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Abstract

In this paper we propose a model with a Dirichlet process mixture of gamma
densities in the bulk part below threshold and a generalized Pareto density in the
tail for extreme value estimation. The proposed model is simple and flexible for
posterior density estimation and posterior inference for high quantiles. The model
works well even for small sample sizes and in the absence of prior information.
We evaluate the performance of the proposed model through a simulation study.
Finally, the proposed model is applied to a real environmental data.

keywords Generalized Pareto Distribution, Threshold Estimation, Dirichlet Process
Mixture.

1 Introduction

In recent years, extreme value mixture models have been proposed as a combination of
a distribution with a “bulk part” below threshold and a generalized Pareto distribution
(GPD) in the tail. Different distributions have been proposed for modelling the “bulk
part” where the threshold is a parameter to be estimated. The first approach which in-
duces a transition between the bulk and tail parts is provided by Frigessi, Haug & Rue
(2003). Frigessi et al. (2003) uses maximum likelihood estimation with a Weibull dis-
tribution in the bulk part, a GPD for the tail and a location-scale Cauchy cdf in the
transition function. However, in the Frigessi et al. (2003) approach, to use maximum
likelihood estimation in the bulk part could produce multiple modes and hence some
identifiability problems. Behrens, Lopes & Gamerman (2004) and Carreau & Bengio
(2009) consider Gamma and Normal distributions in the bulk part respectively. But, to
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consider an unimodal distribution is not realistic in practice where the density has differ-
ent unknown shapes in many applications. do Nascimento, Gamerman & Lopes (2011)
use Bayesian inference in the bulk part following the proposal of Wiper, Insua & Rug-
geri (2001) who propose to assign prior probabilities on the number of components of
the mixture of gammas and to use the reversible jump algorithm for posterior inference
purposes. Wiper et al. (2001) use BIC and DIC criterion for model comparison on a fixed
number of gamma components. This approach has a flexible model with multimodality in
the bulk part distribution. A complete review on likelihood-based methods and heuristic
arguments for model complexity in mixture models such as Bayesian Information Crite-
rion (BIC) and Akaike Information Criterion (AIC) is presented in Frühwirth-Schnatter
(2006). On the other hand, do Nascimento et al. (2011) show that by using posterior
predictive inference the discontinuity problem at the threshold is eliminated. MacDon-
ald, Scarrott, Lee, Darlow, Reale & Rusell (2011) propose a non-parametric approach in
the bulk part with kernel bandwidth estimators and a GPD in the tail where Bayesian
inference is applied. For a more exhaustive discussion of extreme value threshold esti-
mation see for example Scarrott & MacDonald (2012). On the other hand, there is an
extensive literature on Dirichlet mixture process for density estimation particulary using
gaussian distributions, the main paper is given by Escobar & West (1995). The Dirichlet
process is very flexible, theoretically coherent and simple and in recent years it has been
an important tool of many applications for Bayesian density estimation (Ferguson (1973)
and Antoniak (1974)). Hanson (2006) proposes the Dirichlet process mixture of gamma
densities (DPMG) for density estimation of univariate densities on the positive real line.

In this paper we propose a model with a DPMG below threshold and a GPD in the
tail. We have important reasons for using the proposed model: First, because DPMG
could be a powerful tool for density estimation in the bulk part (in order to accommodate
a very wide variety of shapes and spreads in the bulk part), the tail fit is expected to be
adequate. Second, the proposed model can be used in the absence of prior information.
Third, Dirichlet Process Mixture controls the expected number of components (Antoniak
(1974)); therefore, the extensive task for model comparison purposes using BIC and AIC
on a fixed number of gamma components in the bulk part is not necessary. In addition,
because DPMG is random we can build credible intervals of the posterior density in the
bulk part. This paper is organized as follows. Section 2 is devoted to present the proposed
model. In Section 3 we present a simulation study of the proposed model. In Section 4
the proposed model is applied to a real environmental data. Finally Section 5 present the
conclusions.
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2 Model

Extreme value theory is an area of far researching with many environmental and economics
applications. We find among the most notable applications Coles & Pericchi (2003) where
extreme value theory is used to anticipate catastrophes and Coles (2001) for finance
applications. We consider the class of models from extreme value theory presented in Coles
(2001) and the fundamental result in Pickands (1975). Pickands (1975) showed that the
limiting distribution of exceeding large thresholds converge to the GPD. Extreme value
theory is used to describe atypical situations and the most important classical result
is presented in the Fisher & Tippett (1928) theorem. The three possible distributions
for maxima block of observations are presented in Coles (2001) in Theorem 3.1 which
introduces the Generalized Extreme Value (GEV) Family. Pickands (1975) showed that if
X is a random variable whose distribution function F , with endpoint xF , is in the domain
of attraction of a GEV distribution, then u → xF , the conditional distribution function
F (x|u) = P (X ≤ u + x|X > u) is the distribution function of a GPD. In words, this
result states that for a large u the conditional distribution F (x|u) can be approximated
by a GPD as u tends to the end point of F . Moreover, we use this result to define the
proposed model. The density of the GPD used in this work with scale parameter σ and
shape parameter γ is given by:

g(x|φ) =

 1
σ

(
1 + ξ (x−u)

