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NO ARBITRAGE AND CLOSURE RESULTS
FOR TRADING CONES WITH TRANSACTION COSTS

SAUL JACKA, ABDELKAREM BERKAOUI, AND JON WARREN

Abstract. In this paper, we consider trading with proportional transaction costs
as in [11]. We give a necessary and sufficient condition for A, the cone of claims
attainable from zero endowment, to be closed. Then we show how to define a
revised set of trading prices in such a way that firstly, the corresponding cone of
claims attainable for zero endowment, Ã, does obey the Fundamental Theorem of
Asset Pricing and secondly, if Ã is arbitrage-free then it is the closure of A. We
then conclude by showing how to represent claims.

August 3, 2007

1. Introduction and notation

1.1. Introduction. Recollect the Fundamental Theorem of Asset Pricing in finite
discrete time (see, for example, Schachermayer [10]): the fact that A, the set of claims
attainable for 0 endowment, is arbitrage-free implies and is implied by the existence
of an Equivalent Martingale Measure; in addition, A is closed if it is arbitrage-free.

In [11], Schachermayer showed that the Fundamental Theorem of Asset Pricing fails
in the context of trading with spreads/transaction costs, by giving an example of an A
which is arbitrage-free, but whose closure does contain an arbitrage (see also Kabanov,
Rasonyi and Stricker [7] and [8]). Consequently it is interesting to investigate further
when the cone A is closed, and in cases when it is not, to find descriptions of its
closure.

Schachermayer then established (Theorem 1.7 of [11]) the equivalence of two criteria
associated with the no-arbitrage condition for the general set-up for trading with
spreads/transaction costs: that robust no-arbitrage implies and is implied by the
existence of a strictly consistent price process. Here, robust no-arbitrage means loosely
that even with smaller bid-ask spreads there is no arbitrage, whilst a strictly consistent
price process is one taking values in the relative interior of the set of consistent prices.
In Theorem 2.1 of [11] he showed that the robust no-arbitrage condition implies the
closure (in L0) of the set of attainable claims.

In this paper we shall first give, in Theorem 1.1, a simple necessary and sufficient
condition for the set of attainable claims to be closed. We go on to show, in Theorem
1.2, how to amend the bid-ask spreads so that the new cone of attainable claims does
satisfy the original Fundamental Theorem (i.e. is either arbitrage-free and closed or
admits an arbitrage). Moreover, we show that in the arbitrage-free case the new cone
is simply the closure of the original cone of attainable claims. Finally, in section 4,
we consider representation of attainable claims and characterize claims attainable for
a given initial endowment.

Key words: Arbitrage, Proportional Transaction Costs, Fundamental Theorem of Asset Pricing,
Convex Cone.
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1.2. Notation and main results. We are equipped with a filtered probability space
(Ω,F , (Ft : t ∈ [0, 1, . . . , T ),P), we denote the non-negative, real-valued Ft-measurable
functions bymF+

t and the bounded non-negative, real-valued Ft-measurable functions
by bF+

t . We denote Rd-valued Ft-measurable functions by Lt = L0
t and non-negative

Rd-valued Ft-measurable functions by L+
t .

We recall the setup from Schachermayer’s paper [11] for trading with d assets. We
are given an adapted Rd×d process (πi,jt ; t ∈ {0, 1, . . . T}) with each πi,jt ∈ (0,∞]. The
process π is known as the bid-ask process and gives the (time t) price for one unit of
each asset in terms of each other asset, so that

πi,it = 1, ∀i,

while πi,jt is the (random) number of units of asset i which can be traded for one unit
of asset j at time t. We assume (with Schachermayer) that we have “netted out” any
advantageous trading opportunities, so that, for any t and any i0, . . . , in:

πi0,int ≤ πi0,i1t . . . π
in−1,in
t .

Next we define the time t trading cone, −Kt, via

−Kt = {X ∈ Lt : X =
∑
i,j

αi,j(ej − πi,jt ei)−
∑
k

βkek with αi,j, βk ∈ mF+
t },

where ei denotes the ith canonical basis vector of Rd. The time t trading cone consists
of all those random trades (including the burning of assets) which are available at
time t. The fundamental object of study is the cone of claims attainable from zero
endowment, which will be denoted by A, and is defined to be

(−K0) + . . .+ (−KT ).

We also consider

Ct
def
= {X ∈ Lt : cX ∈ A for all c ∈ bF+

t }.
A few words on the interpretation of Ct versus −Kt. It is clear that −Kt ⊆ Ct ⊆ A,
thus we have the equality

A = C0 + . . . CT .

We can think of Ct as consisting of those trades which are available on terms that are
known at time t but which may require trading a later times to be realised.

Although each −Kt is closed in L0
t , this is not enough to ensure that A is closed in

L0
T . In contrast we find the following necessary and sufficient condition for the closure

of A:

Theorem 1.1. A is closed in L0
T if and only if each Ct is closed.

Let Ā denote the closure of A in L0
T . Unlike in a classical market, A can be

arbitrage-free, that is to say

A ∩ L+
T = {0},

yet not closed. It is then natural to ask for a description of the closure, Ā.

