New developments on pairwise likelihood estimation for latent variable models.

Irini Moustaki
London School of Economics \& Political Science

collaborators: Chris Skinner, Haziq Jamil, Yunxiao Chen, Guiseppe Alfonzeti, Ruggero Bellio

Outline

- Brief introduction to latent variable models for categorical variables.
- Model framework.
- Estimation and inference framework: Pairwise Likelihood (PL)
- Topics that will be discussed:
- Limited goodness-of-fit tests under SRS and complex sample designs
- Stochastics optimization for reducing computational complexity

Latent variables and measurement

Using statistical models to understand constructs better: a question of measurement

- Many theories in behavioral and social sciences are formulated in terms of theoretical constructs that are not directly observed
attitudes, opinions, abilities, motivations, etc.
- The measurement of a construct is achieved through one or more observable indicators (questionnaire items, tests).
- The purpose of a measurement model is to describe how well the observed indicators serve as a measurement instrument for the constructs, also known as latent variables.
- Measurement models often suggest ways in which the observed measurements can be improved.

Motivation of our work

- Improve the estimation in cases of intractable integrals and complex models.
- Provide an inferential framework for model testing and model selection.
- Improve the computational time and cost.
- $\mathbf{y}: p$-dimensional vector of the observed variables (binary, ordinal, continuous, mixed).
- $\mathbf{y}^{\star}: p$-dimensional vector of corresponding underlying continuous variables.
- The connection between y_{i} and y_{i}^{\star} is

$$
\begin{equation*}
y_{i}=c_{i} \Longleftrightarrow \tau_{c_{i}-1}^{\left(y_{i}\right)}<y_{i}^{\star}<\tau_{c_{i}}^{\left(y_{i}\right)} \tag{1}
\end{equation*}
$$

$-\infty=\tau_{0}^{\left(y_{i}\right)}<\tau_{1}^{\left(y_{i}\right)}<\ldots<\tau_{m_{i}-1}^{\left(y_{i}\right)}<\tau_{m_{i}}^{\left(y_{i}\right)}=+\infty$.

- c : the c-th response category of variable $y_{i}, c=1, \ldots, m_{i}, \tau_{i, c}$: the c-th threshold of variable y_{i},
- In practice, $y_{i}^{\star} \sim N(0,1)$
- y_{i} is continuous: $y_{i}=y_{i}^{\star}$.

Structural Equation Model

Following Muthén (1984):

$$
\begin{aligned}
\mathbf{y}^{\star} & =\boldsymbol{\nu}+\Lambda \boldsymbol{\eta}+\boldsymbol{\epsilon} \\
\boldsymbol{\eta} & =\boldsymbol{\alpha}+\mathrm{B} \boldsymbol{\eta}+\Gamma \mathrm{x}+\boldsymbol{\zeta}
\end{aligned}
$$

$\boldsymbol{\eta}$: vector of latent variables, q-dimensional,
x : vector of covariates,
ϵ and ζ : vectors of error terms, and ν and α : vectors of intercepts.
Standard assumptions:

- η, ϵ, ζ follow multivariate normal distribution,
- $\operatorname{Cov}(\boldsymbol{\eta}, \boldsymbol{\epsilon})=\operatorname{Cov}(\boldsymbol{\eta}, \boldsymbol{\zeta})=\operatorname{Cov}(\boldsymbol{\epsilon}, \boldsymbol{\zeta})=\mathbf{0}$,
- $I-\mathrm{B}$ is non-singular, I the identity matrix.

Structural Equation Model

Based on the model:

$$
\begin{gathered}
\boldsymbol{\mu} \equiv E\left(\mathbf{y}^{\star} \mid \mathbf{x}\right)=\boldsymbol{\nu}+\Lambda(I-\mathrm{B})^{-1}(\boldsymbol{\alpha}+\Gamma \mathbf{x}) \\
\Sigma \equiv \operatorname{Cov}\left(\mathbf{y}^{\star} \mid \mathbf{x}\right)=\Lambda(I-\mathrm{B})^{-1} \Psi\left[(I-\mathrm{B})^{-1}\right]^{\prime} \Lambda^{\prime}+\Theta
\end{gathered}
$$

Let $\boldsymbol{\theta}$ be the parameter vector of the model.

$$
\boldsymbol{\theta}^{\prime}=\left(\operatorname{vec}(\Lambda)^{\prime}, \operatorname{vec}(B)^{\prime}, \operatorname{vec}(\Gamma)^{\prime}, \operatorname{vech}(\Psi)^{\prime}, \operatorname{vech}(\Theta)^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\nu}^{\prime}, \boldsymbol{\tau}^{\prime}\right)
$$

Likelihood Function

- Under the model,the probability of a response pattern r is:

$$
\begin{equation*}
\pi_{r}(\boldsymbol{\theta})=\pi\left(y_{1}=c_{1}, \ldots, y_{p}=c_{p} ; \boldsymbol{\theta}\right)=\int \ldots \int \phi_{p}\left(\mathbf{y}^{\star} ; \Sigma_{\mathbf{y}^{\star}}\right) d \mathbf{y}^{\star} \tag{2}
\end{equation*}
$$

where $\phi_{p}\left(\mathbf{y}^{\star} ; \Sigma_{\mathbf{y}^{\star}}\right)$ is a p-dimensional normal density with zero mean, and correlation matrix $\Sigma_{\mathbf{y}^{\star}}$.

- The maximization of log-likelihood over the parameter vector $\boldsymbol{\theta}$ requires the evaluation of the p-dimensional integral which cannot be written in a closed form.
- Maximum likelihood infeasible for large number of observed variables.