σ

)−(1+ξ)/ξ

if ξ 6= 0

1
σ

exp(−(x− u)/σ) if ξ = 0,
(1)

where the vector of parameters φ = (ξ, σ, u), x−u > 0 for ξ ≥ 0 and 0 ≤ x−u < −σ/ξ
for ξ < 0. We have that GDP is bounded from below by u, bounded from above by u−σ/ξ
if ξ < 0 and unbounded from above if ξ ≥ 0. The density of the proposed model is the
following:

f(x|φ,θ) =

{
k(x|θ) x ≤ u

[1−K(u|θ)]g(x|φ) x > u
(2)

where φ = (u, ξ, λ) and K(u|θ) denotes the cumulative distribution function (cdf) of
k(x|θ) at u. The cumulative distribution function of (2) is as follows:

F (x|φ,θ) =

{
K(x|θ) x ≤ u

K(u|θ) + [1−K(u|θ)]G(x|φ) x > u
(3)

where G(x|φ) is the cdf of GPD. Note that

lim
x→u−

F (x|φ, θ) = K(u|θ); lim
x→u+

F (x|φ, θ) = K(u|θ), (4)

therefore (3) is continuous at u.
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2.1 The Dirichlet Process Mixture of Gamma densities

The novel proposal is to use a DPMG in the bulk part of (2), we present a short intro-
duction to the DP here. A distribution G on Θ follows a dirichlet process DP (α, G0)
if, given an arbitrary measurable partition, B1, B2, ..., Bk of Θ the joint distribution of
(G(B1), G(B2), ..., G(Bk)) is Dirichlet (αG0(B1), αG0(B2), ..., αG0(Bk)) where G(Bi) and
G0(Bi) denote the probability of set (Bi) under G and G0 respectively, G0 is a specific
distribution on Θ and α is a precision parameter (Ferguson (1973)). Here θ = {λ, γ}
and we use the approach of Hanson (2006) for the density g0 therefore two independent
exponential distributions are considered as follows

g0(λ, γ|aλ, aγ) = aλ exp(−aλλ)aγ exp(−aγγ), (5)

where g0 is the density corresponding to cdf G0 with hyperparameters η = {aλ, aγ}.
The hyperparameters of (4) follow gamma priors aλ ∼ Γ(bλ, cλ) and aγ ∼ Γ(bγ, cγ), where
Γ(a, b) denotes the gamma density with parameters a and b. Let be now K(; , θ) be a
parameter family of distributions functions (CDF’s) indexed by θ ∈ Θ, with associated
densities k(; θ). Let be x1, x2, ..., xn the data and θi = (λi, γi) such that k(xi, θi) denotes
the gamma density with the scale parameter λi and the shape parameter γi:

k(xi|λi, γi) =
γλi

i

Γ(γi)
xλi−1

i exp {−γixi} xi > 0. (6)

Because G is proper we can define the mixture distribution

F (.; G) =

∫
K(; , θ)G(dθ) (7)

where G(dθ) can be interpreted as the conditional distribution of θ given G. We can ex-
press (6) as f(.; G) =

∫
k(.; G) differentiating with respect to (.). Due to G being random,

F (.; G) is random. F (.; G) is the model for the stochastic mechanism corresponding to
x1, x2, ..., xn assuming xi given G are i.i.d. from F (.; G) with the DP structure. In this
paper we implement the Dirichlet Process Mixture model by using the Pólya urn scheme
(see Escobar & West (1995) and MacEachern (1994)). In DPMG we have mixing param-
eters θi = (λi, γi) associated with each xi. The model can be expressed in hierarchical
form as follows:

xi|λi, γi ∼ k(xi, θi), i = 1, .., n (8)

θi|G ∼ G, i = 1, .., n

G|α, η ∼ DP (α, G0), G0 = G0(.|η)

α, η ∼ p(α)p(η)
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2.2 Priors for the parameters in the generalized Pareto distri-
bution

Now we present the priors for the threshold u, the scale parameter σ and shape parameter
ξ of the GPD. The prior distribution for u is a normal density N(mu, σ

