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Outline

Outline

• Brief introduction to latent variable models for categorical variables.

• Model framework.

• Estimation and inference framework: Pairwise Likelihood (PL)

• Topics that will be discussed:
• Limited goodness-of-fit tests under SRS and complex sample designs
• Stochastics optimization for reducing computational complexity
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Outline

Latent variables and measurement

Using statistical models to understand constructs better: a question of measurement

• Many theories in behavioral and social sciences are formulated in terms of theoretical constructs
that are not directly observed

attitudes, opinions, abilities, motivations, etc.

• The measurement of a construct is achieved through one or more observable indicators
(questionnaire items, tests).

• The purpose of a measurement model is to describe how well the observed indicators serve as a
measurement instrument for the constructs, also known as latent variables.

• Measurement models often suggest ways in which the observed measurements can be improved.
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Motivation

Motivation of our work

• Improve the estimation in cases of intractable integrals and complex models.

• Provide an inferential framework for model testing and model selection.

• Improve the computational time and cost.
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Notation

Notation

• y : p−dimensional vector of the observed variables (binary, ordinal, continuous, mixed).

• y⋆: p−dimensional vector of corresponding underlying continuous variables.

• The connection between yi and y⋆i is

yi = ci ⇐⇒ τ
(yi)
ci−1 < y⋆i < τ (yi)

ci , (1)

−∞ = τ
(yi)
0 < τ

(yi)
1 < . . . < τ

(yi)
mi−1 < τ

(yi)
mi = +∞.

• c : the c-th response category of variable yi, c = 1, . . . ,mi, τi,c: the c-th threshold of variable yi,

• In practice, y⋆i ∼ N(0, 1)

• yi is continuous: yi = y⋆i .
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Notation

Structural Equation Model

Following Muthén (1984):

y⋆ = ν + Λη + ϵ

η = α+Bη + Γx+ ζ

η: vector of latent variables, q−dimensional,
x : vector of covariates,
ϵ and ζ : vectors of error terms, and
ν and α : vectors of intercepts.
Standard assumptions:

• η, ϵ, ζ follow multivariate normal distribution,

• Cov (η, ϵ) = Cov (η, ζ) = Cov (ϵ, ζ) = 0,

• I − B is non-singular, I the identity matrix.

Composite Likelihood CRiSM Seminar 17 May 2023 5 / 59



Notation

Structural Equation Model

Based on the model:

µ ≡ E (y⋆|x) = ν + Λ(I − B)
−1

(α+ Γx)

Σ ≡ Cov (y⋆|x) = Λ (I − B)
−1

Ψ
[
(I − B)

−1
]′
Λ′ +Θ

Let θ be the parameter vector of the model.

θ′ =
(
vec (Λ)

′
, vec (B)

′
, vec (Γ)

′
, vech (Ψ)

′
, vech (Θ)

′
,α′,ν′, τ ′)

.
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Estimation Methods

Likelihood Function

• Under the model,the probability of a response pattern r is:

πr(θ) = π (y1 = c1, . . . , yp = cp;θ) =

∫
. . .

∫
ϕp(y

⋆; Σy⋆)dy⋆ , (2)

where ϕp(y
⋆; Σy⋆) is a p-dimensional normal density with zero mean, and correlation matrix Σy⋆ .

• The maximization of log-likelihood over the parameter vector θ requires the evaluation of the
p-dimensional integral which cannot be written in a closed form.

• Maximum likelihood infeasible for large number of observed variables.

Composite Likelihood CRiSM Seminar 17 May 2023 7 / 59



Estimation Methods

Composite likelihood (1)

Review the composite likelihood setup:

• y = (y1, . . . , yp)
⊤ with true density p(y; θ0), θ0 ∈ Θ ⊆ Rd;

• p(y; θ0) is unknown or too expensive to compute (e.g. large integrals involved).

• Define a set A of size K, made of marginal or conditional events for y.

• For each Ak ∈ A, k = 1, . . . ,K, define a proper likelihood function Lk(θ;y);

• Construct a composite likelihood with LC(θ;y) =
∏K

k=1 Lk(θ;y).