Composite likelihood (1)

Review the composite likelihood setup:

- $\mathbf{y}=\left(y_{1}, \ldots, y_{p}\right)^{\top}$ with true density $p\left(\mathbf{y} ; \theta_{0}\right), \theta_{0} \in \Theta \subseteq \mathbb{R}^{d}$;
- $p\left(\mathbf{y} ; \theta_{0}\right)$ is unknown or too expensive to compute (e.g. large integrals involved).
- Define a set \mathcal{A} of size K, made of marginal or conditional events for y.
- For each $A_{k} \in \mathcal{A}, k=1, \ldots, K$, define a proper likelihood function $\mathcal{L}_{k}(\theta ; \mathbf{y})$;
- Construct a composite likelihood with $\mathcal{L}_{C}(\theta ; \mathbf{y})=\prod_{k=1}^{K} \mathcal{L}_{k}(\theta ; \mathbf{y})$.
- Let $c \ell(\theta ; \mathbf{y})$ and $u(\theta ; \mathbf{y})$ be respectively the composite log-likelihood and the composite score:

$$
c \ell(\theta ; \mathbf{y})=\sum_{k=1}^{K} \ell_{k}(\theta ; \mathbf{y}) \quad \text { and } \quad u(\theta ; \mathbf{y})=\sum_{k=1}^{K} \nabla \ell_{k}(\theta ; \mathbf{y}) .
$$

Composite likelihood (2)

Finite sample quantities:

- Given a sample of size N, with $\mathbf{y}_{i .}=\left(y_{i 1}, \ldots, y_{i p}\right)$ for $i=1, \ldots, n$, we can define

$$
c \ell_{n}(\theta ; \mathbf{y})=\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \ell_{k}\left(\theta ; \mathbf{y}_{i .}\right) \quad \text { and } \quad u_{N}(\theta ; \mathbf{y})=\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \nabla \ell_{k}\left(\theta ; \mathbf{y}_{i .}\right) ;
$$

- Define the composite likelihood estimator $\theta_{C L}$ as the solution of $u_{N}\left(\theta_{C L} ; \mathbf{y}\right)=0$.

Pairwise likelihood estimation

Following Cox \& Reid (2004), the composite-likelihood could be modified as follows:

$$
c l_{n}(\theta ; \mathbf{y})=\sum_{i<j} \ln L\left(\boldsymbol{\theta} ;\left(y_{i}, y_{j}\right)\right)-a p \sum_{i} \ln L\left(\boldsymbol{\theta} ; y_{i}\right),
$$

where c is a constant to be chosen for optimal efficiency.

Trying different values of a so that the value of $a p$ ranges from 0 to 1 , and conducting some small scale simulation studies, our results indicate that, practically, the sum of univariate log-likelihoods affect neither the accuracy nor the efficiency of estimation.

Pairwise likelihood for SEM

Basic assumption:

$$
\binom{y_{i}^{\star}}{y_{j}^{\star}} \left\lvert\, \mathbf{x} \sim N_{2}\left(\binom{\mu_{i}}{\mu_{j}},\left(\begin{array}{cc}
\sigma_{i i} & \\
\sigma_{j i} & \sigma_{j j}
\end{array}\right)\right)\right.
$$

The $p l$ for N independent observations ${ }^{1}$:

$$
p l(\boldsymbol{\theta} ; \mathbf{y} \mid \mathbf{x})=\sum_{n=1}^{N} \sum_{i<i^{\prime}} \ln L\left(\boldsymbol{\theta} ;\left(y_{i n}, y_{i^{\prime} n}\right) \mid \mathbf{x}\right) .
$$

The specific form of $\ln L\left(\boldsymbol{\theta} ;\left(y_{i n}, y_{i^{\prime} n}\right) \mid \mathbf{x}\right)$ depends on the type of the observed variables (binary/ ordinal, continuous).

[^0]
Pairwise Likelihood Estimation for Binary Responses (1) - no covariates

- For a pair of variables y_{i} and y_{j}. The basic pairwise log-likelihood takes the form

$$
\begin{equation*}
\sum_{i<j} \sum_{c_{i}=0}^{1} \sum_{c_{j}=0}^{1} n_{c_{i} c_{j}}^{\left(y_{i} y_{j}\right)} \ln \pi_{c_{i} c_{j}}^{\left(y_{i} y_{j}\right)}(\boldsymbol{\theta}) \tag{3}
\end{equation*}
$$

where $n_{c_{i} c_{j}}$ is the observed frequency of sample units with $y_{i}=c_{i}$ and $y_{j}=c_{j}$.

- To accommodate complex sampling, the PL becomes:

$$
\begin{equation*}
p l(\boldsymbol{\theta} ; \mathbf{y})=\sum_{i<j} \sum_{c_{i}=0}^{1} \sum_{c_{j}=0}^{1} p_{c_{i} c_{j}}^{\left(y_{i} y_{j}\right)} \ln \pi_{c_{i} c_{j}}^{\left(y_{i} y_{j}\right)}(\boldsymbol{\theta}), \tag{4}
\end{equation*}
$$

where $p_{c_{i} c_{j}}=\sum_{h \in s} w_{h} I\left(y_{i}^{(h)}=c_{i}, y_{j}^{(h)}=c_{j}\right) / \sum_{h \in s} w_{h}$.

Pairwise Likelihood Estimation for Binary Responses (2)

The score function

$$
\begin{equation*}
\nabla p l(\boldsymbol{\theta} ; \mathbf{y})=\sum_{i<j} \sum_{c_{i}=0}^{1} \sum_{c_{j}=0}^{1} p_{c_{i} c_{j}}^{\left(y_{i} y_{j}\right)}\left(\pi_{c_{i} c_{j}}^{\left(y_{i} y_{j}\right)}(\boldsymbol{\theta})\right)^{-1} \frac{\partial \pi_{c_{i} c_{j}}^{\left(y_{i} y_{j}\right)}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \tag{5}
\end{equation*}
$$

Using Taylor expansion, we may write

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{P L}=\boldsymbol{\theta}+H(\boldsymbol{\theta})^{-1} \nabla p l(\boldsymbol{\theta} ; \mathbf{y})+o_{p}\left(N^{-1 / 2}\right) \tag{6}
\end{equation*}
$$

where $H(\boldsymbol{\theta})$ is the sensitivity matrix, $H(\boldsymbol{\theta})=E\left\{-\nabla^{2} p l(\boldsymbol{\theta} ; \mathbf{y})\right\}$. It follows that

$$
\sqrt{N}\left(\hat{\boldsymbol{\theta}}_{P L}-\boldsymbol{\theta}\right) \xrightarrow{d} N_{t}\left(0, H(\boldsymbol{\theta}) J^{-1}(\boldsymbol{\theta}) H(\boldsymbol{\theta})\right)
$$

where t is the dimension of $\boldsymbol{\theta}$, and $J(\boldsymbol{\theta})$ is the variability matrix, $J(\boldsymbol{\theta})=\operatorname{Var}\{\sqrt{N} \nabla p l(\boldsymbol{\theta} ; \mathbf{y})\}$.

Finite-sample properties of PL estimation

For factor analysis models with categorical data (Katsikatsou et al., 2012):

- PL estimates and standard errors present a close-to-zero bias and mean squared error (MSE).
- PL performs very similarly to three-stage least squares methods and maximum likelihood as implemented in the GLLVM approach.

