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SUMMARY

Seamless phase II/III clinical trials are attractive in development of new drugs because they accelerate
the drug development process. Seamless phase II/III trials are carried out in two stages. After stage
1 (phase II stage), an interim analysis is performed and a decision is made on whether to proceed
to stage 2 (phase III stage). If the decision is to continue with further testing, some dose selection
procedure is used to determine the set of doses to be tested in stage 2. In this paper we propose
a dose-selection procedure for binary outcomes in adaptive seamless phase II/III clinical trials that
incorporates the dose-response relationship when the experimental treatments are different dose levels
of the same drug, and explicitly incorporates both efficacy and toxicity. The choice of the doses to
continue to stage 2 is made by comparing the predictive power of the potential sets of doses which
might continue. Copyright c© 2007 John Wiley & Sons, Ltd.

KEYWORDS: Seamless phase II/III clinical trials; Closure principle; Adaptive testing;
Conditional power; Predictive power.

1. Introduction

In drug development, clinical trials are categorized into three phases. Phase I is the stage
where the drug is first tested in human beings and the objective is to determine the safety of
the new drug. Phase I trials are small and several dose levels are generally tested. If a safe
dose (or dose range) is identified, the drug is then tested for efficacy in a small clinical trial.
Such a trial is referred to as a phase II clinical trial and like phase I, often more than one
dose level is tested. At the end of the phase II trial, a decision has to be made on the basis of
efficacy and safety data regarding which dose(s) proceeds to the next stage of testing. The last
stage of drug testing in human beings before submission for regulatory approval is the phase
III clinical trial which is a large confirmatory trial for efficacy.

In order to reduce the time before approval of a new drug, there has been interest in
combining different phases of a clinical trial. Trials which combine phase II and phase III
into a single trial with a phase II stage and phase III stage are referred to as (seamless) phase
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2 KIMANI ET AL.

II/III trials. Such trials are conducted in two stages. In stage 1 (phase II stage) of phase
II/III trials, some experimental treatments are compared with a control treatment with the
aim of determining the promising treatments. Sufficiently promising treatments then continue
to stage 2 (phase III stage) along with the control treatment. At the end of the trial, data
from both stages are used to assess the efficacy of the selected treatment(s). In this paper we
propose a procedure for selecting the set of doses that proceed to stage 2 after stage 1. Thall
et al. [1], Schaid et al. [2] and Stallard & Todd [3] among others have proposed methods in
which the most promising treatment is selected for further testing for experiments with more
than one stage. These authors consider distinct treatments, that may be different doses of a
drug, but have not considered the dose-response relationship and the safety of the experimental
treatments explicitly. The procedure that we propose incorporates dose-response relationship
and safety explicitly for binary outcomes that are observable rapidly after administration of a
treatment.

Bretz et al. [4] have described a method of analysis for phase II/III trials using a single
outcome. This is described in detail in Section 2. Assuming this analysis for efficacy outcome,
we obtain the set of stage 2 data for which at least one of the experimental doses which
proceed to stage 2 is concluded to be effective after stage 2 given the results of stage 1. After
defining the distribution of stage 2 data, we then obtain the probability of this set of data. We
refer to this probability as the (combined) conditional power. To incorporate the dose-response
relationship, we let the parameters of stage 2 data be given by some specified parametric dose-
response curves. To penalize for toxicity, we partition the conditional power into probabilities
of disjoint events where at least one effective dose is rejected and multiply each component by
the indicator variable that doses in that event have probability of toxicity less than some
maximum accepted level. To allow the prior knowledge influence decision of which doses
continue to stage 2, we use Bayesian methodology by defining some prior distributions for
the dose-response curves parameters and obtain the posterior probability of concluding at
least one experimental dose is effective and safe by integrating over the parameter space. We
refer to this probability as penalized predictive power and dose selection is made so as to
optimise the penalized predictive power among the potential doses that proceed to stage 2.

In the next section, a review of adaptive analysis of phase II/III data with multiple
experimental treatments is given. In Section 3, we give the expressions for the conditional
power, the probability of concluding that at least one of the experimental doses that proceed
to stage 2 is effective given the stage 1 data. A possible form of the prior distributions is given
in Section 4. We examine our method of dose selection using simulated examples in Section 5.
A discussion is given in Section 6.

2. Adaptive analysis of phase II/III data with multiple treatments

Building on the work of Bauer & Kieser [5], Bretz et al. [4] consider a seamless phase II/III
trial in which a control treatment is compared to more than one experimental treatment using
some hypothesis tests to determine if there is an effective treatment. They focus on the case
in which there is a single endpoint ([4, 5]). In this section we review the work of Bretz et
al. [4] and ways of obtaining the p-values required in this analysis. Their notation has been
maintained and will be used in subsequent sections.

Suppose in an experiment k(> 1) experimental treatments are to be compared with a control
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DOSE SELECTION IN SEAMLESS PHASE II/III CLINICAL TRIALS 3

treatment such that k null hypotheses Hi : θi = θ0, i = 1, ..., k comparing each experimental
dose with the control treatment are of interest where θi and θ0 respectively denote the measure
of effectiveness for experimental treatment i and the control treatment. In order to control the
familywise error rate (FWER) associated with testing the k pairwise null hypotheses at pre-
specified level α, Bretz et al. [4] use the closure principle (CP) of Marcus et al. [6]. The
CP considers the set of all intersection hypotheses constructed from the initial hypotheses of
interest. Marcus et al. [6] refer to this set, denoted by H, as the closure set. In the closure set
Hij denotes Hi∩Hj , Hijl denotes Hi∩Hj ∩Hl and so on for i, j, l ∈ {1, ..., k}. Using the CP, a
null hypothesis Hi is rejected at FWER α if the subset of hypotheses in H which are included
in Hi are all rejected at level α.