• Let cℓ(θ;y) and u(θ;y) be respectively the composite log-likelihood and the composite score:

cℓ(θ;y) =

K∑
k=1

ℓk(θ;y) and u(θ;y) =

K∑
k=1

∇ℓk(θ;y).
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Estimation Methods

Composite likelihood (2)

Finite sample quantities:

• Given a sample of size N , with yi. = (yi1, . . . , yip) for i = 1, . . . , n, we can define

cℓn(θ;y) =
1

N

N∑
i=1

K∑
k=1

ℓk(θ;yi.) and uN (θ;y) =
1

N

N∑
i=1

K∑
k=1

∇ℓk(θ;yi.);

• Define the composite likelihood estimator θCL as the solution of uN (θCL;y) = 0.
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Composite likelihood: Pairwise likelihood estimation

Pairwise likelihood estimation

Following Cox & Reid (2004), the composite-likelihood could be modified as follows:

cℓn(θ;y) =
∑
i<j

lnL (θ; (yi, yj))− ap
∑
i

lnL (θ; yi) ,

where c is a constant to be chosen for optimal efficiency.

Trying different values of a so that the value of ap ranges from 0 to 1, and conducting some small scale
simulation studies, our results indicate that, practically, the sum of univariate log-likelihoods affect
neither the accuracy nor the efficiency of estimation.
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Composite likelihood: Pairwise likelihood estimation

Pairwise likelihood for SEM

Basic assumption: (
y⋆i
y⋆j

)∣∣∣∣x ∼ N2

((
µi

µj

)
,

(
σii

σji σjj

))
The pl for N independent observations1:

pl (θ;y|x) =
N∑

n=1

∑
i<i′

lnL (θ; (yin, yi′n)|x) .

The specific form of lnL (θ; (yin, yi′n)|x) depends on the type of the observed variables (binary/
ordinal, continuous).

1Myrsini Katsikatsou et al. “Pairwise likelihood estimation for factor analysis models with ordinal data”. In: Computational Statistics &
Data Analysis 56.12 (2012), pp. 4243–4258.
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Composite likelihood: Pairwise likelihood estimation

Pairwise Likelihood Estimation for Binary Responses (1) - no covariates

• For a pair of variables yi and yj . The basic pairwise log-likelihood takes the form

∑
i<j

1∑
ci=0

1∑
cj=0

n(yiyj)
cicj lnπ(yiyj)

cicj (θ) (3)

where ncicj is the observed frequency of sample units with yi = ci and yj = cj .

• To accommodate complex sampling, the PL becomes:

pl(θ;y) =
∑
i<j

1∑
ci=0

1∑
cj=0

p(yiyj)
cicj lnπ(yiyj)

cicj (θ) , (4)

where pcicj =
∑

h∈s whI(y
(h)
i = ci, y

(h)
j = cj)/

∑
h∈s wh.
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Composite likelihood: Pairwise likelihood estimation

Pairwise Likelihood Estimation for Binary Responses (2)

The score function

∇pl(θ;y) =
∑
i<j

1∑
ci=0

1∑
cj=0

p(yiyj)
cicj (π(yiyj)

cicj (θ))−1 ∂π
(yiyj)
cicj (θ)

∂θ
. (5)

Using Taylor expansion, we may write

θ̂PL = θ +H(θ)−1∇pl(θ;y) + op(N
−1/2) (6)

where H(θ) is the sensitivity matrix, H(θ) = E
{
−∇2pl(θ;y)

}
. It follows that

√
N

(
θ̂PL − θ

)
d→ Nt

(
0, H(θ)J−1(θ)H(θ)

)
,

where t is the dimension of θ, and J(θ) is the variability matrix, J(θ) = V ar
{√

N∇pl(θ;y)
}
.
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Composite likelihood: Pairwise likelihood estimation

Finite-sample properties of PL estimation

For factor analysis models with categorical data (Katsikatsou et al., 2012):

• PL estimates and standard errors present a close-to-zero bias and mean squared error (MSE).

• PL performs very similarly to three-stage least squares methods and maximum likelihood as
implemented in the GLLVM approach.
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Composite likelihood: Pairwise likelihood estimation

Model fit and model selection

Katsikatsou and Moustaki, 2016 (Psychometrika).