Model fit and model selection

Katsikatsou and Moustaki, 2016 (Psychometrika).

- Pairwise Likelihood Ratio Test (PLRT) for overall fit
- Pairwise Likelihood Ratio Test for comparing models (e.g. equality constraints)
- Model selection criteria: PL versions of AIC and BIC
- The PLRT statistic performs in accordance with the asymptotic results at 5% and 1% significance levels for $N=500,1000$ but not satisfactorily for $N=200$.
- Both adjusted AIC and BIC criteria perform very well with a minimum rate of success 82.9%.

Software

In the \mathbf{R} package lavaan

PL is available for fitting and testing factor analysis models or SEMs where

- all observed variables are binary or ordinal, and
- the standard parametrization for the underlying variables is used (zero means and unit variances)
- Multigroup analysis is also possible.
- Handling MAR and Non ignorable missigness.

Current work

- Limited information test statistics under SRS and complex designs (with Skinner and Jamil).
- Methods for reducing the computational complexity of pairwise estimation
- Employ sampling methodology for selecting pairs (Papageorgiou and Moustaki, 2019)
- Stochastic optimization (with Alfonzetti, Chen, and Bellio)

Limited Information Test Statistics for PL estimators

Overall goodness-of-fit tests, simple hypothesis

- Let us denote with \mathbf{p} the $2^{p} \times 1$ vector of sample proportions corresponding to the vector of population proportions $\boldsymbol{\pi}$. Assuming i.i.d, it is known that:

$$
\begin{equation*}
\sqrt{N}(\mathbf{p}-\boldsymbol{\pi}) \xrightarrow{d} N(0, \Sigma), \tag{7}
\end{equation*}
$$

- where $\Sigma=D(\boldsymbol{\pi})-\boldsymbol{\pi} \boldsymbol{\pi}^{\prime}$ and N is the sample size.
- Under complex sampling design, the vector \mathbf{p} becomes the weighted vector of proportions \mathbf{p} with elements $\sum_{h \in s} w_{h} I\left(\mathbf{y}^{(h)}=\mathbf{y}_{r}\right) / \sum_{h \in s} w_{h}$.
- Under suitable conditions (e.g. Fuller, 2009, sect. 1.3.2) we still have a central limit theorem, where the covariance matrix Σ need now not take a multinomial form.
- Let $\dot{\boldsymbol{\pi}}_{1}=\left(P\left(y_{1}=1\right), P\left(y_{2}=1\right), \ldots, P\left(y_{p}=1\right)\right)^{\prime}$ be the $p \times 1$ vector that contains all univariate probabilities of a positive response to an item.
- Let $\dot{\pi}_{2}$ be the $\binom{p}{2} \times 1$ vector of bivariate probabilities with elements, $\dot{\pi}_{i j}=P\left(y_{i}=1, y_{j}=1\right), j<i$.
- Let π_{2} be the vector that contains both these univariate and bivariate probabilities with dimension $s=p+\binom{p}{2}=p(p+1) / 2$.
- We also define an $s \times 2^{p}$ indicator matrix T_{2} of rank s such that $\boldsymbol{\pi}_{2}=T_{2} \boldsymbol{\pi}$.

Limited information goodness-of-fit tests

Reiser (1996, 2008), Bartholomew and Leung (2002), Maydey-Olivares and Joe (2005, 2006) Cagnone and Mignani (2007).

The test statistics developed are based on marginal distributions rather than on the whole response pattern.
(1) $H_{o}: \boldsymbol{\pi}_{2}=\boldsymbol{\pi}_{2}(\boldsymbol{\theta})$ for some $\boldsymbol{\theta}$ versus $H_{1}: \boldsymbol{\pi}_{2} \neq \boldsymbol{\pi}_{2}(\boldsymbol{\theta})$ for any $\boldsymbol{\theta}$.
(2) Construct test statistics based upon the residual vector $\hat{\mathbf{e}}_{2}=\mathbf{p}_{2}-\boldsymbol{\pi}_{2}\left(\hat{\boldsymbol{\theta}}_{P L}\right)$ derived from the bivariate marginal distributions of \mathbf{y} and with $\boldsymbol{\theta}_{P L}$.
(3) We first derive the asymptotic distribution of $\hat{\mathbf{e}}_{2}$.

Distribution of residuals (1)

- Following earlier notation, we can write $s \times 1$ vectors: $\boldsymbol{\pi}_{2}(\boldsymbol{\theta})=T_{2} \boldsymbol{\pi}(\boldsymbol{\theta})$ and $\mathbf{p}_{2}=T_{2} \mathbf{p}$.
- It follows that:

$$
\begin{equation*}
\sqrt{n}\left(\mathbf{p}_{2}-\boldsymbol{\pi}_{2}(\boldsymbol{\theta})\right) \xrightarrow{d} N\left(0, \Sigma_{2}\right), \tag{8}
\end{equation*}
$$

where $\Sigma_{2}=T_{2} \Sigma T_{2}^{\prime}$.

- Because T_{2} is of full rank s, Σ_{2} is also of full rank s.

Distribution of residuals (2)

Noting that $\boldsymbol{\pi}_{2}(\boldsymbol{\theta})=T_{2} \boldsymbol{\pi}(\boldsymbol{\theta})$, a Taylor series expansion gives:

$$
\begin{equation*}
\boldsymbol{\pi}_{2}\left(\hat{\boldsymbol{\theta}}_{P L}\right)=\boldsymbol{\pi}_{2}(\boldsymbol{\theta})+T_{2} \Delta\left(\hat{\boldsymbol{\theta}}_{P L}-\boldsymbol{\theta}\right)+o_{p}\left(N^{-1 / 2}\right), \tag{9}
\end{equation*}
$$

where $\Delta=\frac{\partial \boldsymbol{\pi}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$
Hence, using

$$
\hat{\boldsymbol{\theta}}_{P L}-\boldsymbol{\theta}=H(\boldsymbol{\theta})^{-1} \nabla p l(\boldsymbol{\theta} ; \mathbf{y})+o_{p}\left(N^{-1 / 2}\right)
$$

we have

$$
\begin{equation*}
\hat{\mathbf{e}}_{2}=\mathbf{p}_{2}-\boldsymbol{\pi}_{2}\left(\hat{\boldsymbol{\theta}}_{P L}\right)=\mathbf{p}_{2}-\boldsymbol{\pi}_{2}(\boldsymbol{\theta})-T_{2} \Delta H(\boldsymbol{\theta})^{-1} \nabla p l(\boldsymbol{\theta} ; \mathbf{y})+o_{p}\left(N^{-1 / 2}\right) . \tag{10}
\end{equation*}
$$