To combine evidence from the two stages, Bretz et al. [4] use the adaptive approach as
described by Bauer & Köhne [7]. In adaptive testing, data from each stage are analysed
separately and in order to make a single conclusion from the two stages, p-values obtained
at the end of each stage are combined into a single value. Suppose the p-value obtained from
testing a (null) hypothesis H at end of stage 1 is p1 and the corresponding p-value at stage
2 is p2. Assuming that p1 and p2 have independent Uniform[0, 1] distributions under the null
hypothesis, several combination procedures for p1 and p2 into a single p-value have been
proposed but none is uniformly most powerful. Zaykin et al. [8] have reviewed some methods
of combining the p-values. A commonly used method is the weighted inverse normal method
in which the combined p-value is

C(p1, p2) = 1− Φ[w1Φ−1(1− p1) + w2Φ−1(1− p2)] (1)

where 0 < wi < 1, i = 1, 2, are arbitrary weights subject to w2
1 +w2

2 = 1 and Φ is the standard
normal distribution function.

Bretz et al. [4] propose combining the CP and adaptive testing so that a null hypothesis Hi

(i = 1, ..., k) is rejected at the end of stage 2 if all the combined p-values for all the hypotheses
in H and contained in Hi are less than the pre-specified level of testing. For example, suppose
there are three experimental treatments at stage 1 and let pi,j denote the p-value for testing
hypothesis Hj ∈ H at stage i (i = 1, 2), hypothesis H1 is rejected at the end of stage 2 at level
α if

max{C(p1,1, p2,1), C(p1,12, p2,12), C(p1,13, p2,13), C(p1,123, p2,123)} ≤ α.

To understand what happens if some treatments are dropped after stage 1, suppose for example
that treatment 3 is dropped implying no data are available for treatment 3 at stage 2. Then
the tests for intersection hypotheses H13 and H123 reduce to the tests for hypotheses H1 and
H12 respectively so that p2,13 = p2,1 and p2,123 = p2,12.

Bretz et al. [4] do not give details of how the p-values testing the hypotheses inH but Westfall
& Wolfinger [9] provide a simplified discussion of some methods. The pairwise hypotheses may
be tested using basic tests such as the chi-squared test for binary data and the t-test for
continuous data. There are several tests for the intersection hypotheses (Hij , Hijl, etc) but
some are specific to certain forms. For example Hotelling’s T 2 described by Johnson & Wichern
[10] test is valid for continuous data. Flexible tests that can be used for many forms of responses
(normal, poisson, etc) are Bonferroni-Holm, Šidak-Holm and Simes test. Holm’s procedure for
testing multiple hypotheses has been described by Westfall & Young [11]. Suppose we wish
to test a hypothesis of equality of the control treatment with m (1 < m ≤ k) experimental
treatments. The Bonferroni-Holm adjusted p-value is given by (m×minp) while Šidak-Holm
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4 KIMANI ET AL.

adjusted p-value is given by (1 − [1 − minp]m) where minp is the minimum p-value of the
individual component tests. The Simes p-value is given by min{m

i p(i)}, i = 1, ..., m where p(i)

denote the ordered p-values.

3. Conditional power

The last section reviewed the method described by Bretz et al. [4] for analyzing seamless
phase II/III trials. Assuming this analysis for efficacious outcome (we assume safety data are
not considered in hypotheses tests), the objective of this paper is to select the best set of doses
for testing in stage 2. In this section we give an expression for the probability of concluding at
least one of the doses in the potential set of doses tested in stage 2 is effective given the results
of stage 1. We will refer to this probability as the (combined) conditional power. To give the
expression for conditional power, stage 2 data distribution and set of stage 2 data for which
at least one of the experimental doses will be concluded effective after stage 2 are required.
Before giving stage 2 data distribution and the expressions for conditional power, we give the
setting of interest while introducing more notation.

Consider an experiment with k1(> 1) experimental treatments in stage 1 of which a subset
remains for testing in stage 2. Suppose the sample size for stage 1 is fixed to be n1(k1 + 1),
so that n1 patients are randomized to receive each experimental dose and n1 are randomized
to receive the control. The data from stage 1 can be summarized by the number of observed
successes, x1i, and the number of observed toxicities, t1i, at dose i for i = 0, ..., k1, with i = 0
corresponding to the control treatment. At the onset of the phase II/III trial, the interest
is to determine whether there is a safe treatment among the k1 experimental treatments
which is more effective than the control treatment. Thus the null hypotheses of interest are
H1 : θ0 = θ1, ..., Hk1 : θ0 = θk1 where θi, i ∈ {0, 1, ..., k2} is a measure of the effectiveness of
treatment i. Based on the efficacy data x1 and with the intention of using the closure principle
to control the FWER, a set of p-values p1,j for Hj , j ⊆ {1, ..., k1} can be constructed.

Suppose that the total sample size for stage 2 is fixed. The number of patients randomized
to each treatment, n2, then depends on the number of doses that remain in the trial. Let
K2 ⊆ {1, ..., k1} be the set of experimental doses that remain in the trial for testing in stage 2
with k2 = |K2|. As any of the k1 doses in stage 1 may continue to stage 2 there are 2k1 possible
sets of doses that we could choose. We will restrict these to sets of adjacent doses which means
that there are k1(k1 + 1)/2 possible sets of doses, reducing the number of cases that need to
be considered. Let x2i and t2i, i ∈ {0}∪K2 with i = 0 corresponding to the control treatment,
respectively denote the number of successes and toxicities on dose i in stage 2. At the end of
stage 2, the efficacy data x2 can be used to construct a set of p-values p2,j corresponding to
the closure set of p-values p1,j constructed using the stage 1 data.