• Pairwise Likelihood Ratio Test (PLRT) for overall fit

• Pairwise Likelihood Ratio Test for comparing models (e.g. equality constraints)

• Model selection criteria: PL versions of AIC and BIC

• The PLRT statistic performs in accordance with the asymptotic results at 5% and 1% significance
levels for N = 500, 1000 but not satisfactorily for N = 200.

• Both adjusted AIC and BIC criteria perform very well with a minimum rate of success 82.9%.
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Composite likelihood: Pairwise likelihood estimation

Software

In the R package lavaan

PL is available for fitting and testing factor analysis models or SEMs where

• all observed variables are binary or ordinal, and

• the standard parametrization for the underlying variables is used (zero means and unit variances)

• Multigroup analysis is also possible.

• Handling MAR and Non ignorable missigness.
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Current work

Current work

• Limited information test statistics under SRS and complex designs (with Skinner and Jamil).

• Methods for reducing the computational complexity of pairwise estimation
• Employ sampling methodology for selecting pairs (Papageorgiou and Moustaki, 2019)
• Stochastic optimization (with Alfonzetti, Chen, and Bellio)
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Limited Information Test Statistics for PL estimators

Limited Information Test Statistics for PL estimators
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Limited Information Test Statistics for PL estimators

Overall goodness-of-fit tests, simple hypothesis

• Let us denote with p the 2p × 1 vector of sample proportions corresponding to the vector of
population proportions π. Assuming i.i.d, it is known that:

√
N(p− π)

d−→ N(0,Σ), (7)

• where Σ = D(π)− ππ′ and N is the sample size.

• Under complex sampling design, the vector p becomes the weighted vector of proportions p with
elements

∑
h∈s whI(y

(h) = yr)/
∑

h∈s wh.

• Under suitable conditions (e.g. Fuller, 2009, sect. 1.3.2) we still have a central limit theorem,
where the covariance matrix Σ need now not take a multinomial form.
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Limited Information Test Statistics for PL estimators

Fit on the Lower order margins

• Let π̇1 = (P (y1 = 1), P (y2 = 1), . . . , P (yp = 1))′ be the p× 1 vector that contains all univariate
probabilities of a positive response to an item.

• Let π̇2 be the
(
p
2

)
× 1 vector of bivariate probabilities with elements, π̇ij = P (yi = 1, yj = 1), j < i.

• Let π2 be the vector that contains both these univariate and bivariate probabilities with dimension
s = p+

(
p
2

)
= p(p+ 1)/2.

• We also define an s× 2p indicator matrix T2 of rank s such that π2 = T2π.
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Limited Information Test Statistics for PL estimators

Limited information goodness-of-fit tests

Reiser (1996, 2008), Bartholomew and Leung (2002), Maydey-Olivares and Joe (2005, 2006) Cagnone and
Mignani (2007).

The test statistics developed are based on marginal distributions rather than on the whole response
pattern.

1 Ho : π2 = π2(θ) for some θ versus H1 : π2 ̸= π2(θ) for any θ.

2 Construct test statistics based upon the residual vector ê2 = p2 − π2(θ̂PL) derived from the
bivariate marginal distributions of y and with θPL.

3 We first derive the asymptotic distribution of ê2.
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Limited Information Test Statistics for PL estimators

Distribution of residuals (1)

• Following earlier notation, we can write s× 1 vectors: π2(θ) = T2π(θ) and p2 = T2p.

• It follows that: √
n(p2 − π2(θ))

d−→ N(0,Σ2), (8)

where Σ2 = T2ΣT
′
2.

• Because T2 is of full rank s, Σ2 is also of full rank s.
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Limited Information Test Statistics for PL estimators

Distribution of residuals (2)

Noting that π2(θ) = T2π(θ), a Taylor series expansion gives:

π2(θ̂PL) = π2(θ) + T2∆(θ̂PL − θ) + op(N
−1/2), (9)

where ∆ = ∂π(θ)

∂θ
Hence, using

θ̂PL − θ = H(θ)−1∇pl(θ;y) + op(N
−1/2)

we have
ê2 = p2 − π2(θ̂PL) = p2 − π2(θ)− T2∆H(θ)−1∇pl(θ;y) + op(N

−1/2). (10)

Finally we need to express ∇pl(θ;y) in terms of p2 − π2(θ)
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Limited Information Test Statistics for PL estimators

