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Illustrative Example

The series w/o any outlier effects—structural breaks easier to identify
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A Second Example

Weekly data: January 2004--December 2011.

Any breaks? Outliers?
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Game Plan

 Introduction
 Piecewise Models (AR, GARCH, SV, State-space)
 Model selection using Minimum Description Length (MDL)

 General principles
 Application to AR models with breaks

 Optimization using a Genetic Algorithm
 Basics

 Simulation Examples
 Applications
 Comments about theory for AutoPARM

 Consistency (FLIL)
 AutoPARM with Outliers
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Piecewise Models—examples

1.  Piecewise AR model:

where 0 1 m m+1 n, and {t} is IID(0,1).

Goal: Estimate

m = number of change-points
j = location of jth break point 
j = level in jth segment
pj = order of AR process in jth segment

= AR coefficients in jth segment
j = scale in jth segment
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Examples (cont) 

2.  Segmented GARCH model:

where 0 1 m m+1 n + 1, and {t} is IID(0,1).

3.  Segmented stochastic volatility model:

4.  Segmented state-space model  (SVM a special case):
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Model Selection Using Minimum Description Length

Choose the model which maximizes the compression of the data or, 
equivalently, select the model that minimizes the code length of the 
data (i.e., amount of memory required to encode the data).

M = class of operating models for y = (y1, . . . , yn)

LF (y) = code length of y relative to F  M

Typically, this term can be decomposed into two pieces (two-part code), 

where   

= code length of the fitted model for F

= code length of the residuals based on the fitted model

,ˆ|ˆ(  ˆ()( )eL|y)LyL FFF 

|y)L F̂(

)|eL F̂ˆ(
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Model Selection Using Minimum Description Length (cont)

Using results from information theory and likelihood 
approximations, the minimum description length for the 
segmented AR model with parameters
is

where nj is the number of observations in the jth segment, and
is the Yule-Walker estimate of the process variance in the jth

segment.
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Minimizing the MDL

 Select the best-fitting model for the data as the model that minimizes 

the minimum description length with respect to the number of 

change-points m, the change-point locations, 1, m, and the AR 

orders p1,…, pm+1.

 The dependence of the minimum description length on the 

autoregressive coefficient parameter estimates is only through the 

white noise estimates      , j = 1,…, m + 1.

 Numerical minimization carried out using a genetic algorithm, which 

mimics natural evolution (see Davis et al., 2006).

2ˆ j
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Map the break points with a chromosome c via

where

For example, 

c = (2, -1, -1, -1, -1, 0, -1,  -1, -1, -1, 0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
t: 1                       6 11 15

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

Optimization Using Genetic Algorithm
Genetic Algorithm: Chromosome consists of n genes, each taking 
the value of 1 (no break) or p (order of AR process).  Use natural 
selection to find a near optimal solution.  
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Implementation of Genetic Algorithm—(cont)

Generation 0:  Start with L (200) randomly generated chromosomes, 
c1, . . . ,cL with associated MDL values, MDL(c1), . . . , MDL(cL).

Generation 1:  A new child in the next generation is formed from the 
chromosomes c1, . . . , cL of the previous generation as follows:

 with probability c, crossover occurs. 

 two parent chromosomes ci and cj are selected at random with 
probabilities proportional to the ranks of MDL(ci).

 kth gene of child is k = ik w.p. ½ and jk w.p. ½

 with probability  c, mutation occurs. 

 a parent chromosome ci is selected 

 kth gene of child is k = ik w.p. 1 ; 1 w.p. 2;and p w.p.  12.
16
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Implementation of Genetic Algorithm—(cont)

Execution of GA:  Run GA until convergence or until a maximum 
number of generations has been reached. .
Various Strategies:  

 include the top ten chromosomes from last generation in next 
generation.

 use multiple islands, in which populations run independently, 
and then allow migration after a fixed number of generations. 
This implementation is amenable to parallel computing.