Finally we need to express $\nabla p l(\boldsymbol{\theta} ; \mathbf{y})$ in terms of $\mathbf{p}_{2}-\boldsymbol{\pi}_{2}(\boldsymbol{\theta})$

Distribution of residuals (3)

Hence, there is a $t \times s$ matrix $B(\boldsymbol{\theta})$ such that

$$
\begin{equation*}
\nabla p l(\boldsymbol{\theta} ; \mathbf{y})=B(\boldsymbol{\theta})\left(\mathbf{p}_{2}-\boldsymbol{\pi}_{2}(\boldsymbol{\theta})\right) \tag{11}
\end{equation*}
$$

Hence, from (10)

$$
\begin{equation*}
\hat{\mathbf{e}}_{2}=\left(I-T_{2} \Delta H(\boldsymbol{\theta})^{-1} B(\boldsymbol{\theta})\right)\left(\mathbf{p}_{2}-\boldsymbol{\pi}_{2}(\boldsymbol{\theta})\right)+o_{p}\left(n^{-1 / 2}\right) \tag{12}
\end{equation*}
$$

So from (8), we have under H_{0} that:

$$
\begin{equation*}
\sqrt{N} \hat{\mathbf{e}}_{2} \xrightarrow{d} N(0, \Omega) . \tag{13}
\end{equation*}
$$

where $\Omega=\left(I-T_{2} \Delta H(\boldsymbol{\theta})^{-1} B(\boldsymbol{\theta})\right) \Sigma_{2}\left(I-T_{2} \Delta H(\boldsymbol{\theta})^{-1} B(\boldsymbol{\theta})\right)^{\prime}$.

Distribution of residuals (4)

To estimate the asymptotic covariance matrix of $\hat{\mathbf{e}}_{2}$, we evaluate $\frac{\partial \boldsymbol{\pi}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ at the PL estimate $\hat{\boldsymbol{\theta}}_{P L}$ to obtain $\hat{\Delta}$ and set:

$$
\hat{\Omega}=\left(I-T_{2} \hat{\Delta} \hat{H}\left(\hat{\boldsymbol{\theta}}_{P L}\right)^{-1} B\left(\hat{\boldsymbol{\theta}}_{P L}\right)\right) \hat{\Sigma}_{2}\left(I-T_{2} \hat{\Delta} \hat{H}\left(\hat{\boldsymbol{\theta}}_{P L}\right)^{-1} B\left(\hat{\boldsymbol{\theta}}_{P L}\right)\right)^{\prime},
$$

where $\hat{\Sigma}_{2}=T_{2} \hat{\Sigma} T_{2}^{\prime}$.

- In the case of iid observations with a multinomial covariance matrix, we may set $\hat{\Sigma}=D(\boldsymbol{\pi}(\hat{\boldsymbol{\theta}}))-\boldsymbol{\pi}(\hat{\boldsymbol{\theta}}) \boldsymbol{\pi}(\hat{\boldsymbol{\theta}})^{\prime}$.
- In the case of a complex sample design we need to derive a consistent estimator for Σ

Proposed test statistics

Wald test type statistics

A Wald test statistic is given by:

$$
\begin{equation*}
L_{2}=N\left(\mathbf{p}_{2}-\boldsymbol{\pi}_{2}\left(\hat{\boldsymbol{\theta}}_{P L}\right)\right)^{\prime} \hat{\Omega}^{+}\left(\mathbf{p}_{\mathbf{2}}-\boldsymbol{\pi}_{\mathbf{2}}\left(\hat{\boldsymbol{\theta}}_{\mathbf{P L}}\right)\right), \tag{14}
\end{equation*}
$$

- $\hat{\Omega}^{+}$is the Moore-Penrose inverse of $\hat{\Omega}$.
- Under H_{0}, this test statistic is asymptotically distributed as χ^{2} with degrees of freedom equal to the rank of $\hat{\Omega}^{+}$, which is between $s-t$ and s.
- An alternative Wald test: $\hat{\boldsymbol{\Xi}}_{2}=\operatorname{diag}\left(\hat{\boldsymbol{\Omega}}_{2}\right)^{-1}$ is used instead of the pseudoinverse of $\boldsymbol{\Omega}_{2}$. We refer to this Diagonal Wald test, (Wald v2). Its distribution needs to be determined using moment-matching procedures. We employ a three moment adjustment.
- The estimation of Ω_{2} can be computationally involved in some cases (large models).
- The rank of Ω_{2} cannot be determined a priori instead one needs to inspect the eigen values of $\hat{\Omega}_{2}$.

Variance-covariance free Wald test, Wald v3

Maydeu-Olivares and Joe $(2005,2006)$ suggested using a weight matrix $\boldsymbol{\Xi}$ such that $\boldsymbol{\Omega}_{2}$ is a generalized inverse of $\boldsymbol{\Xi}$, i.e. $\boldsymbol{\Xi}=\boldsymbol{\Xi} \boldsymbol{\Omega}_{2} \boldsymbol{\Xi}$.
The test statistic proposed:

$$
X^{2}=n \hat{\mathbf{e}}_{2}^{\top} \hat{\boldsymbol{\Xi}}_{\hat{\mathbf{e}}_{2}}=n \hat{\mathbf{e}}_{2}^{\top} \hat{\boldsymbol{\Delta}}_{2}^{\perp}\left(\left(\hat{\boldsymbol{\Delta}}_{2}^{\perp}\right)^{\top} \hat{\boldsymbol{\Sigma}}_{2} \hat{\boldsymbol{\Delta}}_{2}^{\perp}\right)^{-1}\left(\hat{\boldsymbol{\Delta}}_{2}^{\perp}\right)^{\top} \hat{\mathbf{e}}_{2}
$$

- where $\boldsymbol{\Delta}_{2}^{\perp}$ is an $S \times(S-m)$ orthogonal complement to $\boldsymbol{\Delta}_{2}$, i.e. it satisfies $\left(\boldsymbol{\Delta}_{2}^{\perp}\right)^{\top} \boldsymbol{\Delta}_{2}=\mathbf{0}$.
- It converges in distribution to a χ_{S-m}^{2} variate as $n \rightarrow \infty$.