Distribution of residuals (3)

Hence, there is a t× s matrix B(θ) such that

∇pl(θ;y) = B(θ)(p2 − π2(θ)) (11)

Hence, from (10)

ê2 = (I − T2∆H(θ)−1B(θ))(p2 − π2(θ)) + op(n
−1/2) (12)

So from (8), we have under H0 that: √
N ê2

d−→ N(0,Ω). (13)

where Ω = (I − T2∆H(θ)−1B(θ))Σ2(I − T2∆H(θ)−1B(θ))′.
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Limited Information Test Statistics for PL estimators

Distribution of residuals (4)

To estimate the asymptotic covariance matrix of ê2, we evaluate ∂π(θ)

∂θ
at the PL estimate θ̂PL to

obtain ∆̂ and set:

Ω̂ = (I − T2∆̂Ĥ(θ̂PL)
−1B(θ̂PL))Σ̂2(I − T2∆̂Ĥ(θ̂PL)

−1B(θ̂PL))
′,

where Σ̂2 = T2Σ̂T
′
2.

• In the case of iid observations with a multinomial covariance matrix, we may set
Σ̂ = D(π(θ̂))− π(θ̂)π(θ̂)′.

• In the case of a complex sample design we need to derive a consistent estimator for Σ
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Proposed test statistics

Proposed test statistics
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Proposed test statistics

Wald test type statistics

A Wald test statistic is given by:

•
L2 = N(p2 − π2(θ̂PL))

′Ω̂+(p2 − π2(θ̂PL)), (14)

• Ω̂+ is the Moore-Penrose inverse of Ω̂.
• Under H0, this test statistic is asymptotically distributed as χ2 with degrees of freedom equal to the

rank of Ω̂+, which is between s− t and s.

• An alternative Wald test: Ξ̂2 = diag(Ω̂2)
−1 is used instead of the pseudoinverse of Ω2. We refer

to this Diagonal Wald test, (Wald v2). Its distribution needs to be determined using
moment-matching procedures. We employ a three moment adjustment.

• The estimation of Ω2 can be computationally involved in some cases (large models).

• The rank of Ω2 cannot be determined a priori instead one needs to inspect the eigen values of Ω̂2.
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Proposed test statistics

Variance-covariance free Wald test, Wald v3

Maydeu-Olivares and Joe (2005, 2006) suggested using a weight matrix Ξ such that Ω2 is a generalized
inverse of Ξ, i.e. Ξ = ΞΩ2Ξ.
The test statistic proposed:

X2 = nê⊤2 Ξ̂ê2 = nê⊤2 ∆̂
⊥
2

(
(∆̂

⊥
2 )

⊤Σ̂2∆̂
⊥
2

)−1
(∆̂

⊥
2 )

⊤ê2

• where ∆⊥
2 is an S × (S −m) orthogonal complement to ∆2, i.e. it satisfies (∆

⊥
2 )

⊤∆2 = 0.

• It converges in distribution to a χ2
S−m variate as n → ∞.
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Proposed test statistics

Pearson Chi-square Test Statistic

• Let D2 be the s× s matrix D2 = diag(π2(θ)) and let D̂2 = diag(π2(θ̂PL)).

• The Pearson test statistic is given by

X2
P = nê′2D̂

−1
2 ê2 = n(p2 − π2(θ̂PL))

′D̂−1
2 (p2 − π2(θ̂PL)). (15)

• The limiting distribution of
√
nD̂−0.5

2 ê2 under the hypothesis that the model is correct is given by
N(0, D2

−0.5Ω2D2
−0.5).

• Hence X2
P has the limiting distribution of

∑
δiWi, where the δi are eigenvalues of D2

−0.5Ω2D2
−0.5

and the Wi are independent chi-square random variables, each with one degree of freedom.

• These eigenvalues can be estimated by the eigenvalues of D̂−0.5
2 Ω̂2D̂

−0.5
2 .

• A first and a second order Rao-Scott type test can be obtained.
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Estimation of the covariance matrix under complex sampling

Estimation of the covariance matrix under complex sampling
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Estimation of the covariance matrix under complex sampling

Estimation of the covariance matrix under complex sampling: stratified
multistage sampling (1)

•

Σ = limvar{
√
N(p− π)}

= limvar{
√
N(

∑
h∈s why

(h)∑
h∈s wh

− π)}

where limvar denotes the asymptotic covariance matrix.