By utilizing the method described in Section 2 the two sets of p-values from the two stages
can be used to test whether there is an effective dose among the k2 doses that proceed to the
second stage. Given stage 1 data we want to determine the set K2 which will mostly likely
lead us to finding at least one effective dose at the end of stage 2. In this section, assuming
that stage 2 data have a distribution which depends on a fixed parameter vector, we obtain an
expression for the probability of concluding at least one of the k2 doses that proceed to stage
2 is effective by summing probabilities of outcomes for which we will find at least one effective
dose (conditional power).
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DOSE SELECTION IN SEAMLESS PHASE II/III CLINICAL TRIALS 5

3.1. Distribution of second stage data

Let f(x2, t2; θ) denote the distribution of stage 2 data where θ is the vector of parameters giving
the dose-response curves for efficacy and toxicity. Suppose a study patient is administered a
dose level d, the outcome for efficacy will be either a successful treatment or a treatment failure
and the probability of the successful treatment will be denoted by pE(d). The toxicity outcome
will be categorized as either toxic or non-toxic and the probability of a toxic outcome will be
denoted by pT (d). We propose two logistic models for the outcomes

pE(d) =
exp(αE + βE log d)

1 + exp(αE + βE log d)
(2)

and

pT (d) =
exp(αT + βT log d)

1 + exp(αT + βT log d)
(3)

such that stage 2 data (x2, t2) would depend on the probability vector θ = (αE , βE , αT , βT )′.
Although we propose a logit link, other link functions may be used. A different linear predictor
may also be used. Assuming the outcomes are independent, then the probability of x20 successes
and t20 toxicities in the control group and x2i successes and t2i toxicities in the experimental
dose i, i ∈ K2 is

f(x2, t2; θ) = f(x20; n2, pE0)f(t20; n2, pT0)
∏

i∈K2

f(x2i;n2, pEi)f(t2i; n2, pTi)

where f(x2i; n2, pEi) and f(t2i; n2, pTi), i ∈ {0} ∪ K2 are binomial mass functions with
parameter vectors (n2, pEi) and (n2, pTi) respectively. The parameters pEi and pTi , i ∈ K2

are respectively points on the dose-response curves (2) and (3) corresponding to dose level i.
If the control treatment is a dose level of the experimental drug, pE0 and pT0 are also points
on the dose response curves (2) and (3). Otherwise their values are determined separately.

3.2. Expressions for conditional power

After obtaining the distribution of stage 2 data, the next step in obtaining the conditional
power involves determining stage 2 data for which the final hypothesis will be significant given
the results of stage 1. Given stage 1 data x1, the p-value p1,j corresponding to hypothesis
Hj in the closure set H can be considered fixed. The final hypothesis test for the individual
hypothesis Hj will be significant at level α if and only if pj = C(p1,j , p2,j) < α. The inequality
can be rearranged to determine the minimum value of p2,j such that the null hypothesis Hj is
rejected at the end of stage 2. For example if the combination of choice is the inverse normal
combination given by equation (1), rearranging the inequality, the final hypothesis test will be
significant if and only if

p2,j < 1− Φ
{

Φ−1(1− α)− w1Φ−1(1− p1,j)
w2

}
. (4)

Let l be the number of experimental doses in hypothesis Hj at stage 2. Then using the
Bonferroni-Holm MinP, p2,j = l×mini∈j{p2,i} where p2,i is the p-value obtained from testing
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6 KIMANI ET AL.

the pairwise null hypothesis Hi at the second stage. Substituting this expression of the p-value
in inequality (4), then hypothesis Hj will be rejected at the end of stage 2 if and only if

p2,i <

(
1− Φ

{
Φ−1(1− α)− w1Φ−1(1− p1,j)

w2

})
/l for some i ∈ j. (5)

The RHS of inequality (5) could be viewed as the “level of testing” hypothesis Hj at stage 2.
For each possible x20, the minimum number of successes required in either of the l doses such

that inequality (5) holds can be obtained. We will denote this minimum number of successes
by Bx20(p1,j) where the denotation reflects dependency on x20 and p1,j . The next subsection
is the focus of obtaining Bx20(p1,j). Hypothesis Hj will be rejected for the set of stage 2 data
x2 such that x2i ≥ Bx20(p1,j) for some i ∈ j. To conclude an experimental dose i is more
effective than the control treatment, we need to determine the set of stage 2 data x2 for which
all hypotheses Hj with i ∈ j are all rejected. We denote the set of x2 for which this is true by
R(p1,i), i ∈ K2. The probability of concluding dose i is more effective than the control after
stage 2 analysis is obtained by summing the probabilities of all outcomes in R(p1,i).