Theorem 1.2. There is an adjusted bid-ask process π̃ (see Definition 3.6) such that
the associated cone of claims Ã satisfies A ⊆ Ã ⊆ Ā. Moreover, either Ã contains
an arbitrage or it is arbitrage-free and closed. In the former case, Ā also contains an
arbitrage, while in the latter case

Ā = Ã.
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2. Results on the closedness of A

As we have remarked already, A can be arbitrage-free but not closed. Recall that
Schachermayer gives a sufficient condition for the closedness of A in terms of robust
arbitrage.

Schacheramyer defines the bid-ask spreads as the (random) intervals [ 1

πj,it
, πi,jt ], for

i, j ∈ {1, . . . , d} and t = 0, . . . , T , and defines robust no-arbitrage as follows:

• the bid-ask process π satisfies robust no-arbitrage if there is a bid-ask process
π̃ with smaller bid-ask spreads than π (i.e. one whose bid-ask spreads almost
surely fall in the relative interiors, in R, of the bid-ask spreads for π) whose
cone of admissible claims is arbitrage-free.

Theorem 2.1 of Schachermayer [11] then states that robust no-arbitrage implies
that the cone A is closed (as the remark after the proof states, the proof relies only
on the collection of null strategies being a closed vector space). However it is easy to
find an example where A is closed and arbitrage-free but robust no-arbitrage fails.

Consider the following example:

Example 2.1. Suppose that T = 1, d = 2, π1,2
0 = 1, π2,1

0 = 2 whilst πi,j1 = 1 for each
pair i, j. Take Ω = N, F0 trivial and F1 = 2N with P given by P(n) = 2−n.

It is immediately clear that robust no-arbitrage cannot hold, since any bid-ask
process π̃ with smaller bid-ask spreads than π must have π̃1,2

0 ∈ (1
2
, 1) and π̃2,1

1 = 1.

There is then an arbitrage in the corresponding cone Ã since e2 − π1,2
0 e1 + e1 − π̃2,1

1 e2
must be a positive multiple of e1.

Remark 2.2. It is clear from the bid-ask prices that

−K0 = {(x, y) : x+ y ≤ 0 and x+ 2y ≤ 0}

and

−K1 = {(X, Y ) ∈ L0
1 : X + Y ≤ 0 P a.s.}

and so (since −K0 ⊂ −K1 and A = −K0 +−K1)

A = {(X, Y ) ∈ L0
1 : X + Y ≤ 0 P a.s.}.

We can then see that C0 = {(x, y) : x + y ≤ 0}, while C1 = A = {(X, Y ) ∈ L0
1 :

X + Y ≤ 0 P a.s.}.

It is tempting to speculate that if A is not closed, then Ā contains an arbitrage.
The following example (compare with example 1.3 in Grigoriev [4]) shows that this is
false.

Example 2.3. Suppose that T = 1, d = 2, π1,2
1 = 1, π2,1

1 = 2 whilst πi,j0 = 1 for each
pair i, j. Take Ω = N, F0 trivial and F1 = 2N with P given by P(n) = 2−n.

Then we have

Ā = {(X, Y ) ∈ L0
1 : X + Y ≤ 0 P a.s.},

whereas

A = {(X, Y ) ∈ L0
1 : X + Y ≤ 0 P a.s. and 2X + Y is a.s. bounded above}.

Lemma 2.4. For each t, Ct is a convex cone and

A = C0 + . . .+ CT .
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Proof. Convexity for Ct is inherited from A as is stability under multiplication by
positive scalars. The decomposition result follows from the fact that

−Kt ⊆ Ct

and the fact that Ct ⊆ A. �

Definition 2.5. For any decomposition of A as a sum of convex cones:

A = M0 + . . .+MT ,

we call elements of M0 × . . . × MT which almost surely sum to 0, null-strategies
(with respect to the decomposition M0 + . . . + MT ) and denote the set of them by
N (M0 × . . . × MT ). For convenience we denote (−K0) × . . . × (−KT ) by K and
C0 × . . .× CT by C.

In what follows we shall often use the lemma below (lemma 2 in Kabanov et al [8]):

Lemma 2.6. Suppose that
A = M0 + . . .+MT

is a decomposition of A into convex cones with Mt ⊆ L0
t and bF+

t Mt ⊆ Mt for each
t; then A is closed if N (M0 × . . .×MT ) is a vector space and each Mt is closed.

Lemma 2.7. Suppose that A = M0 + . . . + MT , where for each t, Mt ⊆ L0
t and

bF+
t Mt ⊆Mt, then

Mt ⊂ Ct.

Moreover, for each 0 ≤ t ≤ T ,

(2.1) At(C)
def
= C0 + . . .+ Ct = A ∩ L0

t .