• Using a usual linearization argument for a ratio:

Σ = limvar{
√
N

∑
h∈s wh(y

(h) − π)

E(
∑

h∈s wh)
}. (16)
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Estimation of the covariance matrix under complex sampling

Estimation of the covariance matrix: stratified multistage sampling (2)

• Strata are labelled a and the primary sampling units are labelled b = 1, . . . , Na, where Na is the
number of primary sampling units selected in stratum a.

• Then we write
[
∑
h∈s

wh(y
(h) − π)]/[E(

∑
h∈s

wh)] =
∑
a

∑
b

ũab, (17)

• where ũab =
∑

h∈sab
wh(y

(h) − π)/[E(
∑

h∈s wh)] and sab is the set of sample units contained
within primary sampling unit b within stratum a. So

Σ = limvar{
√
N

∑
a

∑
b

ũab}. (18)
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Estimation of the covariance matrix under complex sampling

Estimation of the covariance matrix: stratified multistage sampling (3)

• A standard estimator of N−1Σ is then given by

N−1Σ̂ =
∑
a

Na

Na − 1

∑
b

(uab − ūa)(uab − ūa)
′ (19)

• where uab =
∑

h∈sab
wh(y

(h) − p)/(
∑

h∈s wh) and ūa = N−1
a

∑
b uab
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Estimation of the covariance matrix under complex sampling

Estimation of the covariance matrix under complex sampling (4)

• In order to compute the Wald and Pearson test statistic, we only require Σ̂2 = T2Σ̂T
′
2.

N−1Σ̂2 =
∑
a

Na

Na − 1

∑
b

(vab − v̄a)(vab − v̄a)
′ (20)

where vab =
∑

h∈sab
wh(y

(h)
2 − p2)/(

∑
h∈s wh), v̄a = N−1

a

∑
b vab and y

(h)
2 = T2y

(h) is the s× 1

vector containing indicator values I(y
(h)
i = 1) and I(y

(h)
i = y

(h)
j = 1) for different values of i and j.
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Simulation study

Simulation study

Composite Likelihood CRiSM Seminar 17 May 2023 35 / 59



Simulation study Simulation A: SRS

Simulation A: data generated under SRS

• Four sample sizes (n = 500, 1000, 2000, 3000).

1 p = 5 and q = 1 (1F 5V)
2 p = 8 and q = 1 (1F 8V)
3 p = 15 and q = 1 (1F 15V)
4 p = 10 and q = 2, 5 indicators per factor (2F 10V)
5 p = 15 and q = 3, 5 indicators per factor (3F 15V)

• Models 4 and 5 are confirmatory factor analysis models.

• The number of replications within each condition is 1000.

• Power analysis: a latent variable z ∼ N(0, 1) added to the data generating model.
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Simulation study Simulation A: SRS

Figure: Model 4: Confirmatory factor analysis model
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Simulation study Simulation A: SRS

Simulation A: Test statistics computed

• The Wald test.

• The Wald v2 test (diagonal).

• The Wald v3 test (otrhogonal components)

• The Pearson test (PearsonRS).

• The first-and-second-moment adjusted (FSMadj) Pearson test statistic.
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Simulation study Simulation A: SRS
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Simulation study Simulation A: SRS
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Simulation study Simulation A: SRS

Simulation A: Results

• The Wald v2 has the poorest performance. Both Pearson test statistics performed satisfactorily at
all three significance levels α = 0.01, 0.05, 0.10 and improved with the increase of the sample size.

• The power of all tests increases with the sample size but stayed at lower levels in the case of two
and three-factor models.
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Simulation study Simulation B: Complex sampling

Simulation B: data generated under complex sampling

• Four sample sizes (n = 500, 1000, 2000, 3000).

• We generate data for an entire population inspired by a sampling design used in large scale
assessment surveys.

• The population consists of 2, 000 schools (Primary Sampling Units, PSU) of three types: ”A” (400
units), ”B” (1000 units), and ”C” (600 units). The school type correlates with the average abilities
of its students (stratification factor).

• Each school is assigned a random number of students from the normal distribution N(500, 1252)
(the number then rounded down to a whole number).

