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Vector autoregressive (VAR) models

Model a zero-mean process X; = (X1¢,..., X,) ' as
Xi=A1Xi1+ ...+ AXy_g+ T2, € ~ig (0,1).

Applications in finance (Barigozzi & Hallin, 2017; Barigozzi & Brownlees, 2019; Basu et al.,
2019), NEUrOSCIENCE (Kirch et al., 2015; Wang et al., 2012), Systems biology (Shojaie &
Michailidis, 2010).

VAR modelling enables inferring dynamic interdependence between
the variables as well as forecasting of the future.



Three networks under VAR model

Xi=A X1+ ...+ AX_qg+ T2, e ~ig (0,1).

Let V = {1,...,p} denote the set of vertices.

Directed network V'@ = (V, £9) representing Granger causal linkages:
G ={(i,i" eV xV: Ay s #0forsome 1 < ¢ <d}.

An edge (i,i') € £ indicates that X +—p Granger causes X;; at some
lag 1 </ < d.

Undirected network A'© = (V, £C) representing contemporaneous de-
pendence in T''/2e, by means of partial correlations (PC):
With the precision matrix A = [§,] = T},

. : . 0.
EC:{(Z,Z’)EVXV: z#@’and—m#()}.



Undirected network summarising lead-lag and contem-
poraneous relations in X; by means of the long-run partial correlations
(LRPC): With €2 = [w;r, 1 < 4,7 <p] =32710) = 2n(A(1)) " AA(L),

SL:{(i,i’)EVXV:i;éi’and #0},

where A(1) =1—- 57 | A,.

Aim: Estimate the three networks permitting p — oc.



Stability and sparsity in high dimensions

VAR modelling quickly becomes high-dimensional as p increases,
hence /;-regularisation methods have been developed assuming spar-
sity of Ay (Basu & Michailidis, 2015; Han et al., 2015).

For their consistency, it is required that (Basu & Michailidis, 2015)

SUPy,e[—,7] AmaX(EﬂU(w)) < X0

T uniform boundedness of the largest eigenvalue of the spectral density matrix
which implies that A, is (weakly) sparse (Lin & Michailidis, 2020).

Difficult to identify sparse predictive representations for real-life datasets
observed e.g. in economics and finance (Giannone et al., 2021).



Panel of volatility measures with p = 46 and n = 252 (03/2008 to 02/2009).
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Left: two largest eigenvalues of the long-run covariance matrix f]x(())
with subsets of cross-sections randomly sampled 100 times for each
given dimension p € {5,...,46}. Right: logged and truncated p-values
from fitting a VAR(5) model via ridge regression (truncation level chosen
by Bonferroni correction; minimum p-value over the five lags).



Stability and sparsity in high dimensions

VAR modelling quickly becomes high-dimensional as p increases,
hence /;-regularisation methods have been developed assuming spar-
sity of Ay (Basu & Michailidis, 2015; Han et al., 2015).

For their consistency, it is required that (Basu & Michailidis, 2015)

SUPy,e[—,7] AmaX(EﬂU(w)) < X0

T uniform boundedness of the largest eigenvalue of the spectral density matrix
which implies that A, is (weakly) sparse (Lin & Michailidis, 2020).

Factor-adjusted regression (Fan et al., 2020, 2021, 2023; Krampe & Margaritella, 2021):
dominant (auto)correlations are addressed by a finite number of com-
mon factors, justifying sparsity imposed on remaining idiosyncratic
component.



Our contributions

Propose FNETS methodology for network estimation and forecasting
under factor-adjusted VAR model.

Fully address the challenges arising from not directly observing the la-
tent VAR process, both methodologically and theoretically.

— Most general approach to dynamic factor modelling.

— (1-regularised Yule-Walker estimators, distinguished from the existing
factor-adjusted regression modelling approach.

Show estimation and forecasting consistency in a general setting per-
mitting heavy-tailedness and ‘weak’ factors.

R package fnets available on CRAN.



Factor-adjusted VAR model

X; € RP is decomposed into two latent components: X; = &; + x4,

§ = Ezlzl Apgi o+ F1/2€t, &t (07 Ip),
Xt — B(L) u; = Z(gio Bgut_g, U ~~ (O, Iq)

loadings factors

That is, X; = Zgio (Zi:l AkBg_k) Uy + Z?:l AyX_yp+ I‘l/2€t.

Adopting generalised dynamic factor model (GDFM, Fomi et al., 2000), x; IS
driven by ¢g-dimensional common factors u;_,, ¢ > 0.
Cf. static factor model x; = _,~, Bou,_.

Our aim is to (i) estimate networks underpinning the latent VAR pro-
cess &; under appropriate sparsity assumptions, and (ii) forecast X,, .,
for some a > 1 given X, t < n.