Pearson Chi-square Test Statistic

- Let D_{2} be the $s \times s$ matrix $D_{2}=\operatorname{diag}\left(\pi_{2}(\boldsymbol{\theta})\right)$ and let $\hat{D}_{2}=\operatorname{diag}\left(\pi_{2}\left(\hat{\boldsymbol{\theta}}_{P L}\right)\right)$.
- The Pearson test statistic is given by

$$
\begin{equation*}
X_{P}^{2}=n \hat{\mathbf{e}}_{2}^{\prime} \hat{D}_{2}^{-1} \hat{\mathbf{e}}_{2}=n\left(\mathbf{p}_{2}-\boldsymbol{\pi}_{2}\left(\hat{\boldsymbol{\theta}}_{P L}\right)\right)^{\prime} \hat{D}_{2}^{-1}\left(\mathbf{p}_{\mathbf{2}}-\boldsymbol{\pi}_{\mathbf{2}}\left(\hat{\boldsymbol{\theta}}_{\mathbf{P L}}\right)\right) . \tag{15}
\end{equation*}
$$

- The limiting distribution of $\sqrt{n} \hat{D}_{2}^{-0.5} \hat{\mathbf{e}}_{2}$ under the hypothesis that the model is correct is given by $N\left(0, D_{2}{ }^{-0.5} \Omega_{2} D_{2}^{-0.5}\right)$.
- Hence X_{P}^{2} has the limiting distribution of $\sum \delta_{i} W_{i}$, where the δ_{i} are eigenvalues of $D_{2}{ }^{-0.5} \Omega_{2} D_{2}{ }^{-0.5}$ and the W_{i} are independent chi-square random variables, each with one degree of freedom.
- These eigenvalues can be estimated by the eigenvalues of $\hat{D}_{2}^{-0.5} \hat{\Omega}_{2} \hat{D}_{2}^{-0.5}$.
- A first and a second order Rao-Scott type test can be obtained.

Estimation of the covariance matrix under complex sampling

 multistage sampling (1)$$
\begin{aligned}
\Sigma & =\operatorname{limvar}\{\sqrt{N}(\mathbf{p}-\boldsymbol{\pi})\} \\
& =\operatorname{limvar}\left\{\sqrt{N}\left(\frac{\sum_{h \in s} w_{h} \mathbf{y}^{(h)}}{\sum_{h \in s} w_{h}}-\boldsymbol{\pi}\right)\right\}
\end{aligned}
$$

where limvar denotes the asymptotic covariance matrix.

- Using a usual linearization argument for a ratio:

$$
\begin{equation*}
\Sigma=\operatorname{limvar}\left\{\sqrt{N} \frac{\sum_{h \in s} w_{h}\left(\mathbf{y}^{(h)}-\boldsymbol{\pi}\right)}{E\left(\sum_{h \in s} w_{h}\right)}\right\} \tag{16}
\end{equation*}
$$

Estimation of the covariance matrix: stratified multistage sampling (2)

- Strata are labelled a and the primary sampling units are labelled $b=1, \ldots, N_{a}$, where N_{a} is the number of primary sampling units selected in stratum a.
- Then we write

$$
\begin{equation*}
\left[\sum_{h \in s} w_{h}\left(\mathbf{y}^{(h)}-\boldsymbol{\pi}\right)\right] /\left[E\left(\sum_{h \in s} w_{h}\right)\right]=\sum_{a} \sum_{b} \tilde{\mathbf{u}}_{a b}, \tag{17}
\end{equation*}
$$

- where $\tilde{\mathbf{u}}_{a b}=\sum_{h \in s_{a b}} w_{h}\left(\mathbf{y}^{(h)}-\boldsymbol{\pi}\right) /\left[E\left(\sum_{h \in s} w_{h}\right)\right]$ and $s_{a b}$ is the set of sample units contained within primary sampling unit b within stratum a. So

$$
\begin{equation*}
\Sigma=\operatorname{limvar}\left\{\sqrt{N} \sum_{a} \sum_{b} \tilde{\mathbf{u}}_{a b}\right\} . \tag{18}
\end{equation*}
$$

Estimation of the covariance matrix: stratified multistage sampling (3)

- A standard estimator of $N^{-1} \Sigma$ is then given by

$$
\begin{equation*}
N^{-1} \hat{\Sigma}=\sum_{a} \frac{N_{a}}{N_{a}-1} \sum_{b}\left(\mathbf{u}_{a b}-\overline{\mathbf{u}}_{a}\right)\left(\mathbf{u}_{a b}-\overline{\mathbf{u}}_{a}\right)^{\prime} \tag{19}
\end{equation*}
$$

- where $\mathbf{u}_{a b}=\sum_{h \in s_{a b}} w_{h}\left(\mathbf{y}^{(h)}-\mathbf{p}\right) /\left(\sum_{h \in s} w_{h}\right)$ and $\overline{\mathbf{u}}_{a}=N_{a}^{-1} \sum_{b} \mathbf{u}_{a b}$

Estimation of the covariance matrix under complex sampling (4)

- In order to compute the Wald and Pearson test statistic, we only require $\hat{\Sigma}_{2}=T_{2} \hat{\Sigma} T_{2}^{\prime}$.

$$
\begin{equation*}
N^{-1} \hat{\Sigma}_{2}=\sum_{a} \frac{N_{a}}{N_{a}-1} \sum_{b}\left(\mathbf{v}_{a b}-\overline{\mathbf{v}}_{a}\right)\left(\mathbf{v}_{a b}-\overline{\mathbf{v}}_{a}\right)^{\prime} \tag{20}
\end{equation*}
$$

where $\mathbf{v}_{a b}=\sum_{h \in s_{a b}} w_{h}\left(\mathbf{y}_{2}^{(h)}-\mathbf{p}_{2}\right) /\left(\sum_{h \in s} w_{h}\right), \overline{\mathbf{v}}_{a}=N_{a}^{-1} \sum_{b} \mathbf{v}_{a b}$ and $\mathbf{y}_{2}^{(h)}=T_{2} \mathbf{y}^{(h)}$ is the $s \times 1$ vector containing indicator values $I\left(y_{i}^{(h)}=1\right)$ and $I\left(y_{i}^{(h)}=y_{j}^{(h)}=1\right.$) for different values of i and j.