The form of R(p1,i) depends on the number of doses that continue to the second stage. For
example suppose k1 = 4 with a single treatment continuing, say K2 = {1}. To conclude that
dose 1 is effective all the hypotheses H1234, H123, H124, H134, H12, H13, H14 and H1 need
to be rejected. Since only dose 1 proceeds to the second stage, the intersection hypotheses
H1234, H123, H124, H134, H12, H13 and H14 simplify to the pairwise hypothesis H1 because
no data are available for the other doses at stage 2 but the tests are carried out at different
levels determined by inequality (5). The minimum x21 for a given x20 required to reject all
hypotheses Hj for j ⊆ {1, 2, 3, 4} with 1 ∈ j could be obtained and is given by Bx20(max{p1,j}).
We take max{p1,j} since the RHS of inequality (5) decreases when p1,j increases. Dose 1 would
then be concluded to be more effective than the control treatment at the end of stage 2 if

x21 ≥ Bx20(max{p1,j})
for all j with 1 ∈ j. The probability of concluding dose 1 is more effective than the control
treatment at the end of stage 2 is then given by

∑

R(p1,1)

f(x2; θ)dx2 =
n2∑

x20=0

{(
n2

x20

)
px20

E0
(1− pE0)

n2−x20

n2∑

x21=B

(
n2

x21

)
px21

E1
(1− pE1)

n2−x21

}
(6)

where B = Bx20(max{p1,j}) and R(p1,1) denotes the set of x2 for which dose 1 is rejected
after stage 2.

Suppose from an initial four experimental doses at stage 1, dose 1 and dose 2 proceed to stage
2, that is, k1 = 4 and K2 = {1, 2}. In order to make inference on the effectiveness of dose 1 using
the closure principle, the null hypotheses H1234, H123, H124, H134, H12, H13, H14 and H1

are tested. On the other hand, the null hypotheses H1234, H123, H124, H234, H12, H23, H24

and H2 are tested in order to make inference on dose 2. Since no data are available for
doses 3 and 4, tests for hypotheses H134, H13, H14 and H1 which are included in H1 but
not in H2 are performed using only the test for H1 but at different levels. The minimum
x21 required to reject all these hypotheses which we denote by B1 is obtained by evaluating
Bx20(max{p1,j}) for j ⊆ {1, 3, 4} with 1 ∈ j. Similarly, only dose 2 data are available for
hypotheses H234, H23, H24 and H2 which are included in H2 but not in H1. The minimum
x22 required to reject all these hypotheses which we denote by B2 is obtained by evaluating
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DOSE SELECTION IN SEAMLESS PHASE II/III CLINICAL TRIALS 7

Bx20(max{p1,j}) for j ⊆ {2, 3, 4} with 2 ∈ j. On the other hand, only dose 1 and dose 2 data
are available at stage 2 for hypotheses H1234, H123, H124 and H12 and hence their test is
performed using only the test for H12. The minimum number of successes required in either
dose 1 or 2 to reject all these hypotheses which we denote by B12 is obtained by evaluating
Bx20(max{p1,j}) for j ⊆ {1, 2, 3, 4} with {1, 2} ∈ j.

Assuming dose 1 and dose 2 are interchangeable, there are three possible configurations for
B1, B2 and B12 namely;

(i) B1 < B2 < B12 (ii) B12 < B1 < B2 and (iii) B1 < B12 < B2.

The expression for conditional power for each of these scenarios is different. From left to right,
Figure 1 shows configurations (i) to (iii) for a given realization x20. The partitions marked by
1, 2 and 12 respectively represent the realization of the number of successes in the experimental
treatments for which only dose 1, only dose 2 and for which both dose 1 and 2 are concluded
to be effective for a given number of successes in the control treatment. The probability of
concluding at least one of the experimental doses is effective is obtained by summing all
the probabilities of all outcomes in the partitions marked by 1, 2 and 12. For example, for
configuration (i), the probability of concluding dose 1 or dose 2 is effective after stage 2 is

∑

R(p1)

f(x2; θ)dx2 =
∑

R(p1,1)

f(x2; θ)dx2 +
∑

R(p1,2)

f(x2; θ)dx2 +
∑

R(p1,12)

f(x2; θ)dx2 (7)

where R(p1,1), R(p1,2) and R(p1,12) respectively denote the set of stage 2 data given the stage
1 data for which after stage 2 only dose 1 would be effective, only dose 2 would be effective
and when both dose 1 and 2 would be effective such that

∑

R(p1,1)

f(x2; θ)dx2 =
n2∑

x20=0

f(x20;n2, pE0)

{
n2∑

x21=B12

B2∑
x22=0

f(x21; n2, pE1)f(x22;n2, pE2)

}
,

∑

R(p1,2)

f(x2; θ)dx2 =
n2∑

x20=0

f(x20; n2, pE0)

{
B1∑

x21=0

n2∑

x22=B12

f(x21; n2, pE1)f(x22; n2, pE2)

}

and

∑

R(p1,12)

f(x2; θ)dx2 =
n2∑

x20=0

f(x20; n2, pE0)

{
n2∑

x21=B12

n2∑

x22=B2

f(x21;n2, pE1)f(x22;n2, pE2)

}

+
n2∑

x20=0

f(x20; n2, pE0)

{
B12∑

x21=B1

n2∑

x22=B12

f(x21;n2, pE1)f(x22;n2, pE2)

}

where f(x2i; n2, pEi), i = 0, 1, 2, is the probability mass function of the binomial random
variable X2i with parameters n2 and pEi .

Expressions (6) and (7) are respectively the combined conditional power when K2 = {1} and
K2 = {1, 2}. The expressions also give the conditional power for taking K2 = {1} or K2 = {1, 2}
for any value of k1 ≥ 2 and similar expressions can be obtained for anyK2 = {i} andK2 = {i, j}
with i, j ∈ {1, ..., k1}. Bonferroni-Holm has been used to obtain the expressions for conditional
power. Šidak-Holm similarly leads to simple expressions for conditional power. For Simes test,
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Figure 1. Configuration of the minimum number of successes. The x-axes are the no. of
successes in dose 1 (x21) and y-axes the no. of successes in dose 2 (x22).

it is not possible to obtain a single inequality such as the one resulting from Bonferroni-Holm
test given by inequality (5) for composite hypotheses. However, it is still possible to obtain
expressions for conditional power using this test but becomes less straightforward as the value
of k2 increases.