Assumptions for model identifiability

Let 32, (w) denote the spectral density matrix of x; and ., ;(w) its j-th
largest eigenvalue. Similarly define X¢(w) and pe ;(w).

On factor-driven ;:

There exist 3/4 < p, < ... < p; < 1, and functions w — «, ;(w) and
w +— By j(w) forw € [—m, x|, such that for all p > py,

Hox,1 (W)

T Weak factors when p,; < 1, and cross-sectional ordering matters.

T Divergence of u, ;(w) is necessary and sufficient for GDFM representation.
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For stability of &, and controlling dependence (zhang & Wu, 2021):

On the Wold representation, & = >",° D, I'*/2%¢;, 4, we have | Dy ;x| <
Cirk(1 4+ ¢)~< for all £ > 0, with

p p

p
max { max Cir, max Cik, max E C,L.Zk < =.
1<k<p“— 1<i<p £~ 1§i§p\k ‘
1= == _=

for some constants = > 0 and ¢ > 2. { Holds e.g. whend = 1 and |A{ |0 < 1.

Then, 3 B; > 0 such that the largest eigenvalue of X¢(w) is uniformly
bounded, i.e.

sup,, Mf,l(w) < Be.

. Latent &; and x; are identifiable as by Weyl’s inequality, 1, ,(w) — oo
while pi; q4+1(w) < Bg for all p.
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Network estimation via FNETS
Step 1: Perform factor-adjustment and estimate T'¢(¢) = E(&;_,&,') via
dynamic PCA in frequency domain.

Step 2: Estimation of Ay, 1 < ¢ < d, via ¢;-regularised Yule-Walker
estimation, from which we estimate N'C = (1, £9):

8 ={(i,i') e VxV: Ay;» # 0forsome 1 < ¢ < d}.

Step 3: Estimation of (long-run) partial correlations by estimating A =
I~'and @ = $;'(0) = 27(A(1))TAA(1), from which we estimate
NC = (V,£°) and '

0ii+0,1;1

SC:{(z’,z”)EVxV: i #1 and — Oi! 750},
£L:{(i,i’)eV><V:z'7é7;’and #0}
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Step 1: Factor adjustment

Exploit the large eigengap between ., ,(w) and p, 4+1(w).

With sample ACV T',.(¢), estimate the spectral density of X, by
(W) == S0 K (LT, (f) exp(—ulw),

with the Bartlett kernel K (-) and bandwidth m =< n?, 5 € (0, 1).
Performing PCA on X, (w;,) at Fourier frequencies w;, = Qijfl, k| < m,

So(wi) = S0 flaj (Wi)8a5(wi) (€, (wh)),

we estimate ¥, (w;) and I', (¢) as

AN

¥y (wk) = =1 Ha,j(Wk )@, j(wk) (€x,5(wr))",
Fx( ) — 2m+1 Zk__m (Wk) eXP(L&UIJ-

Straightforwardly, T'¢(¢) = T',(¢) — L', (¢).
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Step 2: Estimation of VAR parameters

T el ] wal T T 7 T A T T 7]
gn n—1 n—2 n—d Al €n
: = | : . : : un : r/2,
T T T T AT T
ai1 &y &g - &1 ] | A ] | €ad+1]
YyecR(n—d)xp X cR(n—d)x(dp) BOcR@p)xp  geR(n—d)xp

Existing approach: Estimate the latent &, 1 < t < n, and apply ¢;-
regularisation methods such as Lasso to estimate 3" (FARM, Fan et al., 2021).

—> Loss of statistical efficiency due to estimating the n x p matrix con-
taining &, 1 <t < n.
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¢1-regularised Yule-Walker estimators

Via Yule-Walker equation, we have G3" = g where

T':(0) Te(—1) ... Te(—d+1)] (T¢(1)]
5 5 ; and g = ;
Te(d—1) Te(d—2) ... T'¢(0) T¢(d)

G =

With f‘g(é) from Step 1 estimating I'¢(¢), we obtain surrogate matrices
G and g.

Lasso (¢1-penalised minimisation):
B85 = arg mingppixy tr (5@5 _ zﬁTﬁg) s 3.
Dantzig selector (constrained ¢/;-minimisation):

3PS = arg mingeppaxp |B|1  SUbject to ‘@5 — §| < ADS,
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Step 3: Estimation of (long-run) partial correlations

From Yule-Walker equation, estimate I" = Cov(I''/2¢,) by
- PO
T = Te(0) — 0, Ade(0).
We estimate A = I'"! via constrained /;-minimisation (caietal., 2011),

P

A = arg miny ppxp|M|;  subject to ‘f‘M _ I‘ <.