Proof. The inclusion Mt ⊂ Ct follows immediately from the fact that Mt ⊂ A; the
stability under multiplication by bF+

t ; and the definition of Ct.
To prove the equality (2.1), suppose X ∈ A ∩ L0

t . Let

X = ξ0 + . . . ξT ,

be a decomposition of X with ξ ∈ C. It follows from the fact that X ∈ L0
t and ξs ∈ L0

t

for each s < t that
Y = ξt + . . .+ ξT ∈ L0

t .

Therefore, it is sufficient to show that

(Ct + . . .+ CT ) ∩ L0
t ⊂ Ct.

Now take Y ∈ (Ct + . . . + CT ) ∩ L0
t and c ∈ bF+

t : clearly cY ∈ A ∩ L0
t and hence,

by definition, Y ∈ Ct. �

We may now give the
Proof of Theorem 1.1

First assume that A is closed and (Xn)n≥1 is a sequence in Ct converging in L0 to

X. It follows immediately from the assumption that cXn
L0

−→ cX ∈ A for all c ∈ bF+
t ,

hence X ∈ Ct.
For the reverse implication we shall show that N (C) is a vector space and the result

will then follow from Lemma 2.6.
Now suppose (ξ0, . . . , ξT ) ∈ N (C) and c ∈ bF+

t with almost sure upper bound B:
then, defining

ζs = Bξs
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for s 6= t and

ζt = (B − c)ξt,

it is clear (from the definition of Cs) that

(ζ0, . . . , ζT ) ∈ C,

with
T∑
0

ζs = −cξt.

It follows that

−cξt ∈ A, ∀c ∈ bF+
t

and so −ξt ∈ Ct for each t so that N (C) is a vector space as required. �

Remark 2.8. In the proof above we used the fundamental property of null strategies:
if (ξs)0≤s≤T is a null strategy then −ξt ∈ Ct. A null strategy allows one to eliminate
friction in any of its component trades. In what follows we shall generalize this idea
to more general sequences of strategies.

3. A revised fundamental theorem of asset pricing

We return to example 2.3:

Example 3.1. Recall that T = 1, d = 2, π1,2
1 = 1, π2,1

1 = 2 whilst πi,j0 = 1 for each
pair i, j; Ω = N, F0 is trivial and F1 = 2N with P given by P(n) = 2−n.

We leave it as an exercise for the reader to show, as claimed above, that Ā =
{(X, Y ) ∈ L0

1 : X + Y ≤ 0 P a.s.} and hence corresponds to an adjusted bid-ask
process, which is identically equal to 1. To do so, one may consider the null strategy
ξ given by ξ0 = e1 − e2 and ξ1 = e2 − e1.

In this section we shall show that Ā, if arbitrage-free, can always be represented
by some adjusted bid-ask process. However, the next example, which is a minor
adaptation of one of the key examples in Schachermayer [11], shows that it is necessary
to consider more than just null strategies when seeking the appropriate adjusted prices.

Definition 3.2. We define Ct(Ā) by analogy with Ct(A):

Ct(Ā)
def
= {X ∈ Lt : cX ∈ Ā for all c ∈ bF+

t }.

Example 3.3. Suppose that T = 1, d = 4, Ω = N, F0 is trivial and F1 = 2Ω. The
bid-ask process at time 0 satisfies π2,1

0 = 1, π4,3
0 = 1 whilst πi,j0 = 3 for each other pair

i, j with i 6= j. At time 1, we have π1,4
1 = ω = 1

π4,1
1

and π2,3
1 = ω = 1

π3,2
1

, whilst π4,3
1 = 1

and π3,4
1 = 3. All other entries are defined implicitly by the criterion

πi,j1 = min
i=i0,...,in=j

πi0,i11 . . . π
in−1,in
1 .

We shall show that e4 − e3, e2 − e1, e1 − e2 ∈ C1(Ā) even though there is no null
strategy, ξ, with ξ0 = e1 − e2 or with ξ0 = e2 − e1 or with ξ0 = e3 − e4.

First, define a sequence of strategies ξN as follows: ξN0 = N(e1 − e2) and

ξN1 =
N

ω
(e4 − ωe1) + (

N

ω
− 1(N≥ω))(e3 − e4) +N(e2 −

1

ω
e3),

which means that ξN1 = N(e2 − e1) + 1(N≥ω)(e4 − e3).
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Notice that
1∑
t=0

ξNt = 1(N≥ω)(e4 − e3)
L0

−→ e4 − e3 as N → ∞, so we conclude that

e4− e3 ∈ C0(Ā). However, e3− e4 ∈ −K1 and so ((e4− e3), (e3− e4)) is null for C(Ā)
and hence e4 − e3 ∈ C1(Ā).

Now, given an element X of bF+
1 with a.s. bound B, consider the strategy ((N +

B)(e1− e2) + (e3− e4), (N + (B−X))(e2− e1) + 1(N+(B−X)≥ω))(e4− e3)), which sums

to X(e1 − e2) − 1(N+(B−X)<ω)(e4 − e3)
L0

−→ X(e1 − e2) as N → ∞. This shows that
e1 − e2 ∈ C1(Ā) and so is also in C0(Ā).