We have given the expressions for up to when two doses proceed to stage 2 but using the
same principles expressions can be obtained for k2 > 2. In practice, it would be rare to proceed
to stage 2 with many experimental doses.

3.3. Obtaining the minimum number of successes

In this sub-section we illustrate how to obtain Bx20(p1,j), the minimum number of successes
required in either of the l experimental doses in j such that the null hypothesis Hj is rejected
at the end of stage 2. The left hand side of inequality (5) is the p-value from testing the null
hypothesis Hi, i ∈ j at stage 2. If a chi-squared test is used to test the null hypothesis Hi

with i ∈ j, the critical chi-squared value χ2
c corresponding to the level of the test (RHS of

inequality (5)) can be determined. The null hypothesis Hi is rejected if and only if the observed
chi-square value

2n2(x20 − x2i)2

(x20 + x2i){2n2 − (x20 + x2i)} > χ2
c .

Rearranging the expression, the null hypothesis is rejected for superiority if and only if

x2i >
U + V

(2n2 + χ2
c)

= Bx20(p1,j)

where

U = −{χ2
c(x20 − n2)− 2n2x20}

and

V =
√
{χ2

c(x20 − n2)− 2n2x20}2 − (2n2 + χ2
c){(2n2 + χ2

c)x2
20 − 2n2χ2

cx20}.
Although we focus here on the χ2 test, the value of Bx20(p1,j) can be evaluated for any other
test statistic that can be used for making inference on binary data.
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DOSE SELECTION IN SEAMLESS PHASE II/III CLINICAL TRIALS 9

3.4. Penalizing for toxicity

Toxicity has not been incorporated in the conditional power expressions (6) and (7). Suppose
a dose will be rejected for toxicity if the probability of toxicity exceeds some predetermined
level γ. Then the probability that a dose is demonstrated to be both safe and effective is the
product of the conditional power given by expression (6) and the indicator I(pT1 ≤ γ). If more
than one experimental dose proceeds to the second stage the different disjoint events for which
we conclude at least one of the experimental doses in stage 2 is effective are multiplied by
different indicator variables. For example if K2 = {1, 2}, there are three disjoint events for
which we conclude there is an effective dose. These are; only dose 1 is effective, only dose 2
effective and both dose 1 and 2 are effective. The respective indicator variables with which the
probability of these events are multiplied is I(pT1 ≤ γ), I(pT2 ≤ γ) and I(pT1 ≤ γ, pT2 ≤ γ).

4. Predictive power

The conditional power expressions obtained in Section 3.2 assume a fixed value of the parameter
vector θ. Suppose that θ is given some prior distribution with density π0(θ). The posterior
distribution of θ given the data observed at the end of the first stage is given by Bayes′ theorem
to be equal to

π(θ|x1, t1, n1) =
L(x1, t1, n1)π0(θ)∫
L(x1, t1, n1)π0(θ)dθ

where L(x1, t1, n1) is the likelihood for the data from the k1 doses of the experimental
treatment observed at the end of the first stage. Assuming the observations are independent,

L(x1, t1, n1) =
k1∏

i=1

(
n1

x1i

)
px1i

Ei
(1− pEi)

n1−x1i

(
n1

t1i

)
pt1i

Ti
(1− pTi)

n1−t1i

where pEi and pTi are respectively the probabilities of success and toxicity at dose i. The
predictive power is then obtained by evaluating the posterior mean of the conditional power.
For example if K2 = {1, 2}, the penalized predictive power is given by

∫

Θ

[I(pT1 ≤ γ).A1 + I(pT2 ≤ γ).A2 + I(pT1 ≤ γ, pT2 ≤ γ).A12] π(θ|x1, t1, n1)dθ

where

Aj =
∑

R(p1,j)

f(x2; θ), j ∈ {1, 2, 12}

and R(p1,1), R(p1,2) and R(p1,12) respectively denote the set of stage 2 data given the stage
1 data for which after stage 2 only dose 1 would be effective, only dose 2 would be effective
and when both dose 1 and 2 would be effective as described above.

The penalized predictive power depends on the choice of the doses selected to continue to
stage 2 as these affect the number of patients per arm, n2, the rejection region, R(p1), which
probabilities pEi

enter the density f(x2; θ) and which probabilities pTi
enter the penalty. We

wish to make a choice of doses to continue on the basis of x1 and t1 to make the penalized
predictive power as large as possible.
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4.1. Distribution of the unknown parameters

We propose obtaining the prior beliefs on the dose-response curves for efficacy and toxicity
separately using the technique of Bedrick et al. [12] for eliciting the priors for generalized linear
models. The idea is to elicit prior belief at p locations on the dose response curve if there are
p parameters in the linear predictor. For example, the dose response curve (2) for efficacy is
defined by two parameters (αE , βE) hence we elicit priors at two dose levels, say d01 and d02,
on the dose response curve. The joint distribution at these p locations is then evaluated. The
joint distribution of (αE , βE) is then obtained by transformation of random variables. Suppose
that the probability of successful treatment pE01 = pE(d01) and pE02 = pE(d02) at dose levels
d01 and d02 have independent beta distributions Beta(x01, y01) and Beta(x02, y02) respectively.
Then assuming the dose response model (2), the prior distribution for (αE , βE) which has also
been given by Whitehead et al. [13] for similar dose-response curves is