17
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Simulation Examples (cont)

2.  Slowly varying AR(2) model:

where                                          and {t} ~ IID N(0,1).
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2. Slowly varying AR(2)  (cont)

GA results: 3 pieces, breaks at 1=293, 2=615.  Total run time 27.45 secs

True Model Fitted Model

Fitted model:   

1- 292: .365    -0.753 1.149
293- 614:    .821    -0.790  1.176
615-1024:  1.084   -0.760    0.960
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2. Slowly varying AR(2)  (cont)

True Model Average Model

In the graph below right, we average the spectogram over the GA 
fitted models generated from each of the 200 simulated realizations.
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Simulation Examples (cont)

3.  Piecewise ARMA:

where {t} ~ IID N(0,1).
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3. Piecewise ARMA  (cont)

GA results: 3 pieces, breaks at 1=513, 2=769.  Total run time 1.53 secs

True Model Fitted Model

Fitted model: AR orders 4, 1, 2
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Data:  yt = number of monthly deaths and serious injuries in UK, Jan 
`75 – Dec `84, (t = 1,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example--Monthly Deaths & Serious Injuries, UK

Year
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18
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20
00

22
00
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Data:  xt = number of monthly deaths and serious injuries in UK, 
differenced at lag 12; Jan `75 – Dec `84, (t = 13,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example -- Monthly Deaths & Serious Injuries, UK (cont)
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D
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Traditional regression 
analysis:
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Data:  Yt = number of monthly deaths and serious injuries in UK, Jan 
`75 – Dec `84, (t = 1,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example: Monthly Deaths & Serious Injuries, UK

Year
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20

0

Piece 1: t=1,…, 98IID;  Piece 2: (t=99,…108) IID;  Piece 3: t=109,…,120  AR(1)
Results from GA: 3 pieces; time = 4.4secs
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Application to GARCH

Garch(1,1) model: 
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Application to GARCH (cont)

More simulation results for Garch(1,1) : 
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 Mean SE Med Freq
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Berkes = Berkes, Gombay, Horvath, and Kokoszka (2004).
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Application to Parameter-Driven SS Models

State Space Model Setup:
Observation equation: 

p(yt | t) exp{t yt  b(t) + c(yt)}.

State equation: {t} follows the piecewise AR(1) model given by

t = k  kt-1  kt ,   if   k-1  t k ,

where  0   1   m n, and  {t } ~ IID N(0,).

Parameters: 
m = number of break points
k = location of break points 
k = level in kth epoch
k = AR coefficients kth epoch
k = scale in kth epoch

38
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Remark:  The exact likelihood is given by the following formula

where

It turns out that                    is nearly linear and can be approximated 

by a linear function via importance sampling, 

Application to Structural Breaks—(cont)

Estimation:  For (m, 1, . . . , m fixed, calculate the approximate 

likelihood evaluated at the “MLE”, i.e.,   

where                                                 is  the MLE.
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time
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Model:  Yt | t N(0,exp{t}), t = t-1+ t ,  {t}~IID N(0, )

SV Process Example

True model:  

 Yt | t ~ N(0, exp{t}),  t = -.05 + .975t-1+ t ,  {t}~IID N(0, .05),  t  750

 Yt | t ~ N(0, exp{t }),  t = -.25 +.900t-1+ t ,  {t}~IID N(0, .25),  t > 750.

 GA estimate 754, time 1053 secs

Breaking Point
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time
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Model:  Yt | t N(0,exp{t}), t = t-1+ t ,  {t}~IID N(0, )

SV Process Example

True model:  

 Yt | t ~ N(0, exp{t}),  t = -.175 + .977t-1+ t ,  {t}~IID N(0, .1810),  t  250

 Yt | t ~ N(0, exp{t }),  t = -.010 +.996t-1+ t ,  {t}~IID N(0, .0089),  t > 250.