Replacing A(1) =1I—- ) ,A, and A with their estimators, we estimate
Q =3:1(0) = 2m(A(1)) " AA(1) by

AN AN AN AN

Q =27 (A1) "AA(L).
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Theoretical consistency

o0 d
Xt = Z B,ui_y, + Z A&y + F1/2€t :
@1:0 gzl

4 4

Xt &t

We assume max; < <4 E(|u¢|"), maxi<;<p E(Jeir]”) < v, for some v > 4.

Each {u;:}iez (resp. {cit}iez) is @ sequence of martingale differences
and u;;, 1 < j < q (resp. e, 1 <i < p) are i.i.d. for given ¢.

To ease presentation, let all the factors be strong (i.e. i, 4(w) =< p).
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Consistency of Step 1: Factor adjustment

As n,p — oo, we have P(&, ,) — 1 where

~ 1
Enp = { maxica|Fe(0) ~Te(O)o S — Vi, v

Jn _

3

-~

(&I~

bias-var trade-off in f]a;(w) latency of &;

and ﬁn,p _ (me/l/ log7/2(p) Y \/m logi(mp)> -

nl—2/v

In what follows, all results are conditional on &, .
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Consistency of Step 2

Degrees of sparsity associated with 3° are defined as

d
Sin = maxi<j<p so,; Where so ; = 375 [Agj.lo = [Blo.

Suppose that A2 > (9, , vm~' v p~/2) and sin (9, Vm =t v p~1/2) <

Y

me < inf, pe ,(w). Then, forall j =1,...,p,

32\/SinA3s .

ng

2l 0 2 0
|B.§‘-S _ ﬁ.j} < |B.§‘-S _ ﬁ.j}z <
o0

Under ‘beta-min’ condition: min; ;. 0 4 |85 > 2t, M€ is consistently
J ) g

estimated by hard-thresholding 3" as

338 () = @?S.H{@?Dt}, 1<i<pd 1<j<p|.
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Consistency of Step 3

Suppose that 7 > [|A||1sin(Fn., Vm ™tV p~1/2). Then,
A = Al S A]1n = | A]2sin(9np vV m~LV p=1/2).
Additionally, if €2 is obtained with 3'3(t),
12— Qoo S IAM (A ]Is0utt + A |11 [A117),
where sou = maxi<j<p >0, |Aro.

Edge sets of NC and .\'" are estimated by hard-thresholding A and 2,
respectively, and consistency is achieved under analogous ‘beta-min’
conditions.

20



Consider the case where x; = ZM B,,u;_,,,n <p, v>8. Then,

m=0

max ‘I@!as ,30 ‘2 =0Op \/Sm log /n)

B'as and its thresholded counterpart performs as well as the benchmark
derived under independence and Gaussianity in the Lasso literature:

Cf. Lasso estimator applied to estimated &, attains Op(y/sinn™1/215/7)
under strong mixingness (FARM, Fan et al., 2021).

Q- Q!oo = OP((Sout\/Su v HAlhsm \/10g /7).

A performs close to (up to sin) the CLIME estimator (Cai et al,, 2011) for
sparse precision matrix from independent random vectors.

. FNETS estimators perform as well as benchmarks obtained where &;
Is directly observed under independence.

21



Forecasting via FNETS

Forecast X,, ., given X;, t < n for some a > 1, by

AN

Xn—i—a|n — X\n—i—am + §n+a|n7 eStimating

Xntaln = I\Droj(Xm—a‘X’Ua v < t2+Pr0j(£n+a‘€va v < tl

Xn—l—a|n 5n—|—a|n
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Forecasting of factor-driven component

Under a more restricted, static factor model x; = Zé‘io B,u;_, with the
number of static factors r = (M + 1)q,

Xn+aln = I‘X(—a)I‘; (0)Xn-

This motivates X' = T, (—a)T';(0)X,, which achieves consistent

n+aln

estimation of X, o

ores
Xn+a|n Xn-+a|n

1 1
o (i)

We also obtain the in-sample estimator of x;, t < n, as

X = E,E] X,, where E, contains  leading eigenvectors of T, (0).
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Forecasting of the latent VAR process

Under the VAR model,

max(l,a)—1 %

£n-|—a|n — /=1 A£€n+a ln + Zg max(1,a) A£€n+a -

which inherits the theoretical properties of A, and In-sample estimator
£ =Xy — X, t < n,as

£n—i—1|n — €n—|—1|n
00

— Op ((sm log"2(p)p""" +118°1) ( PV % Y \Lf»
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Simulations

VAR process: & = A&, + I''/?g, with supp(A) generated as an
Erdds-Rényi random graph, and

(E1) g ~N(0,1)and T = 1.

(E2) ;4 ~N(0,1)and T # 1.

(E3) \/5/3-e;4 ~tsand T’ = L.

Factor-driven component:

(CO) x: = 0 (‘oracle’).