Lastly, consider the strategy

(N(e1 − e2) + (e3 − e4), (N +X))(e2 − e1) + 1(N+X≥ω))(e4 − e3)),

which sums to X(e2− e1)− 1(N+X<ω)(e4− e3)
L0

−→ X(e2− e1) as N →∞. This shows
that e2 − e1 ∈ C1(Ā) and so is also in C0(Ā).

It follows that Ā corresponds to the adjusted bid-ask process π̃ given, for t = 0, by:
π̃1,2

0 = π̃2,1
0 = π̃3,4

0 = π̃4,3
0 = 1, π̃i,j0 = π̃j,i0 = 3 for i ∈ {1, 2} and j ∈ {3, 4}; and

for t = 1 by: π̃1,4
1 = ω = 1

π̃4,1
1

= π̃2,3
1 = 1

π̃3,2
1

, whilst π̃4,3
1 = π̃3,4

1 = π̃1,2
1 = π̃2,1

1 = 1.

To see this, notice that the inclusion A ⊂ Ã is obvious, while Ã is closed (by robust
no-arbitrage) and the inclusion Ã ⊂ Ā follows from the arguments above.

In order to prove our new version of the Fundamental Theorem we first define the
adjusted bid-ask process, π̃. This process will either be equal to the original bid-ask
process or frictionless (ω by ω and for a given pair (i, j)).

Definition 3.4. Given a bid-ask process π, we define for each (i, j, t) ,

zi,jt
def
= ej − πi,jt ei

and

(3.1) Ri,j
t

def
= {B ∈ Ft : −zi,jt 1B ∈ Ā} .

Lemma 3.5.
−zi,jt 1B ∈ Ā ⇔ −zi,jt 1B ∈ Ct(Ā).

Proof. Clearly the RHS implies the LHS a fortiori.
To prove the reverse implication, first note that, by definition of −Kt,

kzi,jt ∈ −Kt for any k ∈ mF+
t ,

which in turn implies that

(3.2) kzi,jt ∈ Ct for any k ∈ mF+
t ,

since −Kt ⊂ Ct. Now suppose that c ∈ bF+
t with bound M , and set

(3.3) Z
def
= c(−zi,jt 1B) = M(−zi,jt 1B) + (M − c)zi,jt 1B.

The first term on the right hand side of (3.3) is in Ā since M is a positive constant,
−zi,jt 1B is in Ā by assumption and Ā is a cone. The second term is in Ā by (3.2) and,
since Ā is a convex cone, the result follows. �

Now observe that the collection Ri,j
t is closed under countable unions. To see this,

observe first that, since Ā is a closed cone, Ri,j
t is closed under countable, disjoint,

unions. Now notice that, from Lemma 3.5, if B ∈ Ri,j
t and D ∈ Ft then B ∩D ∈ Ri,j

t .
It follows that if (Bn)n≥1 is a sequence in Ri,j

t then Bn \ (∪n−1
k=1Bk) ∈ Ri,j

t and hence
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∪nBn ∈ Ri,j
t . We then deduce, by the usual exhaustion argument, that there exists a

P-a.s. maximum, which we denote by Bi,j
t ; that is to say that

B ∈ Ri,j
t and Bi,j

t ⊆ B ⇒ P(B \Bi,j
t ) = 0.

Definition 3.6. We define the adjusted bid-ask process π̃ as follows :

for each pair i 6= j and for each t, π̃j,it
def
=

1

πi,jt
1Bi,jt

+ πj,it 1(Bi,jt )c .

Remark 3.7. π̃ need not satisfy the condition:

π̃ik ≤ π̃ij1 . . . π̃jnk,

but we may still define the corresponding trading cone and apply Lemma 2.6.

We denote the corresponding solvency cones and cone of attainable claims by
(K̃t)0≤t≤T and Ã respectively. Throughout the rest of the paper we denote ej − π̃i,jt ei
by z̃i,jt .

We now give the
Proof of Theorem 1.2

We first show that
A ⊆ Ã ⊆ Ā,

and then show that Ã is closed if it is arbitrage-free.
Proof that (A ⊆ Ã):
Since πi,jt π

j,i
t ≥ 1, it follows from the definition that π̃t ≤ πt for each t and so

−Kt ⊆ −K̃t,

and hence
A ⊆ Ã.

Proof that (Ã ⊆ Ā):
we show this by demonstrating that

−K̃t ⊆ Ā
for each 0 ≤ t ≤ T .

This, in turn, is achieved by showing that

(3.4) d z̃j,it ∈ Ā, for all d ∈ mF+
t .

From the definition of the adjusted bid-ask process, we obtain :

z̃j,it = −π̃j,it zi,jt 1Bi,jt
+ zj,it 1(Bi,jt )c .

