄ se
tion 4, theauthors brie
y dis
uss D-separation (as opposed to d-separation) for graphswhere there are fun
tional (as opposed to sto
hasti
) dependen
ies. An oth-erwise a
tive path between two nodes is rendered ina
tive by a set of nodesZ under D-separation if a node on the path is determined by Z. Here ea
hJ(uB) is a fun
tion of its 
hild Y (uB), so fY (uC)g is D-separated fromfJ(uB)g in this example.Note that in this paper we have, with one ex
eption, just dis
ussed d-separation expressions whi
h involve only Y (u)-type verti
es; between whi
hthere are no fun
tional dependen
ies. The one ex
eption is where we have
onsidered expressions of the form Y (u)qY D
(u) j J(u). Here it is quite 
lear
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SEPARATION THEOREMS FOR CEGS 39that Y (u) is d-separated from the set of verti
es asso
iated with Y D
(u) byJ(u), sin
e J(u) is the sole parent of Y (u), and Y (u) must be d-separatedfrom its non-des
endants by its parents.A
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