Simulation study

Simulation A: data generated under SRS

- Four sample sizes $(n=500,1000,2000,3000)$.
(1) $p=5$ and $q=1(1 \mathrm{~F} 5 \mathrm{~V})$
(2) $p=8$ and $q=1(1 \mathrm{~F} 8 \mathrm{~V})$
(3) $p=15$ and $q=1$ (1 F 15 V)

4. $p=10$ and $q=2,5$ indicators per factor (2 F 10 V)
(5) $p=15$ and $q=3,5$ indicators per factor (3 F 15 V)

- Models 4 and 5 are confirmatory factor analysis models.
- The number of replications within each condition is 1000 .
- Power analysis: a latent variable $z \sim N(0,1)$ added to the data generating model.

Figure: Model 4: Confirmatory factor analysis model

Simulation A: Test statistics computed

- The Wald test.
- The Wald v2 test (diagonal).
- The Wald v3 test (otrhogonal components)
- The Pearson test (PearsonRS).
- The first-and-second-moment adjusted (FSMadj) Pearson test statistic.

Type I errors ($\alpha=0.05$)

Power ($\alpha=0.05$)

Simulation A: Results

- The Wald v2 has the poorest performance. Both Pearson test statistics performed satisfactorily at all three significance levels $\alpha=0.01,0.05,0.10$ and improved with the increase of the sample size.
- The power of all tests increases with the sample size but stayed at lower levels in the case of two and three-factor models.

Simulation B: data generated under complex sampling

- Four sample sizes $(n=500,1000,2000,3000)$.
- We generate data for an entire population inspired by a sampling design used in large scale assessment surveys.
- The population consists of 2,000 schools (Primary Sampling Units, PSU) of three types: " A" (400 units), "B" (1000 units), and "C" (600 units). The school type correlates with the average abilities of its students (stratification factor).
- Each school is assigned a random number of students from the normal distribution $N\left(500,125^{2}\right)$ (the number then rounded down to a whole number).
- Students are then assigned randomly into classes of average sizes 15,25 and 20 respectively for each school type A, B and C.
- The total population size is roughly 1 million students.

Simulation B: Sampling designs (1)

(1) Stratified sampling: From each school type (strata), select 1000 students (PSU) using SRS. Let N_{a} be the total number of students in stratum $a \in\{1,2,3\}$. Probability of selection of a student in stratum a is $\operatorname{Pr}($ selection $)=\frac{1000}{N_{a}}$. The total sample size is $n=3 \times 1000=3000$.
(2) Two-stage cluster sampling: Select 140 schools (PSU; clusters) using probability proportional to size (PPS). For each school, select one class by SRS, and all students in that class. The probability of selection of a student in PSU $b=1, \ldots, 2000$:

$$
\operatorname{Pr}(\text { selection })=\operatorname{Pr}(\text { weighted school selection }) \times \frac{1}{\# \text { classes in school } b} .
$$

The total sample size will vary from sample to sample, but on average will be $n=140 \times 21.5=3010$, where 21.5 is the average class size per school.

Simulation B: Sampling designs (2)

(1) Two-stage stratified cluster sampling: For each school type (strata), select 50 schools using SRS. Then, within each school, select 1 class by SRS, and all students in that class are selected to the sample. The probability of selection of a student in PSU b from school type a is

$$
\operatorname{Pr}(\text { selection })=\frac{50}{\# \text { schools of type } a} \times \frac{1}{\# \text { classes in school } b} .
$$

Here, the expected sample size is $n=50 \times(15+25+20)=3000$.

Type I errors ($\alpha=0.05$)

Power ($\alpha=0.05$)

Simulation B: Results

- Type I error rates: Both Pearson tests performed satisfactorily under stratified sampling.
- In the cluster sampling and stratified cluster sampling and in samples sizes of 500 and 1000 we had a large proportion of rank deficiency issues with the estimated covariance matrix.
- The power of the test in the one-factor models and stratified sampling increased to 1 with the increase of the sample size.

Stochastic gradient descent

Composite likelihood

Finite sample quantities:

- Given a sample of size N, with $\mathbf{y}_{i .}=\left(y_{i 1}, \ldots, y_{i p}\right)$ for $i=1, \ldots, N$, we can define

$$
c \ell_{n}(\boldsymbol{\theta} ; \mathbf{y})=\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \ell_{k}\left(\boldsymbol{\theta} ; \mathbf{y}_{i .}\right) \quad \text { and } \quad u_{N}(\boldsymbol{\theta} ; \mathbf{y})=\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} \nabla \ell_{k}\left(\boldsymbol{\theta} ; \mathbf{y}_{i .}\right) ;
$$

- Define the composite likelihood estimator $\boldsymbol{\theta}_{C L}$ as the solution of $u_{N}\left(\boldsymbol{\theta}_{C L} ; \mathbf{y}\right)=0$.

Notation consideration:

The value $\boldsymbol{\theta}_{C L}$ is the theoretical optimiser of $c \ell_{n}(\boldsymbol{\theta} ; \mathbf{y})$ but, typically, we can't compute it exactly. We use $\hat{\boldsymbol{\theta}}_{C L}$ to refer to the output of a generic optimisation algorithm applied on $c \ell_{n}(\boldsymbol{\theta} ; \mathbf{y})$. Otherwise stated, $\hat{\boldsymbol{\theta}}_{C L}$ is a numerical approximation of $\boldsymbol{\theta}_{C L}$.

Computational considerations

The computational bottleneck shifts from the intractability of $p\left(\mathbf{y} ; \boldsymbol{\theta}_{0}\right)$ to the number of components K to account for in \mathcal{L}_{C}. A numerical optimisation algorithm needs to re-evaluate $u_{N}(\boldsymbol{\theta} ; \mathbf{y})$ at each iteration, which has a complexity $O(N K)$.

Average stochastic gradient descent (1)

Problem setup:

- The target of the approximation is $\boldsymbol{\theta}^{*}$, such that $E_{\Gamma}\left\{u\left(\boldsymbol{\theta}^{*} ; \mathbf{y}\right)\right\}=0$
- In an online setting, Γ is the true density of the data, and $\boldsymbol{\theta}^{*} \equiv \boldsymbol{\theta}_{0}$.
- In an finite-sample setting, Γ is the data empirical distribution, and $\theta^{*} \equiv \theta_{C L}$.