π0(αE , βE) =
2∏

i=1

px0i

E0i
(1− pE0i)

y0i

B(x0i, y0i)

∣∣∣∣log(
d01

d02
)
∣∣∣∣

where pE0i is the function of αE0i and βE0i given by the dose response curve (2) and B is the
beta function. Similarly if the probability of toxicity at dose levels d01 and d02 have independent
beta distributions Beta(t01, u01) and Beta(t02, u02) respectively, then assuming dose response
(3), the prior distribution of (αT , βT ) is

π0(αT , βT ) =
2∏

i=1

pt0i

T0i
(1− pT0i)

u0i

B(t0i, u0i)

∣∣∣∣log(
d01

d02
)
∣∣∣∣

where pT0i is the function of αT0i and βT0i given by the dose response curve (3) and B is the
beta function.

The advantage of eliciting the prior distribution for (αE , βE , αT , βT ) in this way is that it
is easier and more intuitive to elicit probability of efficacy (or toxicity) at a dose level than
eliciting a prior for (αE , βE , αT , βT ) directly. Also for different link functions the same prior
belief is used on the probability scale. The parameters for the prior beta distributions may be
thought of as pseudo data. For example for Beta(x01, y01), x01 would denote the number of
successfully treated patients out of x01 + y01 administered dose d01. To quantify the strength
of the prior belief (variability) we propose examining the 90% interval of probability of efficacy
(or toxicity) running from 5% to 95% as suggested by Thall & Simon [14] and checking the
curve of the beta distribution as suggested by Lindley & Phillips [15].

It has been assumed that the beta distributions at doses d01 and d02 are independent. This
assumption simplifies the mathematics but as Whitehead et al. [13] note, it has the undesired
consequences that it is possible for βE < 0 or βT < 0 when it is believed that βE ≥ 0 and
βT ≥ 0. To partly address this problem the priors are elicited at locations that are far from each
other. Also like Whitehead et al. [13] since we are interested in the posterior means, negative
parameter values for the slope parameters will not have undesired effects on the predictive
power.

Let x1i denote the number of successfully treated patients and y1i = n1 − x1i the number
of patients that are not treated successfully at stage 1 at dose i (i = 1, ..., k1). Similarly let
t1i denote the number of patients that experience toxicity at stage 1 and u1i = n1 − t1i the
number of patients that do not experience toxicity. After observation of the stage 1 data the
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updated distribution for the models of efficacy and toxicity are respectively

π0(αE , βE |x1, n1) ∝
2∏

i=1

px0i

E0i
(1− pE0i)

y0i

k1∏

i=1

px1i

Ei
(1− pEi)

y1i

and

π0(αT , βT |t1, n1) ∝
2∏

i=1

pt0i

T0i
(1− pT0i)

u0i

k1∏

i=1

pt1i

Ti
(1− pTi)

u1i .

Where the control treatment is a different drug, a beta prior Beta(pE0 ; a0, b0) for the
probability of successful treatment at control treatment which is conjugate for the likelihood
function

L(x0, n1) =
(

n1

x10

)
px10

E0
(1− pE0)

n1−x10

is elicited. The parameters a0 and b0 are elicited as explained before. The resulting posterior
has a beta distribution Beta(p; a0 + x10, b0 + n1 − x10).

5. Examples and simulation studies

The preceding sections have described how the doses continuing from the first stage of a
seamless phase II/III clinical trial may be chosen and how a final analysis may be conducted
to allow for this. In this section, the method is illustrated by simulation studies.

5.1. Simulation model parameter values and prior distributions

Following Whitehead et al. [13], assume that a new drug is tested at dose levels 10.5mg, 35.0mg,
87.5mg, 262.5mg, 700.0mg and 1050.0mg where each of the dose level is compared to a control.
Suppose that γ, the accepted maximum proportion of toxicity, is 0.2. The control treatment is
assumed to be a different drug from the experimental drug with the true probability of efficacy
for the control treatment taken to be 0.3. For the dose-response curve parameters two cases
are considered.

• Case 1: the true parameter values for (αE , βE) and (αT , βT ) corresponding to dose-
response curves (2) and (3) are assumed to be (-1.4867, 0.2720) and (-2.5782, 0.1621)
respectively.

• Case 2: the true parameter vector (αT , βT ) is equal to (-2.6728, 0.2023). The value of
parameter vector (αE , βE) is the same as Case 1.

The dose-response curves for Case 1 and 2 are given in Figure 2. The continuous curve
corresponds to the efficacy model for both Case 1 and 2, the dotted curve corresponds to
the toxicity model for Case 1 and the dashed curve corresponds to the toxicity model for Case
2. In both cases the treatment is efficacious at higher dose levels. In Case 1, all the tested doses
are also acceptably safe whereas in Case 2, dose 1050mg would be considered too toxic since
probability of toxicity at this dose is above 0.2.
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Dose (mg)

p(
d)

10.5 35.0 87.5 262.5 1050.0 5000.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Efficacy: Case 1 and 2
Toxicity: Case 1
Toxicity: Case 2

Figure 2. Dose-response curves.

For all the simulation studies, it will be assumed n1, the number of patients in each treatment
at stage 1 is 20 and the total number of patients available for testing at stage 2 is 400 such
that n2 = 400/(k2 + 1). We demonstrate the method for k2, the number of potential doses for
testing in the second stage, up to 2. To obtain the predictive power, numerical quadrature is
used to integrate over the parameter space and expressions (6) and (7) are evaluated using the
normal approximation to the binomial distribution.