2
u) as suggested in

Behrens et al. (2004). Castellanos & Cabras (2007) obtain the Jeffrey’s non-informative
prior for (σ, ξ) and they show this prior produces proper posterior results. The prior is
the following:

p(σ, ξ) ∝ σ−1(1 + ξ)−1(1 + 2ξ)−1/2 (9)

where ξ > −0.5 and σ > 0. According to Castellanos & Cabras (1996) situations were
ξ < −0.5 are very unusual in practice. The posterior distribution on the log-scale using
the density (2) is then:

log(p(θ, φ|x)) ∝
∑

A

log(k(x|θ)) +
∑
B

log

(
(1−K(u|θ))

1

σ

(
1 + ξ

(x− u)

σ

)−(1+ξ)/ξ
)
(10)

+ log(p(u)p(ξ)p(σ))

for ξ 6= 0 and

log(p(θ, φ|x)) ∝
∑

A

log(k(x|θ)) +
∑
B

log

(
(1−K(u|θ))

1

σ
exp(−(x− u)/σ)

)
(11)

+ log(p(u)p(ξ)p(σ))

for ξ = 0. With A = {xi : xi ≤ u} and B = {xi : xi > u}. Using the proposed model we
can compute high quantiles below threshold. In order to find values beyond the threshold
we have that

F (x|φ, λ, γ) = K(u|λ, γ) + [1−K(u|λ, γ)]G(x|φ) (12)

where G(x|φ) is the CDF of the GPD. For example to find the p-quantile, q, we use

p∗ =
p−K(u|λ, γ)

1−K(u|λ, γ)
(13)

and solve G(q|φ) = p∗.
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Figure 1: Density function of the proposed model (3). (a) ξ = −0.4 and σ = 3, (b) ξ = 0.4
and σ = 3, (c) ξ = −0.4 and σ = 4 and (d) ξ = 0.4 and σ = 4. Threshold at u = 11 and
the center is a two-component mixture of gamma densities.

Figure 1. displays the density of the proposed model considering different parameter
values. This model has a discontinuity of the density at the threshold. However, both
the appropriate choice of the proposed model (in particular the cdf is continuous) and the
appropriate Bayesian estimation (see do Nascimento et al. (2011)) solve this problem.

3 Simulation study

In this section we evaluate the performance of the proposed model through a simulation
study. The precision α of g0 in the DP affects the expected number of components in
the mixture. Hanson (2006) considers values of α fixed to 0.1 and 1 and also random
values using different assignments of Gamma priors for α such as Γ(2, 2) and Γ(2, 0.5).
Here we consider the DP precision using α = 0.1. The parameters of g0 can be expressed
in terms of the mean µ = λ/γ and variance V = λ/γ2 of h(x|θ) (see Hanson (2006)) as
two diffuse densities f(µ|aλ, aγ) = aλaγ/(aλµ+aγ)

2 and f(V −1|aλ, aγ) = Γ(2, aλµ
2 +aγµ)

respectively. Suppose now that aλ = aγ = 1, so f(µ|1, 1) = 1/(1 + µ)2 which is the Beta
Prime distribution with scale and shape parameters equals to 1.
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The Beta prime distribution was proposed by Perez & Pericchi (2012) as a default prior
for modelling the scales in Bayesian parametric settings. Also, the Beta prime distribution
for modelling the square of the scales in Bayesian dynamic models is extensively studied in
Fuquene, Perez & Pericchi (2014). Therefore, we can think that we are modelling the mean
of the bulk part in a non informative (but robust) manner. We consider a small sample
size n = 200 and we verify the convergence using techniques such as correlation plots,
traces plots and the usual Gelman & Rubin (1992) diagnostic. Hanson (2006) obtains an
accurate smooth in an univariate density using DPMG with different specifications for α
and large sample sizes 1000 and 10000. Here, we have that α = 0.1, ξ = 0.4, σ = 3 and
the threshold u = 11 at the 90% quantile in the simulated data. The simulated mixture
density for the central part is:

h(x) = 0.5Γ(x|10, 4) + 0.5Γ(x|6, 0.7). (14)

Following Hanson (2006) the hyperparameters for aλ and aγ are bλ = bγ = cλ = cγ = 0.001
in order to have a non informative g0. The prior of the threshold u has mean equal to
90% quantile in the simulated data and the variance σ2

u gives 99% of probability in the
range between 50% and 99% of the simulated data. As usual in the Metropolis algorithm,
we adjust the variance of the sampling proposal densities considering the hessian of the
maximum likelihood estimates using some MCMC simulations. We obtained convergence
of all parameters using 10000 iterations after a burn-in period of 5000 iterations. Figure
2 illustrates the quality of the approach even with a small sample size of n = 200. The
posterior density in the proposed model reproduces the underline density with precision
according to the credible interval in the bulk part and posterior predictive mean in the tail.
The density estimation in bulk part of the proposed model could be even better when
large sample sizes are considered (see Hanson (2006)). Figure 3 displays the posterior
densities of threshold u, scale σ, and shape ξ.