Observe that −zi,jt 1Bi,jt
∈ Ct(Ā) by definition of the set Bi,j

t and (3.3), so

−dπ̃j,it zi,jt 1Bi,jt
∈ Ct(Ā) ⊂ Ā,

and
d zj,it 1(Bi,jt )c ∈ −Kt ⊆ Ā

by definition of −Kt, so that d z̃j,it ∈ Ā as required.
Proof that (Ã is closed if Ã is arbitrage-free):

We prove this by showing that the nullspace Ñ ≡ N
(
(−K̃0)× . . .× (−K̃T )

)
is a

vector space and then appealing to Lemma 2.6.
Let ξ ∈ Ñ . Then, defining Ct(Ã) analogously to Ct(A), for each t we have, by

Remark 2.8, −ξt ∈ Ct(Ã), because ξ is null for Ã.
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Now, since ξt ∈ −K̃t we may write it as

ξt =
∑
i,j

αi,jt z̃i,jt −
∑
k

βkt ek,

for suitable αi,jt and βkt in L0
t . Moreover, −ξt ∈ Ct(Ã) and since

∑
i,j α

i,j
t z̃i,jt ∈ Ã

we conclude that
∑

k β
k
t ek ∈ Ã. Now, since, by assumption, Ã is arbitrage-free, we

conclude that
∑

k β
k
t ek = 0 a.s., so

ξt =
∑
i,j

αi,jt z̃i,jt ,

and consequently −
∑

i,j α
i,j
t z̃i,jt ∈ Ct(Ã). Since Ct(Ã) is a convex cone and αi,jt z̃i,jt ∈

−K̃t ⊂ Ct(Ã) for each (i, j), we may deduce that, for each pair (i, j):

−αj,it z̃j,it ∈ Ct(Ã).

Now, multiplying by the positive, bounded and Ft-measurable r.v. 1

αj,it
1({αj,it > 1

n
}∩(Bi,jt )c),

we see that

−zj,it 1({αj,it > 1
n
}∩(Bi,jt )c) = −z̃j,it 1({αj,it >0}∩(Bi,jt )c) ∈ Ã ⊂ Ā.

Then by definition of the setBj,i
t , for each n the subsetDi,j

t (n)
def
= {αj,it > 1

n
}∩(Bi,j

t )c ⊂
Bj,i
t . Now, by taking the union over n of the Di,j

t (n)’s, we see that

Di,j
t

def
= {αj,it > 0} ∩ (Bi,j

t )c ⊂ Bj,i
t ,

and we obtain therefore that

π̃j,it = πj,it =
1

π̃i,jt

on the subset Di,j
t . We deduce that

−z̃j,it 1Di,jt
= −zj,it 1Di,jt

= π̃j,it z̃i,jt 1Di,jt
∈ −K̃t ,

and
−z̃j,it 1({αj,it >0}∩Bi,jt ) = π̃j,it zi,jt 1({αj,it >0}∩Bi,jt ) ∈ −Kt ⊂ −K̃t .

Hence −ξt ∈ −K̃t. It follows that Ñ is a vector space as claimed. �

4. Decompositions of A, representation and dual cones

4.1. Decompositions of A and consistent price processes. We have given a
necessary and sufficient condition for A to be closed in terms of the Ct(A) and we
have shown how to amend the bid-ask prices so that the new cone attainable with
zero endowment is Ā (if Ā is arbitrage-free). It is natural to ask whether the resulting
trading cones (−K̃t)0≤t≤T coincide with the Ct(Ã)’s. The following example shows
that this is far from the case.

Example 4.1. Suppose that T = 1, d = 4, Ω = {1, 2}, F0 is trivial and F1 = 2Ω.
The bid-ask process at time 0 satisfies π4,3

0 = π4,2
0 = 1 whilst, for all other pairs i 6= j,

πi,j0 = 4; the bid-ask process at time t = 1 satisfies π2,1
1 (1) = 4/3 = 2 − π3,1

1 (1) =
2 − π2,1

1 (2) = π3,1
1 (2) whilst, for all other pairs i 6= j, πi,j1 = 4. By considering the

strategy ξ given by ξ0 = 1
2
(e3 +e2)−e4 and ξ1 = e1− 1

2
(e3 +e2), we see that e1−e4 ∈ A

and hence is in C0. Now Ω is finite so A is closed and it is now easy to check that
π̃ = π, yet e1 − e4 6∈ −K0 and so −K̃0 6= C0.
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In the rest of this section we shall show that nevertheless, the Ct’s and their ‘duals’
behave like the original −K’s.

Whereas each trading cone, being generated by a finite set of random vectors, can
clearly be thought of either as a cone of random variables or as a random variable
taking its values in the set of closed, convex cones in Rd, the same is not evidently
true of the Cts. Thus, we first need some abstract results relating to cones of random
variables.

Remark 4.2. We denote by D, the collection of all closed subsets of Rd. The standard
Borel structure on D, known as the Effros-Borel structure, and denoted B(D), is as
follows: for any set B in Rd define D(B) by

D(B) = {C ∈ D : C ∩B 6= ∅},

then B(D) = σ(Π), where

Π = {D(B) : B open in Rd}.

Definition 4.3. Let us consider a map Λ : Ω → D. We say that Λ is Effros-Borel
measurable if for all open set U ⊂ Rd, we have {ω : Λ(ω) ∩ U 6= ∅} ∈ F . We denote
by Υ, the set of all Effros-Borel measurable maps.