The prior distributions are elicited as described in section 4.1. The beta prior distribution
for the probability of successful treatment using the control treatment is Beta(pE0 ;12, 28).
This prior belief will be used in evaluating the predictive power for all the simulation studies.
Beta priors for probabilities of successful treatment and probabilities of toxicity are defined
at dose levels 10.50mg and 5000mg. In order to assess the effect of strength of prior belief,
three priors with equal prior means but different weights are defined for both toxicity and
efficacy. Figure 3 shows the plots of the elicited prior beliefs. The first row gives the priors
at dose level 10.50mg, in the second row are the priors at dose level 5000mg while in the
third row are the corresponding contour plots of the resulting joint prior distributions of the
intercept and slope parameters. The legends inside the Beta plots give the parameter values
for the elicited beta densities. Columns 1, 3 and 5 respectively give the most informative, the
middle weight and the least informative priors for efficacy. Columns 2, 4 and 6 respectively
give the most informative, the middle weight and the least informative priors for toxicity.
Henceforth, the most informative prior will mean most informative priors for both efficacy
and toxicity (Columns 1 and 2), the middle weight prior will mean middle weight priors for
both efficacy toxicity (Columns 3 and 4), and similarly least informative prior will mean the
least informative priors for both efficacy and toxicity (Columns 5 and 6). For each of the three
prior beliefs (most informative, middle weight and least informative) two sets of simulations
(assuming Case 1 and 2) were carried out and predictive power evaluated.

5.2. Comparing results for Case 1 and Case 2

Figure 4 shows the histograms of the set of doses with the highest predictive power with each
histogram based on a 1000 simulation studies. The notation di, i ∈ {1, ..., 6} means the set
K2 = {i} results in the highest power while dij with i, j ∈ {1, ..., 6} means the set K2 = {i, j}
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Figure 3. Elicited prior densities. Row 1 gives the priors at dose 10.50mg, Row 2 priors at
dose 5000mg and Row 3 the resulting joint priors.

results in the highest predictive power. The first row corresponds to the results for Case 1
and the second row the results for Case 2. From Column 1 to 3, the predictive power has
been evaluated with the most informative, the middle weight and the least informative priors
respectively. The bars have been partitioned into simulation studies whose maximum predictive
power of potential doses is above 0.7 (shaded parts) and studies whose maximum predictive
power is less than 0.7 (striped parts). The latter represent trials in which it is unlikely that
any dose would continue to the second stage. To compare Case 1 and Case 2, we initially focus
on results evaluated using the middle weight priors which are given by Figure 4(b) and 4(e)
respectively.

For Case 1, the true probabilities of efficacy in the experimental doses are 0.30, 0.37, 0.43,
0.51, 0.57 and 0.60 while the respective probabilities of toxic outcomes are 0.10, 0.12, 0.14, 0.16,
0.18 and 0.19. Thus all the experimental doses are safe and doses 5 and 6 do not differ much in
terms of efficacy. Dose 4 is considerably less efficacious than dose 5 and 6 but also considerably
safer than dose 5 and 6. Based on all simulation studies (shaded and striped parts), dose 5 or
6 is in the set K2 with the highest predictive power in about 60% of the simulations. Dose 4
or one of the higher doses is in the set K2 with the highest predictive power in over 90% of
the simulations. When only the simulation studies whose predictive power greater than 0.7 are
considered (they were 607 out of 1000), dose 5 or 6 would be tested in stage 2 in over 65% of
the simulations and dose 4 or 5 or 6 would be tested in stage 2 in over 96% of the simulations.

The true probability of toxic outcomes for Case 2 in ascending order at tested dose levels
are 0.10, 0.12, 0.15, 0.18, 0.206 and 0.220. Hence the prior belief (mean) underestimates the
level of toxicity. Based on all simulation studies, dose 6 alone whose true proportion of toxicity
is well above 0.20, the accepted proportion of toxicity, has the highest predictive power in less
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Figure 4. Histograms of doses with highest predictive power. Row 1 corresponds to Case 1
and row 2 to Case 2. From left to right the priors are less informative.

than 10% of the simulations. Dose 4 which would be the desired dose for testing in stage 2 is
in the set K2 with the highest predictive power in about 70% of the simulations. When only
simulation studies whose maximum predictive power is greater than 0.7 are considered (they
were 483 out of 1000), dose 6 results in the highest predictive in less than 2 % while dose 4 is
one of the doses in the set with highest predictive power in over 80 % of the simulations.

Focussing on simulations with maximum predictive power above 0.7 and when K2 = {i}
(i = 1, 2, ..., 6), for Case 1 the frequency increases to dose 5 and drops for dose 6. For Case
2, the frequency increases to dose 4 and drops for dose 6. These trends are what is expected
because for Case 1 doses 5 and 6 do not not differ much in efficacy levels but dose 5 is safer while
for Case 2 dose 5 has toxicity level slightly above the accepted level but considerably efficacious
compared to dose 4. Dose 6 which is toxic results in highest predictive power with very low
frequency. The same trend is observed for simulations whose set with highest predictive has
two doses. The frequency increases to K2 = {4, 5} and drops for K2 = {5, 6} for the two cases.
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5.3. Comparing results for different prior distributions

In both cases and for the three prior beliefs, K2 = {4, 5} is the set which results in the highest
predictive power more often although the relative frequency decreases as the priors become less
informative. The three histograms for each of the cases show a similar trend for the set with
the highest predictive power but higher doses result in highest predictive power more often for
less informative priors. For example the frequency of dose 6 increases as the priors become less
informative. The frequency however is contributed to more by the simulation studies whose
predictive power is less than 0.7 (striped parts). This implies that small variations in the
strength of the prior belief does not affect the choice of the doses much when the predictive
power is high.