Table 1: Measures of fitting using BIC and AIC for the simulated data.
Number of components AIC BIC

1 1077.611 1087.426
2 1035.914 1050.637
3 1043.192 1067.730
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Figure 2: Parameter values α = 0.1, ξ = 0.4, σ = 3 and the threshold u = 11 at the
90% quantile. Full black line is the true density. The vertical full black line is the true
threshold location and the vertical dashed red lines are the posterior threshold location.
Top: dashed red lines are the posterior predictive mean and 95% posterior predictive
credible intervals using the Dirichlet process mixture of gamma densities in the bulk part
and a GPD in the tail. Bottom: dashed red lines are the posterior predictive mean using
the Dirichlet process mixture of gamma densities in the bulk part and a GPD in the tail.
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Figure 3: Posterior distribution of u, ξ and σ. With α = 0.1, ξ = 0.4, σ = 3 and the
threshold u = 11 at the 90% quantile.

9

CRiSM Paper No. 14-14, www.warwick.ac.uk/go/crism



Figure 4: Posterior histogram of the 95% quantile for the simulation. Red line the true
quantile. With α = 0.1, ξ = 0.4, σ = 3 and the threshold u = 11 at the 90% quantile.

We can see the posterior distribution represents nicely the true parameters. In particular
the threshold is centered around the true value 11. Figure 4 shows that the posterior
distributions of the predictive quantiles at 95% is accurately estimated. On the other
hand, Table 1 shows that BIC and AIC criterion suggest two use a model with two
components in the bulk part.

4 Application to the flow levels in the Gurabo river

River flow levels are important measures to prevent disasters in populations when flow
rate exceeds the capacity of the river channel. We applied the proposed model in river flow
levels measured at cubic feet per second (ft3/s) in Gurabo river at Gurabo Puerto Rico.
The data is available at waterdata.usgs.gov. The flows are monitored between December
2 2012, 12:00 am to December 4 2012, 8:45 pm. The measures are made each 15 minutes
for a total sample size of n=254. We obtained convergence of all parameters using 5000
iterations after a burn-in period of 2000 iterations. We spent approximately 30 minutes
to obtain the results using R Core Team (2014) package and a PC with Intel(R) Xeon(R)
2.80 GHZ and 4 GB RAM.
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Figure 5: Posterior histogram of the GPD parameters in the tail of the proposed model
for the application.
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Figure 6: Posterior distribution of the 99.9% quantile for the application. Black line is
the maximum observed data and red line is the posterior mean for the 99.9% simulated
quantile.
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Figure 7: Dashed red lines are the posterior predictive mean and 95% posterior predictive
credible intervals using the Dirichlet process mixture of gamma densities in the bulk part
and a GPD in the tail. The vertical red line is the posterior threshold location.12
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Table 2: Measures of fitting using BIC and AIC for the application.
Number of components AIC BIC

1 3597.096 3606.911
2 3533.582 3548.305
3 3501.836 3526.374
4 3505.836 3540.19

On the other hand, Table 2 shows that BIC and AIC criterion suggest to use a model
with three components in the bulk part. Figure 5 displays the posterior distributions
of the parameters in the tail of the proposed model. The threshold, scale and shape
are around the values 1430 (quantile at 96% according to the simulation), 300 and -0.25
respectively. Figure 6 shows the posterior distribution for the 99.9% high quantile, we
can see the maximum value is less than the posterior mean for the quantile at 99.9% and
the posterior distribution is asymmetric which is expected. The prediction ability in this
example with even a small sample size is illustrated in Figure 6. where predictions of high
quantiles can be considered. Figure 7 displays the posterior density using DPMG in the
bulk part and a GPD in the tail. We can see our proposed model reproduces the data in
the bulk and tail parts. As a conclusion according to the posterior analysis and based on
the last two days of observations, we can see flow levels over 1998 ft3/s in the Gurabo
River with 0.1% probability.