The finite-sample setting: ${ }^{2}$

- The data are fixed at \mathbf{y}.
- Since data are fixed, stochastic gradients are based on an auxiliary random variable ζ.
- Define $U=U(\boldsymbol{\theta} ; \zeta \mid \mathbf{y})$, such that $E_{\zeta}\{U\}=u_{N}(\boldsymbol{\theta} ; \mathbf{y})$

[^1]
Average stochastic gradient descent (2)

A generic SGD algorithm:

Given a starting value $\boldsymbol{\theta}^{0}$ and a decreasing scheduling for the stepsize $\eta^{(t)}, t=1, \ldots, T$:
(1) At the the generic t-th iteration, alternate:

- Compute $U^{(t)}$;
- Update the parameter state with $\boldsymbol{\theta}^{(t)}=\boldsymbol{\theta}^{(t-1)}-\eta^{(t)} U^{(t)}$.
(2) Return $\overline{\boldsymbol{\theta}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\theta}^{(t)}$.

Why averaging? ${ }^{3,4}$

- Asymptotic normality: $\sqrt{T}\left(\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{C L}\right) \mid \boldsymbol{\theta}_{C L} \xrightarrow{\mathbf{d}} \mathcal{N}_{d}\left\{0, \Omega_{\zeta \mid \mathbf{y}}\right\}$ with $\Omega_{\zeta \mid \mathbf{y}}=A^{-1} S A^{-1}$;
- $A=A\left(\boldsymbol{\theta}_{C L}\right)=-\nabla u_{n}\left(\boldsymbol{\theta}_{C L} ; \mathbf{y}\right)$;
- $\quad S=S\left(\boldsymbol{\theta}_{C L}\right)=\operatorname{Var}_{\zeta \mid \mathbf{y}}\left\{U\left(\boldsymbol{\theta}_{C L} ; \zeta \mid \mathbf{y}\right)\right\}$.

[^2]
Average stochastic gradient descent (3)

A popular example of SGD:

- In most applications, stochastic gradients are constructed by considering a random subset of observations at each iteration.
- Namely, $U(\boldsymbol{\theta} ; \zeta \mid \mathbf{y}) \propto \sum_{i} \zeta_{i} u\left(\boldsymbol{\theta} ; \mathbf{y}_{i}\right)$, where $\zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right)$ follows a different distribution according to (1) how many observations to consider and (2) whether the sampling is chosen with or without replacement.
- We refer to this class of algorithms as observations-based SGD (or OSGD), to stress they represent a specific case of SGD.

CSGD - Composite Stochastic Gradient Descent

- Takes advantage of the peculiar structure of the composite likelihood;
- More computationally flexible than OSGD;
- Possibility for more efficient stochastic gradients than OSGD.

CSGD - What's new about it?

More flexible stochastic approximation of the composite score defined by

$$
U_{\mathcal{P}}=U(\boldsymbol{\theta} ; \mathbf{y}, W, \mathcal{P})=c_{\mathcal{P}} \sum_{i=1}^{N} \sum_{k=1}^{K} W_{i k} \nabla \ell_{k}\left(\boldsymbol{\theta} ; \mathbf{y}_{i .}\right)
$$

where $c_{\mathcal{P}}$ is a scaling constant that guarantees

$$
E_{W \mid \mathbf{y}}\{U(\boldsymbol{\theta} ; \mathbf{y}, W, \mathcal{P})\}=u_{N}(\boldsymbol{\theta} ; \mathbf{y}), \quad \boldsymbol{\theta} \in \Theta,
$$

and W is a random weighting matrix defined on some probability space \mathcal{P} with realisation w.

Figure: The generic weighting matrix of the stochastic composite score.

CSGD - The algorithm

CSGD algorithm:

Given $\theta^{(0)}, \mathcal{P}, c_{\mathcal{P}}, \eta, T, B$;
(1) For $t=1, \ldots, T$:

- Sampling step: Draw a new $w^{(t)}$ according to \mathcal{P};
- Approximation step: Compute $U_{\mathcal{P}}^{(t)}=U\left(\boldsymbol{\theta}^{(t-1)} ; \mathbf{y}, w^{(t)}, \mathcal{P}\right)$;
- Update: Compute $\boldsymbol{\theta}^{(t)}=\boldsymbol{\theta}^{(t-1)}-\eta^{(t)} U_{\mathcal{P}}^{(t)}$, where $\eta^{(t)}=\eta t^{-\epsilon}$, with $\epsilon \in(1 / 2,1]$.
(2) Trajectories averaging: Return

$$
\overline{\boldsymbol{\theta}}_{\mathcal{P}}=\frac{1}{T-B} \sum_{t=B+1}^{T} \boldsymbol{\theta}^{(t)}
$$

where B is an initial burn-in period.

CSGD - Choosing the probability space

OSGD (\mathcal{P}^{\prime}):

Bernoulli CSGD (\mathcal{P}^{*}):

- $W_{i 1}=\cdots=W_{i K}$ for $i=1, \ldots, N$, with

$$
\left(W_{11}, \ldots, W_{N 1}\right) \sim \operatorname{Multi}\{1,(1 / N, \ldots, 1 / N)\}
$$

$$
U_{\mathcal{P}^{\prime}}=\sum_{i=1}^{N} W_{i 1} c \ell\left(\boldsymbol{\theta} ; \mathbf{y}_{i .}\right)
$$

$$
U_{\mathcal{P}^{*}}=\sum_{i=1}^{N} \sum_{k=1}^{K} W_{i k} \nabla \ell_{k}\left(\boldsymbol{\theta} ; \mathbf{y}_{i .}\right) .
$$

CSGD - Efficiency of the estimates

	\mathcal{P}^{\prime}	\mathcal{P}^{*}
Stochastic gradient $\left(U_{\mathcal{P}}\right)$	$U_{\mathcal{P}^{\prime}}=\sum_{i=1}^{N} W_{i 1} c \ell\left(\theta ; y_{i .}\right)$	$U_{\mathcal{P}^{*}}=\sum_{i=1}^{N} \sum_{k=1}^{K} W_{i k} \nabla \ell_{k}\left(\theta ; y_{i .}\right)$
Computational budget	$O(K)$	$O(K)$
$S=\operatorname{Var}_{W \mid y}\left(U_{\mathcal{P}}\right)$	$\hat{J}\left(\theta_{C L}\right)$	$\hat{H}\left(\theta_{C L}\right)$
$A=-\nabla u_{N}\left(\theta_{C L} ; y\right)$	$\hat{H}\left(\theta_{C L}\right)$	$\hat{H}\left(\theta_{C L}\right)$
$\Omega_{W \mid y}=A^{-1} S A^{-1}$	$\hat{H}^{-1} \hat{J} \hat{H}^{-1}=\hat{\Omega}$	$\hat{H}^{-1} \hat{H} \hat{H}^{-1}=\hat{H}^{-1}$
Asymptotic distribution:	$\sqrt{T}\left(\bar{\theta}_{\mathcal{P}^{\prime}}-\theta_{C L}\right) \mid \theta_{C L} \xrightarrow{\mathrm{~d}} \mathcal{N}_{d}\{0, \hat{\Omega}\}$	$\sqrt{T}\left(\bar{\theta}_{\mathcal{P}^{*}}-\theta_{C L}\right) \mid \theta_{C L} \xrightarrow{\mathrm{~d}} \mathcal{N}_{d}\left\{0, \hat{H}^{-1}\right\}$

Table: Effects of the choice of \mathcal{P} on the efficiency of CSGD estimates.