• Students are then assigned randomly into classes of average sizes 15, 25 and 20 respectively for
each school type A, B and C.

• The total population size is roughly 1 million students.
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Simulation study Simulation B: Complex sampling

Simulation B: Sampling designs (1)

1 Stratified sampling: From each school type (strata), select 1000 students (PSU) using SRS. Let
Na be the total number of students in stratum a ∈ {1, 2, 3}. Probability of selection of a student
in stratum a is Pr(selection) = 1000

Na
. The total sample size is n = 3× 1000 = 3000.

2 Two-stage cluster sampling: Select 140 schools (PSU; clusters) using probability proportional to
size (PPS). For each school, select one class by SRS, and all students in that class. The probability
of selection of a student in PSU b = 1, . . . , 2000:

Pr(selection) = Pr(weighted school selection)× 1

# classes in school b
.

The total sample size will vary from sample to sample, but on average will be
n = 140× 21.5 = 3010, where 21.5 is the average class size per school.
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Simulation study Simulation B: Complex sampling

Simulation B: Sampling designs (2)

1 Two-stage stratified cluster sampling: For each school type (strata), select 50 schools using SRS.
Then, within each school, select 1 class by SRS, and all students in that class are selected to the
sample. The probability of selection of a student in PSU b from school type a is

Pr(selection) =
50

# schools of type a
× 1

# classes in school b
.

Here, the expected sample size is n = 50× (15 + 25 + 20) = 3000.
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Simulation study Simulation B: Complex sampling
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Simulation study Simulation B: Complex sampling

Composite Likelihood CRiSM Seminar 17 May 2023 41 / 59



Simulation study Simulation B: Complex sampling

Simulation B: Results

• Type I error rates: Both Pearson tests performed satisfactorily under stratified sampling.

• In the cluster sampling and stratified cluster sampling and in samples sizes of 500 and 1000 we had
a large proportion of rank deficiency issues with the estimated covariance matrix.

• The power of the test in the one-factor models and stratified sampling increased to 1 with the
increase of the sample size.
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Stochastic gradient descent (improve computational complexity)

Stochastic gradient descent
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Stochastic gradient descent (improve computational complexity)

Composite likelihood

Finite sample quantities:

• Given a sample of size N , with yi. = (yi1, . . . , yip) for i = 1, . . . , N , we can define

cℓn(θ;y) =
1

N

N∑
i=1

K∑
k=1

ℓk(θ;yi.) and uN (θ;y) =
1

N

N∑
i=1

K∑
k=1

∇ℓk(θ;yi.);

• Define the composite likelihood estimator θCL as the solution of uN (θCL;y) = 0.

Notation consideration:

The value θCL is the theoretical optimiser of cℓn(θ;y) but, typically, we can’t compute it exactly. We

use θ̂CL to refer to the output of a generic optimisation algorithm applied on cℓn(θ;y). Otherwise

stated, θ̂CL is a numerical approximation of θCL.
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Stochastic gradient descent (improve computational complexity)

Computational considerations

The computational bottleneck shifts from the intractability of p(y;θ0) to the number of components K
to account for in LC . A numerical optimisation algorithm needs to re-evaluate uN (θ;y) at each
iteration, which has a complexity O(NK).
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Stochastic gradient descent (improve computational complexity) Average stochastic gradient descent methods

Average stochastic gradient descent (1)

Problem setup:
• The target of the approximation is θ∗, such that EΓ {u(θ∗;y)} = 0

• In an online setting, Γ is the true density of the data, and θ∗ ≡ θ0.
• In an finite-sample setting, Γ is the data empirical distribution, and θ∗ ≡ θCL.

The finite-sample setting:2

• The data are fixed at y.

• Since data are fixed, stochastic gradients are based on an auxiliary random variable ζ.

• Define U = U(θ; ζ | y), such that Eζ {U} = uN (θ;y)

2Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. en. In: The Annals of Mathematical Statistics 22.3 (Sept.
1951), pp. 400–407.
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Stochastic gradient descent (improve computational complexity) Average stochastic gradient descent methods

Average stochastic gradient descent (2)

A generic SGD algorithm:
Given a starting value θ0 and a decreasing scheduling for the stepsize η(t), t = 1, . . . , T :

1 At the the generic t-th iteration, alternate:
• Compute U(t);
• Update the parameter state with θ(t) = θ(t−1) − η(t)U(t).

