Sharp Piece-wise Linear Smoothing and Deconvolution with an *L*₀ Penalty

Paul Eilers¹ and Ralph Rippe²

¹Erasmus Medical Center, Rotterdam, The Netherlands ²Leiden University Medical Center, Leiden, The Netherlands

The University of Warwick, March 2012

Data from genetics: DNA copy numbers in tumors

Biological background, simplified

- We have two copies of each chromosome
- Most of our DNA is identical for everyone
- But not at millions of SNPs (single nucleotide polymorphisms)
- A SNP has two possible states, called alleles, say A and B
- Possible combinations (genotypes): AA, AB, BB
- Microarrays allow detection of the states of very many SNPs
- Using selective hybridization and fluorescence technology
- For each SNP we get two signals, *a* for A, *b* for B

Copy number variations

- Two signals, *a* proportional to A, *b* proportional to B
- Signal *b* is 0, *c*, 2*c* for AA, AB, BB genotypes
- Signal *a* is 2*c*, *c*, 0 for AA, AB, BB genotypes
- So a + b = 2c (save for noise, background, non-linearities, ...)
- Normal DNA is quite boring, but tumor DNA is not
- DNA segments may be deleted or multiplied (amplified)
- So we can have A, B, AA, AB, BB, AAA, AAB, ABB, and so on
- Copy number changes (CNV); $a + b \neq 2c$ will reflect that

CNV in normal (top) and tumor (bottom) DNA

A simple smoother: Whittaker

• Whittaker (1923) proposed "graduation": minimize

$$S_2 = \sum_i (y_i - z_i)^2 + \lambda \sum_i (\Delta^d z_i)^2$$

- Given a noisy data series *y*, it finds a smoother series *z*
- Operator Δ^d forms differences of order d
- Today we call this penalized least squares
- Explicit solution, with matrix *D*, such that $\Delta^d z = Dz$:

 $(I + \lambda D'D)\hat{z} = y$

The Whittaker smoother (d = 2) in action

Critique of the Whittaker smoother, and a solution

- Noise is effectively reduced
- But jumps are rounded
- Alternative approach, inspired by LASSO, minimizes

$$S_1 = \sum_i (y_i - z_i)^2 + \lambda \sum_i |\Delta z_i|$$

- Total variation penalty or "fused LASSO"
- Notice the first differences
- The L_1 norm (instead of the L_2 norm) in the penalty
- It is a big improvement

The *L*₁ **penalty in action**

Array GBM 139.CEL

Computation for the *L*₁ **penalty**

- We could try quadratic programming techniques
- But there is an easier solution
- For any *x* and approximation \tilde{x} we have $|x| = x^2/|x| \approx x^2/|\tilde{x}|$
- Use weighted L_2 penalty, with $v_i = 1/|\Delta \tilde{z}_i|$:

$$S_1 = \sum_i (y_i - z_i)^2 + \lambda \sum_i v_i (\Delta z_i)^2$$

- Iteratively update v and \tilde{z}
- Solve (I + D'VD)z = y repeatedly, with V = diag(v)
- Some smoothing near 0: use $v_i = 1/\sqrt{(\Delta \tilde{z}_i)^2 + \beta^2}$, with small β

Critique of the *L*₁ **penalty**

- We certainly get a big improvement
- But the jumps are not completely crisp
- Solution: a penalty with (implicitly) the *L*₀ norm
- Iterate as above with weighted quadratic penalty

$$S_0 = \sum_i (y_i - z_i)^2 + \lambda \sum_i v_i (\Delta z_i)^2$$

• With $v_i = 1/(\tilde{x}^2 + \beta^2)$ instead of $v_i = 1/\sqrt{(\Delta \tilde{z}_i)^2 + \beta^2}$

The *L*⁰ **penalty in action**

Sparseness

- We have many equations (4032 here), but a banded system
- Computation time linear in data length
- R package spam is great (sparse matrices, Matlab-style)
- *L*₂ system solved in 20 milliseconds
 - # Whittaker smoother
 - m = length(y)
 - E = diag.spam(m)
 - D = diff(E, diff = 2)
 - P = lambda * t(D) %*% D
 - z = solve(E + P, y)

Optimal smoothing

- Interactive use in the hands of biologists is our main goal
- But we can try "optimal" smoothing, using AIC
- AIC = $2m \log \hat{\sigma} + 2 * ED$
- With $\hat{\sigma}^2 = \sum (y_i \hat{z}_i)^2 / m$ (ML estimate of error SD)
- Effective dimension ED
- ED = tr(I + D'VD), with V = diag(v)
- Serial correlation in errors can spoil AIC (undersmoothing)

Computational details for AIC

- We need to compute ED = tr(I + D'VD), with V = diag(v)
- But this is a large (4032 squared) matrix
- Beautiful solution: Hutchinson and De Hoog algorithm
- But not yet implemented
- For now: use 400 intervals and indicator basis R

$$S_{i} = \sum_{i} (y_{i} - \sum_{j} r_{ij} a_{j})^{2} + \sum_{j} v_{j} (\Delta a_{j})^{2}$$

• Adaptive weights $v_j = 1/((\Delta \tilde{a}_j)^2 + \beta^2)$

AIC for one array

AIC for the other array

Tests on simulated data

- We did some tests on simulated data
- Using results in the Bioconductor package VEGA
- Starting with adaptive weights $v_i \equiv 1$
- Graphs will show intermediate results
- And the size of changes per iteration
- The smoother starts with a "wild" solution
- It gradually removes more and more details

Example of convergence, little noise

Example of convergence, more noise

Can we trust it?

- The objective function is non-convex
- In contrast to penalties with L_2 or L_1 norm
- Yet we consistently get quite good results
- Convergence history looks OK
- We cannot be sure that we found a global minimum
- But should we care?

A variation on our theme

- Using first order differences in an L_0 penalty we get
 - constant segments
 - jumps between segments
- With second order differences we get
 - linear segments
 - kinks between segments

A kinky simulation

Non-normal data

- We are not limited to a sums of squares
- The *L*⁰ penalty can be combined with any log-likelihood
- Example: Poisson distribution
- Observed *y*, expected values $\mu = e^{\eta}$
- Extend the IWLS algorithm of the GLM with L_0 penalty on $\Delta \eta$
- No technical complications
- Example: the famous coal mining disaster time series

Smoothing of coal mining data with *L*₂ **penalty**

Smoothing of coal mining data with *L*₁ **penalty**

Smoothing of coal mining data with *L*₀ **penalty**

Deconvolution

- We observed a "crisp" signal plus noise
- Sometimes the signal has been filtered before
- A crisp input, run through a filter
- So we have penalized deconvolution
- This is not hard to do
- Model: y = Cx + e
- Regression with penalty on *x*

Illustrating convolution with step input

Deconvolution with step input

Another application: spike deconvolution

- Many (technical) signals consists of peaks
- Often they can be described by convolution
- Spikes as input, convolution with peaked impulse response
- Penalized regression: minimize

$$S = ||y - Cx|| + \kappa ||x||^p$$

- Ridge regression, p = 2, is no use
- LASSO, p = 1 is an improvement
- But p = 0 works best

Spike deconvolution (simulated data)

Summary

- We can implement the L_0 norm as a weighted L_2 norm
- We get surprisingly good results in segmentation and deconvolution
- Non-convex objective function seems no problem in practice
- Fast, sparse, computations, linear in data length
- Easily combined with any likelihood
- SCALA software for CNV smoothing
- And for much more

SCALA software (r.c.a.rippe@lumc.nl)