Lemma 4.4. For any X ∈ L0(F ,Rd) and Λ ∈ Υ,

(4.1) (X ∈ Λ)
def
= {ω : X(ω) ∈ Λ(ω)} ∈ F .

Proof. First, by the fundamental measurability theorem of Himmelberg [5], there is a
sequence of Rd-valued random variables (Xn)n≥1 such that a.s

Λ(ω) = {Xn(ω) : n ≥ 1}.

Then, the set {ω : X(ω) ∈ Λ(ω)} =
⋂
n

⋃
i

{ω : |Xi(ω)−X(ω)| < 1
n
} ∈ F . �

Theorem 4.5. Abstract closed convex cones theorem. Let C be a closed convex
cone in L0(F ; Rd), then

(4.2) C is stable under multiplication by (scalar) elements of L∞+ (F)

iff there is a map Λ ∈ Υ such that

(4.3) C =
{
X ∈ L0(F ; Rd) : P(X ∈ Λ) = 1

}
.

In this case, the map Λ takes values in the set of closed convex cones in Rd.

Proof. The implication (4.3)⇒ (4.2) is obvious.
To prove the direct implication: we consider the family:

Υ′ = {Γ ∈ Υ : C(Γ) ⊂ C},

where

C(Γ) =
{
X ∈ L0(F ; Rd) : P(X ∈ Γ) = 1

}
.

From Valadier [13] and [14], there is an essential supremum Λ ∈ Υ of this family Υ′,
i.e.:

(1) For all Γ ∈ Υ′, we have Γ ⊂ Λ a.s.
(2) If Σ ∈ Υ such that for all Γ ∈ Υ′, we have Γ ⊂ Σ a.s, then Λ ⊂ Σ a.s.
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Moreover there is a countable subfamily (Γn)n≥1 ⊂ Υ′ such that a.s Λ =
⋃
n≥1 Γn. We

want to prove that C = C(Λ). To do this, first we remark that C(Λ) =
⋃
n≥1C(Γn).

Then C(Λ) ⊂ C and so Λ ∈ Υ′. Now let ξ ∈ C and define the map Γ(ω) = Λ(ω) ∪
{ξ(ω)}. For X ∈ Γ a.s and B = {ξ = X} we have X1Bc ∈ Λ and then X1Bc ∈ C and
X1B = ξ1B ∈ C. So X ∈ C. We deduce that C(Γ) ⊂ C and then Γ ∈ Υ′. By the
essential supremum property of Λ, we have Γ ⊂ Λ and then ξ ∈ Λ a.s.

Now suppose that (4.3) is satisfied and consider the sequence (Xn)n≥1 that generates
Λ. For any α ∈ Rn, define

Yn,α =
n∑
i=1

αiXi.

Notice that, denoting the non-negative rationals by Q+, the collection

S
def
= {Yn,α : α = (α1, . . . , αn) ∈ Qn

+}

is countable.
Define the map Λ̃ by:

Λ̃(ω) = {Y (ω) : Y ∈ S}
Rd
.

From the convex cone property of C, we have each Y ∈ C and then, from (4.3),
P(Y ∈ Λ) = 1. We deduce that Λ̃ ⊂ Λ a.s and then (since Xn ∈ S for each n) that
Λ = Λ̃ a.s. �

Remark 4.6. In all that follows we call a map D ∈ Υ with values in the set of closed
convex cones in Rd a random closed cone.

Corollary 4.7. Suppose that 0 ≤ p ≤ ∞ and let C be a convex cone in Lp(Ω,F ; Rd)
with C closed in Lp(Ω,F ; Rd) if 0 ≤ p < ∞, and with C σ(L∞(P),L1(P))-closed if
p = ∞. Then, C is stable under multiplication by (scalar) elements of L∞+ (F) iff
there exists a random closed cone D such that

C =
{
X ∈ Lp(Ω,F ; Rd) : P(X ∈ D) = 1

}
.

Proof. First suppose that 0 ≤ p <∞ and let D be the random closed cone associated

to C
0 def

= C
L0

, the closure of C in L0. Then C
0

inherits stability under multiplication
by bF+ from C so, by Theorem 4.5,

C
0

=
{
X ∈ L0(Ω,F ; Rd) : P(X ∈ D) = 1

}
.

It suffices then to prove that C = C
0∩Lp. The inclusion C ⊂ C

0∩Lp is obvious. Now

let X ∈ C
0 ∩ Lp, so there exists a sequence Y n ∈ C which converges a.s to X. Take

a sequence (φm)m≥1 of continuous functions on R with compact support such that
φm tends pointwise to 1 as m → ∞, then, by the Bounded Convergence Theorem,

Y n
m

def
= Y nfm(|Y n|) ∈ C converges to Ym

def
= X φm(|X|) in Lp. So Ym ∈ C and, by

letting m ↑ ∞, we obtain the result that X ∈ C.