 GA estimate 251, time 269s
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SV Process Example-(cont)

time

y
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Fitted model based on no structural break:  

 Yt | t N(0, exp{t}), t = -.0645 + t-1+ t ,  {t}~IID N(0, 

True model:  

 Yt | t ~ N(0, exp{at}),  t = -.175 + .977t-1+ et ,  {t}~IID N(0, .1810),  t  250

 Yt | t N(0, exp{t }), t = -.010 t-1+ t ,  {t}~IID N(0, t > 250.

time
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0 simulated seriesoriginal series
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SV Process Example-(cont)
Fitted model based on no structural break:  

 Yt | t N(0, exp{t}), t = -.0645 + t-1+ t ,  {t}~IID N(0, 
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Comments on the theory for AutoPARM

Consistency of :

Suppose the true number of change points is m and let 

1=1/n, . . . , m=m/n

be the relative (true) change-points. Then AutoPARM estimates 
of and satisfy:

	 → ,

	 → .

45

Remarks: The proof is a “cool” application of Strassen’s function 
law of the iterated logarithm.  
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Comments on the theory for AutoPARM (cont)

Extension: If the process in the jth segment is stationary with ACVF 

j(h) and with j(h)  j-1(h) for some lag h{0,1,…,p*}.  Then the 

estimator which minimizes MDL by fitting AR(p*) models in each 

segment produces weakly consistent estimators of m = true number of 

change-points.

Remark: This result can be applied to detecting change-points in 

piecewise GARCH models.  Here one can take p*=0 so that we are 

only talking about changes in variance.

Further extensions: This result has been extended to include a more 

general framework by Davis and Yau (2012).  Base models include 

ARMA and GARCH—results address some identifiability issues 

(Andrews and Cheng (2011)). 
46
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Comments on the theory for AutoPARM (cont)

47

Theorem: Suppose  is the AR(1) process

,

where 1, and the is IID(0,1) with finite 5th moment and pdf

satisfying

• 0	 for all 

• 	

• liminf → 	e 0, for some 	 0. 

Then, MDL is NOT consistent using Yule-Walker estimation.  That 

is, there is a positive probability that a change-point model will be 

selected as → ∞.
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Modeling Framework for Outlier Detection 

Data: , … ,
Model parameters

Segments:
m = number of change-points
j = start of jth segment (0 1 m m+1 n)

Intra-segment parameters  (jth segment , 	

Integer valued: , ∗, , ,
∗ , … , ∗,

∗ , , , … , ,

• 	order of AR process 

• location	of	additive	outliers

,
∗ , … , ∗,

∗

• location	of	innovational	outliers

, , … , ,

55
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Modeling Framework (cont) 

Data: , … ,

Intra-segment parameters  (jth segment , 	

Real valued: , , , … , , , , ∗ , 	

• , , , … , , , AR model parameters

• ∗ ≫ is AO variance

• ≫ 1	is proportional increase in innovation variance.

Intra-segment AR process with IO:

, , , ⋯ , , ,

where , is an independent sequence with 

Var , 	 ,
1,
	if	 ∈ ,
if ∉ .

56
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Modeling Framework (cont) 

Data: , … ,
Intra-segment AR process with IO:

, , , ⋯ , , ,

where , is an independent sequence with 

Var , 	 ,
1,
			if	 ∈ ,
			if	 ∉ .

Intra-segment AR process with IO and AO:

, , ,
, ,

			if	 ∈ ,	
		if	t ∉ ,

where the , are independent and N(0, ∗ distributed.

57
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Modeling Framework (cont) 

Remarks: 

• If the , and the , 	are Gaussian, then model (for fixed 
integer parameter ) can be expressed as a Gaussian linear 
state-space model.

• Take advantage of state-space model and Kalman recursions 
for likelihood calculation.

58
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Model Selection Using Minimum Description Length

Choose the model which maximizes the compression of the data or, 
equivalently, select the model that minimizes the code length of the 
data (i.e., amount of memory required to encode the data).