2 Return θ̄ = 1
T

∑T
t=1 θ

(t).

Why averaging?3,4

• Asymptotic normality:
√
T (θ̄ − θCL)|θCL

d−→ Nd

{
0,Ωζ|y

}
with Ωζ|y = A−1SA−1;

• A = A(θCL) = −∇un(θCL;y);

• S = S(θCL) = Varζ|y {U(θCL; ζ|y)}.

3Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochastic approximation by averaging”. In: SIAM journal on control and
optimization 30.4 (1992), pp. 838–855.

4David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Tech. rep. Cornell University Operations
Research and Industrial Engineering, 1988.
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Stochastic gradient descent (improve computational complexity) Average stochastic gradient descent methods

Average stochastic gradient descent (3)

A popular example of SGD:

• In most applications, stochastic gradients are constructed by considering a random subset of
observations at each iteration.

• Namely, U(θ; ζ|y) ∝
∑

i ζiu(θ;yi), where ζ = (ζ1, . . . , ζN ) follows a different distribution
according to (1) how many observations to consider and (2) whether the sampling is chosen with
or without replacement.

• We refer to this class of algorithms as observations-based SGD (or OSGD), to stress they represent
a specific case of SGD.
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Composite Stochastic Gradient Descent

CSGD - Composite Stochastic Gradient Descent

• Takes advantage of the peculiar structure of the composite likelihood;

• More computationally flexible than OSGD;

• Possibility for more efficient stochastic gradients than OSGD.
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Composite Stochastic Gradient Descent

CSGD - What’s new about it?

More flexible stochastic approximation of the
composite score defined by

UP = U(θ;y,W,P) = cP

N∑
i=1

K∑
k=1

Wik∇ℓk(θ;yi.),

where cP is a scaling constant that guarantees

EW |y {U(θ;y,W,P)} = uN (θ;y), θ ∈ Θ,

and W is a random weighting matrix defined on
some probability space P with realisation w.

K 

W1 l W12 · · · W11{ 

W21 W22 · · · W2K 

W == N 

WNl WN2 · · · WNJ( 

Figure: The generic weighting matrix of the stochastic composite
score.
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Composite Stochastic Gradient Descent

CSGD - The algorithm

CSGD algorithm:

Given θ(0), P, cP , η, T , B;

1 For t = 1, . . . , T :
• Sampling step: Draw a new w(t) according to P;

• Approximation step: Compute U
(t)
P = U(θ(t−1);y, w(t),P);

• Update: Compute θ(t) = θ(t−1) − η(t)U
(t)
P , where η(t) = ηt−ϵ, with ϵ ∈ (1/2, 1].

2 Trajectories averaging: Return

θ̄P =
1

T −B

T∑
t=B+1

θ(t),

where B is an initial burn-in period.
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Composite Stochastic Gradient Descent

CSGD - Choosing the probability space

OSGD (P′):

• Wi1 = · · · = WiK for i = 1, . . . , N , with
(W11, . . . ,WN1) ∼ Multi{1, (1/N, . . . , 1/N)}

UP′ =

N∑
i=1

Wi1cℓ(θ;yi.)

Figure: Example of weighting matrix defined on P′.

Bernoulli CSGD (P∗):

• Wik
iid∼ Bernoulli(1/N), for i = 1, . . . , N and

k = 1, . . . ,K.

UP∗ =

N∑
i=1

K∑
k=1

Wik∇ℓk(θ;yi.).

Figure: Example of weighting matrix defined on P∗.Composite Likelihood CRiSM Seminar 17 May 2023 52 / 59



Composite Stochastic Gradient Descent

CSGD - Efficiency of the estimates

P′ P∗

Stochastic gradient (UP ) UP′ =
∑N

i=1 Wi1cℓ(θ; yi.) UP∗ =
∑N

i=1

∑K
k=1 Wik∇ℓk(θ; yi.)