In the case where p = ∞, given X ∈ C
0 ∩ L∞ again take a sequence (Y n) in

C such that Y n a.s.−→ X. Then, for any f ∈ L1(F ; Rd) and any m, we have that

f.Y nφm(|Y n|) a.s.−→ f.Xφm(|X|), and then f.Y nφm(|Y n|) L1

−→ f.Xφm(|X|) by the
Dominated Convergence Theorem. We conclude that Xφm(|X|) ∈ C and hence,

again letting m ↑ ∞, we obtain the inclusion C
0 ∩ L∞ ⊂ C, since C is closed in

σ(L∞,L1) and hence in L∞. �
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Lemma 4.8. Let C be a closed convex cone in L0(Ω,F ; Rd), stable under multiplica-
tion by (scalar) elements of L∞+ (F), let 1 ≤ p <∞, and Λ be as defined before, then
defining

Cp = C ∩ Lp,
the polar of Cp is given by

(Cp)∗ =
{
Z ∈ Lq(Ω,F ; Rd) : P(Z ∈ Λ∗) = 1

}
,

where q is the conjugate of p and Λ∗ is the polar of Λ in Rd.

Proof. This parallels the second half of the proof of Theorem 4.5. �

Definition 4.9. For any decomposition of A: A = M0 + . . .+MT where each convex
cone Mt is closed in L0

t and satisfies Mt ⊂ L0
t and bF+

t Mt ⊂ Mt, we say that the
decomposition is a trading decomposition and, recalling that M denotes M0×. . .×
MT , set

At(M)
def
= M0 + . . .+Mt.

For any trading decomposition M, we define a consistent price process (with
respect to M) to be a martingale, Z, with Zt taking values in Λ∗

Mt
\{0}.

Let φ : Ω →]0, 1] be an FT -measurable positive random variable. We denote by L1
φ

the Lebesgue space associated to the norm defined by

||f ||L1
φ

def
= E{φ |f |Rd} .

Its dual, denoted by L∞ψ , with ψ = φ−1, is associated with the norm

||f ||L∞ψ = ess sup{ψ |f |Rd} .

Theorem 4.10. For any trading decomposition M of A, Ā, the closure of A in L0,
is arbitrage-free iff there is a consistent price process Z, and in this case, for every
strictly positive FT -measurable φ : Ω → (0, 1] we may find a consistent price process
Z such that |ZT | ≤ cφ for some positive constant c.

Proof. This follows very closely the proof of Theorem 1.7 (assuming Theorem 2.1) of
Schachermayer [11], ignoring references to ‘robust’ and ‘strict’. A sketch proof is as
follows: under the assumption that Ā is arbitrage-free, an exhaustion argument (see
[15]), establishes the existence of a strictly positive element, Z, of the polar to Ā∩L1

φ,

whilst Lemma 4.8 and the fact that Mt ⊂ A establishes that Zt
def
= E[Z|Ft] ∈ Λ∗

Mt
.

Conversely, given a consistent Z, we define a frictionless bid-ask process π̂ by

π̂i,jt =
Zj
t

Zi
t

.

Taking Z1 as numérative and observing that Q given by dQ
dP is an EMM for the

corresponding discounted asset prices, we see, by applying the fundamental theorem
for frictionless trading, that Â is closed and arbitrage-free. Now it is clear, since Z is
a consistent price process, that Mt ⊂ −K̂t = {X ∈ L0

t : Zt.X ≤ 0 a.s.} and hence it
follows that Ā is arbitrage-free. �

Similar results were proved in Stricker [12], Jouini and Kallal [9], Schachermayer
[11] and Grigoriev [4].

We denote A ∩ L1
φ by Aφ and by A∗,ψ its polar cone. We denote the consistent

price processes with ZT ∈ A∗
ψ by Ao,ψ, and the sets {X : X = Zt for some Z ∈ A∗,ψ}

and {X : X = Zt for some Z ∈ Ao,ψ} by A∗,ψ
t and Ao,ψ

t respectively.
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Remark 4.11. Notice that if Ao,ψ is non-empty, then, identifying martingales with
their terminal values, A∗,ψ is the closure in L∞ψ of Ao,ψ. This is a standard argument,

following from the fact that if X ∈ A∗,ψ and Y ∈ Ao,ψ, then X + εY ∈ Ao,ψ for every
ε > 0. It also follows that A∗,ψ

t is the closure in L∞ψ of Ao,ψ
t .

Remark 4.12. Note that in Theorem 4.10, we do not need to assume that A is
decomposed as a sum of −Kt’s, but merely that it admits a trading decomposition.

Lemma 4.13. Let X ∈ L1
φ. Then the following assertions are equivalent.

(1) X ∈ Cφ
t
def
= Ct ∩ L1

φ.

(2) X ∈ L1
φ(Ft) and Zt.X ≤ 0 a.s. for all Z ∈ Ao

ψ.

(3) E[(W.X)| Ft] ≤ 0 for all W ∈ L∞,+
ψ such that E[W |Ft] ∈ A0,ψ

t .