M = class of operating models for y = (y1, . . . , yn)

LF (y) = code length of y relative to F  M

Typically, this term can be decomposed into two pieces (two-part code of 
Rissanen), 

where   

= code length of the fitted model for F

= code length of the residuals based on the fitted model

,ˆ|ˆ(  ˆ()( )eL|y)LyL FFF 

|y)L F̂(

)|eL F̂ˆ(
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Model Selection Using Minimum Description Length

Take 

M = class of operating models for y = (y1, . . . , yn) that
includes piecewise AR models with AO’s and IO’s.

Let , … , 	and , … , be the integer- and real-
valued parameter vectors, where
																																					 , ∗, , ,

∗ , … , ∗,
∗ , , , … , ,

, , , … , , , , ∗ , .

Then 
L log 1 log

∑ log log ∗ log	 ∗ log 1/2 3 log
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Model Selection Using Minimum Description Length

Moreover, using results from information theory, Rissanen argues

L ̂| ~ ∑ log ; 	

where ; 	 ) is the likelihood evaluated at the MLE of the jth

segment; so that

, , , , ∗, ,

log 1 log log log ∗ log

∗ log 1/2 3 log log ;



m

j
jj n

1

2
2 ))ˆ2((log
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Model Selection Using Minimum Description Length

Computing the likelihood	 ; 	 : Start by computing likelihood 
in a segment given and locations of additive and innovational 
outliers.

; , ; ,

, ,

, ,

	|
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Model Selection Using Minimum Description Length

Computing the likelihood	 ; 	 :

; , 	|

• 	~ ; , 	 multivariate normal

•

								 , … , ; , 2 exp ⋯

∉
																																																																																								

2 exp ⋯

∈

Remark: Use Kalman recursions to compute likelihood.
63
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Map the break points with a chromosome c via
, , , , ↔ ,… , 							where   

3,
2,
1,
,

	 	

			if		AO	occurs	at	 ,																																																				
if		IO	occurs	at	 ,																																																			
if	no	break	occurs	at	 ,																																								
if	break	occurs	at	time	 	and	AR	model	is	 .

For example, 

c = (2, -1, -3, -1, -1, 0, -1,  -1, -1, -1, 0, -1, -1, -1, 3, -1, -1, -2, -1,-1)
t: 1                       6 11 15

would correspond to a process with AO at t=3, IO at t=18.

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

Optimization Using Genetic Algorithm
Genetic Algorithm: Chromosome consists of n genes, each taking 
the value of -3 (AO), -2 (AI), 1 (no break), p (order of AR process).  
Use natural selection to find a near optimal solution.  



Warwick Mar 2012

Robust AutoPARM-IO contaminated AR model 

Single AR model with 
single IO at ?           

MDL’s w/ top 5 
residuals indicated

66



Warwick Mar 2012

Robust AutoPARM-AO contaminated AR model 

Single AR model with 
single AO at 101           

MDL’s w/ top 5 
residuals indicated

67
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Remark: Observe that large reductions in MDL due to outliers seem 
to occur at locations of largest residuals.  Use this info to facilitate the 
search optimizer.

Search modification: for simplicity, assume one AR(p) signal

1. Select locations , … , of k largest absolute residuals.

2. Let (resp be an AR(p) model with AO(IO) at time t 
and set

, , 	 ∈

3. Define argmin ∈ ; location of outlier

4. Set , , , , 	 ∈
							 argmin ∈ ;  location of outlier

5. Continue to obtain , … , and define

argmin 0

Accelerating Robust AutoPARM

68
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6. Only allow time locations , … , for outliers in the current 
generation of the genetic algorithm.

7. After producing the next generation, select largest residuals again 
and repeat.

Remark: The outlier selection step has elements that are similar in 
spirit to one proposed by Bianco et al. (2001) and Sánchez and Peña 
(2003).  Our method is not as likely to stop prematurely.

Accelerating Robust AutoPARM
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Accelerating Robust AutoPARM

10 largest 
residuals

Residuals selected by 
minimizing MDL

Example: AR(1) model
.8 , 		 ~ 	 0,1

with AO’s at {16,32,48,80} and no IOs.  