To further examine the results of when the drug is either not better than the control or the
level of toxicity does not depend on the dose level or both, further simulations were carried
out under the following scenarios (i) (αE , βE) = (−1.4867, 0.2720) & (αT , βT ) = (−2.1972, 0)
(ii) (αE , βE) = (−0.8473, 0) & (αT , βT ) = (−2.5782, 0.1621) and (iii) (αE , βE) = (−0.8473, 0)
& (αT , βT ) = (−2.1972, 0). Figure 5 gives the dose-response curves and the simulation results
for the three scenarios where rows 1 to 3 respectively correspond to the scenarios (i) to (iii).
Column 1 gives the dose-response curves while the second to the fourth columns are respectively
the histograms of doses with the highest predictive power where the predictive powers have
been evaluated with most informative, middle weight and least informative priors used above.
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Figure 5. Dose curves and histograms of doses with highest predictive power when (i) toxicity
is independent of dose level (Row 1) (ii) experimental doses are no better than control (Row

2) (iii) both (i) and (ii) hold (Row 3).
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For Scenario (i) efficacy improves with dose level and probabilities of toxicity at experimental
doses are safe and independent of dose level. Dose 6 would be the most favorable dose but
since the prior assumes the toxicity increases with dose level, like results presented in Figure
4, K2 = {4, 5} results in the highest predictive power most often. However doses 5 or 6 are in
the set with highest predictive with higher frequency compared to results of Figure 4 where
simulations assumed true probability of toxicity increases with dose level. For scenarios (ii)
and (iii) where the experimental doses are equally effective among themselves and no better
than control, K2 = {6} had the highest predictive power most frequently. This explains why
the frequency for K2 = {6} in Figure 4 seems not to follow the general trend. We also observe
that for scenarios (ii) and (iii), K2 = {1} results into the set with the highest predictive power
more frequently especially for the least informative priors compared to results of scenario (i)
and the results presented in Figure 4. This is because for scenarios (ii) and (iii) it is more likely
to have simulation studies that lead to a posterior distribution with a negative slope for the
efficacy so that dose 1 would be the preferred dose level.

6. Discussion

Recent methods for dose escalation/de-escalation in early clinical trials such as phase I and
phase I/II trials have considered the dose-response relationship while allocating patients to
the available dose levels in a trial. For example, O’Quigley et al. [16] proposed an exponential
model for a toxicity model while Whitehead et al. [13] have proposed logistic models for both
toxicity and therapeutic outcomes. This work generally does not focus on hypothesis testing.
In phase II trials hypothesis testing is carried out and based on the results, a phase III trial
is planned. In most previous work in this area a set of doses is chosen and the value of test
statistics are evaluated using only the information from this set of experimental doses and the
control treatment ignoring information from the other experimental doses. Incorporating the
dose-response relationship such as the one proposed by O’Quigley et al. [16] and Whitehead et
al. [13] helps make use of the results from the other experimental doses. Here we have proposed
use of two logistic models for efficacy and toxicity in order to select the promising doses for
the second stage in a seamless phase II/III clinical trials.

Both toxicity and efficacy have been considered explicitly in early clinical trials. For
example Whitehead et al. [13] have proposed a design applicable to phase I/II clinical trials.
However toxicity is often not explicitly included in the dose-selection procedure for doses to
be tested in phase III. We have proposed a dose-selection procedure that incorporates both
the dose-response relationship and considers toxicity explicitly. Rather than only focus on the
probability that the dose will be found effective after phase III stage, the joint probability that
the dose will be effective and not exceed some toxicity level is considered.

The penalty for toxicity was considered based on the distribution of proportion of toxicity
rather than the distribution of the number of patients who would be experience toxicity at
stage 2. This option was preferred for two reasons. If the penalty considered the probability
that the number of patients treated in an experimental dose does not exceed (γ × n2), larger
samples will be penalized more when the true probability of toxicity is greater than γ and less
when true probability of toxicity is less than γ. The second reason is that in practice adverse
events are monitored as the trial continues so that the toxicity of the drug is evaluated before
all patients are treated.
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Finally, it has been assumed that the experimentation will continue in phase III stage when
the results are promising. In some instances it may be desired to stop the trial after the phase
II stage for effectiveness on the basis of a criterion determined in advance. Bauer & Köhne
[7] have given an expression for the overall Type I error probability while using the Fisher’s
combination test. The expression while using the inverse normal method is given by

α1 +
∫ α0

α1

(
1− Φ

{
[Φ−1(1− α)− w1Φ−1(1− p1)]/w2

})
dp1 (8)

where α1 is the critical p-value for stopping at stage 1 for effectiveness and α0 is the critical
value for stopping at stage 1 with acceptance of the null hypothesis. Equating the overall Type
I probability to α, numerical integration can be used to obtain α1 for fixed value of α0. The
trial stops at stage 1 if some safe dose is concluded to be effective at level α1. Expressions for
overall Type I error probability when more than two stages of hypotheses testing are done are
also obtainable so that if it is desired to have an extra evaluation of efficacy data in phase
III stage, backward induction is used to obtain the predictive power. An alternative to using
expression (8) in order to control the overall Type I error is to evaluate the testing boundaries
as proposed by Lehmacher & Wassmer [17].
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