Computational budget O(K) O(K)

S = VarW |y (UP) Ĵ(θCL) Ĥ(θCL)

A = −∇uN (θCL; y) Ĥ(θCL) Ĥ(θCL)

ΩW |y = A−1SA−1 Ĥ−1ĴĤ−1 = Ω̂ Ĥ−1ĤĤ−1 = Ĥ−1

Asymptotic distribution:
√
T (θ̄P′ − θCL)|θCL

d−→ Nd

{
0, Ω̂

} √
T (θ̄P∗ − θCL)|θCL

d−→ Nd

{
0, Ĥ−1

}
Table: Effects of the choice of P on the efficiency of CSGD estimates.

Only conditional inference is available!
• We have the asymptotic distribution for both

√
T (θ̄P − θCL)|θCL and

√
N(θCL − θ0); ... What about (θ̄P − θ0)?

• What happens if the CSGD algorithm is stopped too early, when (θ̄P − θCL)|θCL is still large?
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Composite Stochastic Gradient Descent

CSGD - Three asymptotic regimes

Theorem: Asymptotic distribution for θ̄P

Consider N/(TN + N) −→ α with 0 ≤ α ≤ 1

• Regime 1. α = 0 :

√
N(θ̄P − θ0)

d−→ Nd {0,Ω} .

• Regime 2. α = 1 :

√
TN (θ̄P − θ0)

d−→ Nd

{
0, EY

(
ΩW |y

)}
.

• Regime 3. 0 < α < 1 :

√
TN + N(θ̄P − θ0)

d−→ Nd

{
0,

EY

(
ΩW |y

)
1 − α

+
Ω

α

}

Heuristic about total variability:

VarW,Y (θ̄P) = EY

{
VarW |y(θ̄P)

}
+

+ VarY
{
EY (θ̄P)

}
≈

1

T
EY

(
ΩW |y

)
+

1

N
Ω.
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Application example: Large scale surveys

Factor analysis for ordinal data

Figure: Example of ordinal factor model with simple
loading structure.

Model setup:

• Data are assumed to be ordinal,
yi = ci ∈ {0, . . . ,mi − 1}.

yi = ci ⇐⇒ τ
(j)
ci−1 < y∗i < τ (i)ci ,

• Underlying linear factor model:

y∗ = Λη + ϵ,

where ϵ ∼ Np(0,Σϵ) and Σϵ = Ip − diag(ΛΣηΛ
T ).

• θ = Λ,Ση, τ , where
• Λ is the p × q loadings matrix Λ = (λT

1 , . . . , λT
p )

• Thresholds τ = (τ(1)T , . . . , τ(p)T )T
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Application example: Large scale surveys

Factor analysis for ordinal data - What’s special?
Some considerations:
• Data reduced by sufficiency;

• The computational cost of uN (θ;y) is already O(K) and does not depend on N ;

• No way to use OSGD if O(K) is still too expensive!

• We can adapt CSGD by collapsing the weighting matrix W onto a vector;

U(θ;W ;y,P) =
1

N

∑
j<j′

Wjj′

∑
sj ,sj′

njj′

sjsj′

πjj′
sjsj′

∇πjj′

sjsj′

• We can arbitrarily choose how many sub-likelihoods to draw at each iteration (i.e. iteration
complexity as low as O(1)).

Figure: CSGD weighting vector for ordinal factor models.
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Application example: Large scale surveys

The Big Five dataset

Figure: Structure of the Big Five factor model.

• Large-scale web-based test designed to measure 5
personality areas: Neuroticism (N),
Agreeableness (A), Extraversion(E), Openness
to experience (O) and Conscientiousness (C).

• Each area can be further split in 6 personality
facets, for a total of 30 latent traits to account
for, potentially mutually correlated.

• The dataset consists of answers to 120 items on
a 5-point scale observed on more than 600
thousands units.
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Application example: Large scale surveys

The Big Five dataset - Results

Estimation details

• Confirmatory loading matrix with
simple structure;

• Loadings and correlations initialized
at 0.

• Sampling on average 16 pairs per
iteration (≈ 0.22%).

• Burn-in period of 2500 iterations.

• Convergence check on
|θ(t)−θ(t−1)|

|θ(t)|
. Tolerance set at

50 consecutive iterations below
5 × 10−5.

• Convergence after 8311 iterations
(≈ 955 seconds on single core,
included frequencies computation).
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Application example: Large scale surveys

Thank you for your attention!
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