Proof. ((1) ⇒ (2))

Clearly, if X ∈ Cφ
t , X ∈ L1

φ(Ft). Now, for Z ∈ Ao
ψ and f ∈ bF+

t we have:

Ef(Zt.X) = EZt.(f X) = EZT .(f X) ≤ 0 ,

since ZT ∈ A∗
ψ and f X ∈ Aφ. Since f is arbitrary it follows that Zt.X ≤ 0 a.s.

((2) ⇒ (1))
Now let f ∈ bF+

t and X satisfy (2). We need only prove that fX ∈ A.
Let Z ∈ Ao

ψ then

EZT .(f X) = EZt.(f X) = Ef(Zt.X) ≤ 0 .

Therefore, given Z ∈ A∗
ψ, by taking a sequence (Zn)n≥1 in Ao

ψ converging in L∞ψ to Z

we conclude that EZT .(f X) ≤ 0 and hence fX ∈ Aφ ⊂ A.
((2) ⇒ (3))
We remark that for X satisfying (2) we have, for every W ∈ L∞,+

ψ such that

E[W |Ft] ∈ Ao,ψ
t and f ∈ bF+

t ,

E(f (W.X)) = E(f E(W | Ft).X) ≤ 0.

Since f is an arbitrary element of bF+
t ,

E[(W.X)| Ft] ≤ 0.

((3) ⇒ (2))
Take an X satisfying (3). We prove first that X ∈ L1

φ(Ft).
From (3) we deduce that for every W ∈ L∞,+

ψ we have E[(W − E(W | Ft)).X] = 0
since

E[(W − E(W | Ft))| Ft] = 0 ∈ A∗,ψ
t .

Consequently for every W ∈ L∞,+
ψ we get

EW.(X − E(X| Ft)) = E(W − E(W | Ft)).X = 0 .

Since W is an arbitrary element of L∞,+
ψ we may deduce that X = E(X| Ft). Let

Zt ∈ Ao,ψ
t , then

Zt.X = E(Zt.X| Ft) ≤ 0.

�
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4.2. Representation. The following is an easy modification of Theorem 4.1 of Schacher-
mayer [11] and Theorem 4.1 of Delbaen, Kabanov and Valkeila [3]:

Theorem 4.14. Suppose that θ ∈ L0
T and A is closed and arbitrage-free. The follow-

ing are equivalent:

(i) There is a self-financing process η such that

θ ≤ ηT ,

i.e. θ ∈ A.
(ii) For every consistent pricing process Z such that the negative part (θ.ZT )− of

the random variable θ.ZT is integrable, we have

E[θ.ZT ] ≤ 0.

Proof. The proof is a much simplified version of the proof of Theorem 4.1 of Schacher-
mayer [11]. �

We may now consider representation of elements of A:

Theorem 4.15. Suppose θ ∈ Aφ and η is an adapted Rd-valued process in L1
φ with

ηT = θ, and define ξ = (ξ0, ..., ξT ) by ξt
def
= ηt − ηt−1 with η−1 ≡ 0. Then ξ ∈∏T

0 C
φ
t if and only if for all Z ∈ Ao

ψ, the process MZ defined by MZ
t = ηt−1.Zt , is a

supermartingale and MZ
T ≥ θ.ZT .

Proof. Let ξ ∈
∏T

0 C
φ
t and Z ∈ Ao

ψ. Then

E(MZ
t+1| Ft) = E(ηt.Zt+1| Ft) = ηt.Zt = MZ

t + ξt.Zt ≤MZ
t ,

since ξt ∈ Cφ
t and Z ∈ Ao

ψ. Moreover we have

MZ
T = ηT−1.ZT = −ξT .ZT + θ.ZT ≥ θ.ZT ,

by the same argument. Conversely, we prove that for every t , ξt ∈ Cφ
t : by Lemma

4.13 we need to prove that Zt.ξt ≤ 0 a.s for every Z ∈ Ao
ψ which is the case since, for

t ≤ T − 1,

ξt.Zt = E(MZ
t+1| Ft)−MZ

t ≤ 0 ,

and for t = T we have

ξT .ZT = θ.ZT −MZ
T ≤ 0.

�

Remark 4.16. We would like to show that

Aφ = Cφ
0 + . . .+ Cφ

T

or just

Aφ = Cφ
0 + . . .+ Cφ

T

Lφ
,

but a proof of either conjecture eludes us.

Remark 4.17. We can consider η’s only defined for t ≤ T − 1 in the theorem above
to obtain the following:

Corollary 4.18. Suppose that η is adapted to (Ft : 0 ≤ t ≤ T−1). Then ξ ∈
∏T−1

0 Cφ
t

if and only if the process MZ is a supermartingale for all Z ∈ D0,ψ. We may close η
on the right by θ if and only if MZ

T ≥ θ.Z for all Z ∈ D0,ψ.
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[13] M. Valadier: “Contribution á l’analyse convexe’. Thesis, Paris (1970).
[14] M. Valadier: Multiapplications mesurables á valeurs convexes compactes. J. Math. Pures et
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