5 Conclusion

We proposed a model with a Dirichlet process mixture of gamma densities in the bulk part
of the distribution and a heavy tailed generalized Pareto distribution in the tail for extreme
value estimation. The proposal is very flexible and simple for density estimation in the
bulk part and posterior inference in the tail. According to the simulations and application
to real data the model works well even for small sample sizes and in the absence of prior
information. The Dirichlet Process mixture controls the expected number of components
and so the extensive task for model comparison purposes using BIC and AIC on a fixed
number of gamma components in the bulk part is not necessary. The proposed model
was applied to a real environmental data set but interesting applications can be found in
different areas such as clinical trials or finance.
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A MCMC algorithm

1. For the bulk part we need to compute k(x|θ) and also K(u|θ), we consider the pólya
urn expression in the DPMG to compute posterior realizations for the density h(x|θ).
Let {θ∗1, ..., θ∗n∗} the unique values of θi, ωi = j if and only if θi = θ∗j i = 1, 2, , ..., n
and nj = |{i : ωi = j}| and j = 1, 2, ..., n∗ with n∗ number of distinct values. We
use the following transition probabilities:

(a) Pólya urn: marginalized G (using − to indicate summaries without ωi) and
defining a specific configuration {ω1, .., ωn} with transition probabilities:

p(ωi = `|ω−i) ∝

{
n−j j = 1, ..., n∗−,

α j = n∗− + 1
(15)

(b) Resampling cluster membership indicators ωi:

p(ωi = j|, ..., xi) ∝

{
n−j k(xi; θ∗j ) j = 1, ..., n∗−,

α
∫

k(xi; θi)dG0(θi|η) j = n∗− + 1
(16)

where we use the close results in Hanson (2006):

k(xi; θ
∗
j ) = h(xi|θ∗j ) (17)

∫
k(xi; θi)dG0(θi|µ, τ 2) = (18)

aλaγ

xi(xi + aλ)(aλ − log(xi/(xi + aγ)))2
(19)

with probability proportional to n−j k(xi; θ
∗
j ) we make θi = θ∗−j . On the other

hand with probability proportional to α
∫

k(yi; θi, φ)dG0(θi|η) we open a new
component and we sample θi = (λi, γi). First we sample λi|η ∼ Γ(2, aλ −
log(xi/(xi + aγ))

2) then we sample γi|λi, η ∼ Γ(λi + 1, xi + aγ).

2. Now we are interested in to show the sampling for the parameters in the GPD
defined in the tails of (2). Following do Nascimento et al. (2011) we compute the
posterior distribution of u, ξ and σ using three steeps of the Metropolis Hasting
algorithm. The algorithm is as follow:
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(a) Sampling ξ: proposal transition kernel is given by a truncated normal

ξ∗|ξb ∼ N(ξs, Vξ)I(−σb/(M − ub),∞) (20)

where Vξ is a variance in order to improve the mixing. M is the maximum
value in the sample the acceptance probability is

αξ = min

{
1,

p(θ∗, φ∗|x)Φ((ξb + σb/(M − ub))/
√

Vξ)

p(θb, φb|x)Φ((ξ∗ + σ∗/(M − u∗))/
√

Vξ)

}
where is the density function of the standard normal distribution.

(b) Sampling σ: If ξ(b+1) > 0 then σ∗ is sampled from the Gamma distribution
Γ(σ2(b)/Vσ, σ

b/Vσ) where Vσ is a variance in order to improve the mixing. On
the other hand if ξ(b+1) < 0 then σ∗ is sampled from a truncated normal

σ∗|σb ∼ N(σs, Vσ)I(−ξ(b+1)(M − ub),∞) (21)

the acceptance probabilities are respectively:

ασ = min

{
1,

p(θ∗, φ∗|x)Φ((σb + ξ(b+1)(M − ub)/
√

Vσ)

p(θb, φb|x)Φ((σ∗ + ξ(b+1)(M − ub)/
√

Vσ)

}
and

ασ = min

{
1,

p(θ∗, φ∗|x)Γ(σb|σ2(∗)/Vσ, σ
∗/Vσ)

p(θb, φb|x)Γ(σ∗|σ2(b)/Vσ, σ(b)/Vσ)

}
(c) The threshold u∗ is sampled following the requirement of the lower truncation

for the GPD. Therefore u∗ is sampled using a truncated normal density

σ∗|σb ∼ N(us, Vu)I(a(b+1),∞) (22)

If ξ(b+1) ≥ 0 then a(b+1) is the minimum value at the sample in the iteration b+1
otherwise if ξ(b+1) < 0 a(b+1) = M + σ(b+1)/ξ(b+1). The acceptance probability
is then

αξ = min

{
1,

p(θ∗, φ∗|x)Φ((ub − ab+1)/
√

Vu)

p(θb, φb|x)Φ((ub − ab+1)/
√

Vu)

}
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