Only conditional inference is available!

- We have the asymptotic distribution for both $\sqrt{T}\left(\bar{\theta}_{\mathcal{P}}-\theta_{C L}\right) \mid \theta_{C L}$ and $\sqrt{N}\left(\theta_{C L}-\theta_{0}\right)$; .. What about $\left(\bar{\theta}_{\mathcal{P}}-\theta_{0}\right)$?
- What happens if the CSGD algorithm is stopped too early, when $\left(\bar{\theta}_{\mathcal{P}}-\theta_{C L}\right) \mid \theta_{C L}$ is still large?

CSGD - Three asymptotic regimes

Heuristic about total variability:

Theorem: Asymptotic distribution for
Consider $N /\left(T_{N}+N\right) \rightarrow \alpha$ with $0 \leq \alpha \leq 1$

- Regime 1. $\alpha=0$:

$$
\sqrt{N}\left(\bar{\theta}_{\mathcal{P}}-\theta_{0}\right) \xrightarrow{\mathrm{d}} \mathcal{N}_{d}\{0, \Omega\} .
$$

- Regime 2. $\alpha=1$:

$$
\sqrt{T_{N}}\left(\bar{\theta}_{\mathcal{P}}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}_{d}\left\{0, E_{Y}\left(\Omega_{W \mid y}\right)\right\} .
$$

- Regime 3. $0<\alpha<1$:

$$
\sqrt{T_{N}+N}\left(\bar{\theta}_{\mathcal{P}}-\theta_{0}\right) \xrightarrow{\mathrm{d}} \mathcal{N}_{d}\left\{0, \frac{E_{Y}\left(\Omega_{W \mid y}\right)}{1-\alpha}+\frac{\Omega}{\alpha}\right\}
$$

Factor analysis for ordinal data

Figure: Example of ordinal factor model with simple loading structure.

Model setup:

- Data are assumed to be ordinal, $y_{i}=c_{i} \in\left\{0, \ldots, m_{i}-1\right\}$.

$$
y_{i}=c_{i} \Longleftrightarrow \tau_{c_{i}-1}^{(j)}<y_{i}^{*}<\tau_{c_{i}}^{(i)}
$$

- Underlying linear factor model:

$$
y^{*}=\Lambda \eta+\epsilon,
$$

where $\epsilon \sim \mathcal{N}_{p}\left(0, \Sigma_{\epsilon}\right)$ and $\Sigma_{\epsilon}=I_{p}-\operatorname{diag}\left(\Lambda \Sigma_{\eta} \Lambda^{T}\right)$.

- $\theta=\Lambda, \Sigma_{\eta}, \tau$, where
- Λ is the $p \times q$ loadings matrix $\Lambda=\left(\lambda_{1}^{T}, \ldots, \lambda_{p}^{T}\right)$
- Thresholds $\tau=\left(\tau^{(1)^{T}}, \ldots, \tau^{(p)^{T}}\right)^{T}$

Factor analysis for ordinal data - What's special?

Some considerations:

- Data reduced by sufficiency;
- The computational cost of $u_{N}(\boldsymbol{\theta} ; \mathbf{y})$ is already $O(K)$ and does not depend on N;
- No way to use OSGD if $O(K)$ is still too expensive!
- We can adapt CSGD by collapsing the weighting matrix W onto a vector;

$$
U(\theta ; W ; \mathbf{y}, \mathcal{P})=\frac{1}{N} \sum_{j<j^{\prime}} W_{j j^{\prime}} \sum_{s_{j}, s_{j^{\prime}}} \frac{n_{s_{j}}^{j j^{\prime} s_{s_{j}}}}{\pi_{s_{j}}^{j s_{j^{\prime}}}} \nabla \pi_{s_{j_{j}} s_{j^{\prime}}}^{j j^{\prime}}
$$

- We can arbitrarily choose how many sub-likelihoods to draw at each iteration (i.e. iteration complexity as low as $O(1)$).

Figure: CSGD weighting vector for ordinal factor models.

－Large－scale web－based test designed to measure 5 personality areas：Neuroticism（N），
Agreeableness（A），Extraversion（E），Openness to experience（O）and Conscientiousness（C）．
－Each area can be further split in 6 personality facets，for a total of 30 latent traits to account for，potentially mutually correlated．
－The dataset consists of answers to 120 items on a 5－point scale observed on more than 600 thousands units．

Figure：Structure of the Big Five factor model．

The Big Five dataset - Results

Estimation details

- Confirmatory loading matrix with simple structure;
- Loadings and correlations initialized at 0 .
- Sampling on average 16 pairs per iteration ($\approx 0.22 \%$).
- Burn-in period of 2500 iterations.
- Convergence check on $\frac{\left|\theta^{(t)}-\theta^{(t-1)}\right|}{\left|\theta^{(t)}\right|}$. Tolerance set at 50 consecutive iterations below 5×10^{-5}.
- Convergence after 8311 iterations (≈ 955 seconds on single core, included frequencies computation).

Thank you for your attention!

[^0]: ${ }^{1}$ Myrsini Katsikatsou et al. "Pairwise likelihood estimation for factor analysis models with ordinal data". In: Computational Statistics \& Data Analysis 56.12 (2012), pp. 4243-4258.

[^1]: ${ }^{2}$ Herbert Robbins and Sutton Monro. "A Stochastic Approximation Method". en. In: The Annals of Mathematical Statistics 22.3 (Sept. 1951), pp. 400-407.

[^2]: ${ }^{3}$ Boris T Polyak and Anatoli B Juditsky. "Acceleration of stochastic approximation by averaging". In: SIAM journal on control and optimization 30.4 (1992), pp. 838-855.
 ${ }^{4}$ David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Tech. rep. Cornell University Operations Research and Industrial Engineering, 1988.