(C1) x; does not admit a static representation with ¢ = 2.
(C2) x; admits a static representation with ¢ = 2 and r = 4.

Compared FNETS against FARM (Fan et al, 2021): time-domain PCA +
fitting a VAR model to estimated &; via Lasso.
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Results: Network estimation

ROC curves of TPR against FPR for estimation of A: (E1) + (C0)—(C2).
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ROC curves of TPR against FPR for estimation of A:
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ROC curves of TPR against FPR for estimation of €2:

1.00 A

0.75 4

0.50 4

0.25 4

0.00 4

1.00 A

0.75 1

0.50 4

0.25 4

0.00 4

n =100, p =50
— Lasso
-- DS
000 025 050 075  1.00
n =100, p = 100

0.75

1.00

1.00 A

0.75 1

0.50 4

0.25 4

0.00 4

1.00 A

0.75 4

0.50 4

0.25 4

0.00 4

n =200, p =50

(E1) + (CO)—(C2).

n = 500, p = 100

1.00 A

0.75 4

0.50 4

0.25 4

0.00 4

0.00

n=200,p =100

: £
%y
I

0.25

0.50

0.75

1.00

000 025 050 075  1.00

n = 500, p = 200

i

1.00 A

0.75 1

0.50 4

0.25 4

0.00 4

0.00

0.50

0.75

1.00

000 025 050 075  1.00

28



ROC curves of TPR against FPR for estimation of €2:
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Results: Forecasting

_ B 2
Error measured by Tt 1jn 7”*'2””'2 when (E1) 4 (C1):
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Error measured by
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Application to a panel of volatility measures

A panel of volatility measures from p = 46 stock prices of US companies
all classified as ‘financials’ according to the Global Industry Classifica-
tion Standard.

Measure the volatility using the high-low range as
high
o = 0.361(p;>" — i),

where p?igh and p!9" the maximum and the minimum log-price of stock i

on day ¢, and set X;; = log(o7,).
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Network analysis: 03/2006—02/2007

NG NC
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Network analysis: 03/2007-02/2008

NG NC
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Network analysis: 03/2008—-02/2009
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03/2009-02/2010

Network analysis
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Forecasting exercise

Rolling window exercise for trading days in 2012 with n = 252:

FNETS

Restricted Unrestricted

~

B|8.S B\DS Elas ,BDS AR FARM

FE3Y Mean 0.7258 0.7651 0.7466 0.9665 0.7572 0.7616
Median 0.6029 0.6163 0.6412 0.6756 0.6511  0.6243
SE 0.4929 0.5081 0.3748 1.088 0.4162  0.4946

FEMaX Mean 0.8433 0.8752 0.8729 0.9359 0.879 0.8745
Median 0.7925 0.8217 0.8088 0.8708 0.8437 0.8259
SE 0.2331 0.2406 0.2246 0.3246 0.2169 0.2337

o~ 2 -
avg _ 2i(Xirr1=X; 717 max _ Max% [ X5 1 =X o7l
FE = 5 and FETJrl = .
T+1 > Xi T41 max; |Xz',T—{—1|




Conclusions

FNETS consists of estimation and forecasting methods that fully take
Into account that the VAR process of interest is latent.

Consistency established under general conditions permitting heavy tails
and weak factors.

Benefits from regularised Yule-Walker estimation demonstrated both
theoretically and empirically.

M. Barigozzi, H. Cho and D. Owens (2022) FNETS: Factor-adjusted
network estimation and forecasting for high-dimensional time series.
arXiv:2201.06110

R package fnets available on CRAN with accompanying paper

D. Owens, H. Cho and M. Barigozzi (2023) fnets: An R Package for Net-
work Estimation and Forecasting via Factor-Adjusted VAR Modelling.
arXiv.2301.11675
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Tuning parameter selection

For Xt-

Kernel bandwidth is set at m = |4(n/log(n))'/3| based on when v is
sufficiently large and n =< p.

Various factor number estimators exist; we adopt an information
criterion-based estimator of Hallin & LiSka (2007).
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For €t:

Cross validation (CV) for jointly selecting A2 or APS and VAR order d.
Partitioning the data into Z"" = {1,...,[an]} and %" = {[an] +
1,...,n}, obtain 3"\, b) from {X,, t € Z""}, evaluate

CV(\,b) = tr(f‘tgeSt(O) . (I”Bf’[rain()\7 b))T@[eSt(b) . (jgtest(b))TB\train()\’ b) +
(B\traino\’ b))T@test(b)Btrain()\’ b)),

approximating the prediction error when &; is not directly observed.

For selecting n, we adopt the Burg matrix divergence-based CV mea-
sure:

CV(n) — tr <3train(n)fwte3t> — log |3train(n)i\wtest —p.
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