One wrong 
classification

Correctly 
identified  
locations

Minimum 
MDL
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Robust AutoPARM-sample results 

DGP1: one-piece AR model; no outliers

DGP2: one-piece AR model; 5 innovation outliers

DGP3: one-piece AR model; 4 additive outliers
71
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Robust AutoPARM-sample results 

Three-piece AR model:

.8 3 ,																							
1.69 .81 ,			
1.32 .81 3 ,

					if	1 128,				
					if	128 t 192,
						if	192 t 256.

DGP4: three-piece AR model; no outliers

DGP5: three-piece AR model; 3 innovation outliers at 16, 32, 48.

DGP6: three-piece AR model; 3 additive outliers at 16, 32, 48.            
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Robust AutoPARM-sample results 

DGP5: three-piece AR model; 3 innovation outliers at 16, 32, 48.

time

Y

0 50 100 150 200 250

-5
0

5
10

15
20

 

 

Results from AutoPARMO: 
Breaks: 124 and 194;  3 IA outliers: 16, 32, 48
Results from AutoPARM(no outliers):  Breaks at 52, 126, 294
arima.rob:  AO at 16, 17,32, 48, 49 74
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Robust AutoPARM-sample results 

DGP4: three-piece AR model; no outliers

DGP5: three-piece AR model; 3 innovation outliers

DGP6: three-piece AR model; 3 additive outliers
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Robust AutoPARM-sample results 

DGP5: two-piece AR model; 3 innovation outliers

DGP6: two-piece AR model; 3 additive outliers
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Application to Google Trends Example: Tea Party

Weekly data: January 2004--December 2011.

Results from AutoPARMO: 
Break: Feb 15, 2009 (3 weeks after Obama took office)
AO outliers: 11-5-06(election week); 9-2-07; 12-16-07; 
4-12-09 (taxes due); 4-11-10 (taxes); 9-12-10; 10-31-10 (election)

time

Y

2004 2006 2008 2010 2012

0
5

10
15

 

 

3 weeks after 
Obama takes 
office

Taxes due

Midterm 
electionsTexas Tea 

Party straw 
poll

Ron Paul 
raised 
$4.4M  on 
internet in 
1 day

9-12 taxpayer 
march on 
Washington DC
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Application to Google Trends Example: Tea Party

Results from AutoPARMO on the two segments: 
AO outliers (7): 149, 192, 207, 276, 287, 328, 357

IO outliers (2): 325, 350

Refinement: January 2004--December 2011.

time

Y

2004 2006 2008 2010 2012

0
5

10
15

3 weeks after 
Obama takes 
office

Taxes due

Midterm 
electionsTexas Tea 

Party straw 
poll

Ron Paul 
raised 
$4.4M  on 
internet in 
1 day

9-12 taxpayer 
march on 
Washington DC

Tea Party 
protests
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Summary Remarks

1. MDL appears to be a good criterion for detecting structural breaks.

2. Optimization using a genetic algorithm is well suited to find a near 
optimal value of MDL.

3. While estimating structural breaks for nonlinear time series models is 
more challenging, this paradigm of using MDL together with GA holds 
promise for break detection in parameter-driven models and other 
nonlinear models.

4. Extensions to outlier (both innovation and additive) detection are 
currently under study.  Results look promising—new implementation is 
almost ready.
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• Download the zip file  AutoPARM (only runs on PC) from 
www.stat.columbia.edu/~rdavis/AutoPARM/AutoPARM.zip

• Extract the zip file (folder called AutoPARM) will be created.

• Open a command prompt window  
(In run, type the command cmd)

• Navigate to the AutoPARM folder

• AutoPARM needs an input file (first several lines of example file 
eqn5.in are:

• DATA:  
eqn5.dat    [name of file containing input data]

• OUTPUT:  
eqn5.out    [name of file to export results]

• Execute program by typing on command line
AutoPARM eqn5.in

• Results are written to file named eqn5.out

• More details about running the program can be found in AutoPARM.pdf

Running the Program AutoPARM


