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Data from genetics: DNA copy numbers in tumors
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Biological background, simplified

• We have two copies of each chromosome

• Most of our DNA is identical for everyone

• But not at millions of SNPs (single nucleotide polymorphisms)

• A SNP has two possible states, called alleles, say A and B

• Possible combinations (genotypes): AA, AB, BB

• Microarrays allow detection of the states of very many SNPs

• Using selective hybridization and fluorescence technology

• For each SNP we get two signals, a for A, b for B
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Copy number variations

• Two signals, a proportional to A, b proportional to B

• Signal b is 0, c, 2c for AA, AB, BB genotypes

• Signal a is 2c, c, 0 for AA, AB, BB genotypes

• So a + b = 2c (save for noise, background, non-linearities, ...)

• Normal DNA is quite boring, but tumor DNA is not

• DNA segments may be deleted or multiplied (amplified)

• So we can have A, B, AA, AB, BB, AAA, AAB, ABB, and so on

• Copy number changes (CNV); a + b 6= 2c will reflect that
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CNV in normal (top) and tumor (bottom) DNA
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A simple smoother: Whittaker

• Whittaker (1923) proposed “graduation”: minimize

S2 = ∑
i
(yi − zi)

2 + λ ∑
i
(∆dzi)

2

• Given a noisy data series y, it finds a smoother series z

• Operator ∆d forms differences of order d

• Today we call this penalized least squares

• Explicit solution, with matrix D, such that ∆dz = Dz:

(I + λD′D)ẑ = y
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The Whittaker smoother (d = 2) in action
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Critique of the Whittaker smoother, and a solution

• Noise is effectively reduced

• But jumps are rounded

• Alternative approach, inspired by LASSO, minimizes

S1 = ∑
i
(yi − zi)

2 + λ ∑
i
|∆zi|

• Total variation penalty or “fused LASSO”

• Notice the first differences

• The L1 norm (instead of the L2 norm) in the penalty

• It is a big improvement
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The L1 penalty in action
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Computation for the L1 penalty

• We could try quadratic programming techniques

• But there is an easier solution

• For any x and approximation x̃ we have |x| = x2/|x| ≈ x2/|x̃|

• Use weighted L2 penalty, with vi = 1/|∆z̃i|:

S1 = ∑
i
(yi − zi)

2 + λ ∑
i

vi(∆zi)
2

• Iteratively update v and z̃

• Solve (I + D′VD)z = y repeatedly, with V = diag(v)

• Some smoothing near 0: use vi = 1/
√
(∆z̃i)

2 + β2, with small β
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Critique of the L1 penalty

• We certainly get a big improvement

• But the jumps are not completely crisp

• Solution: a penalty with (implicitly) the L0 norm

• Iterate as above with weighted quadratic penalty

S0 = ∑
i
(yi − zi)

2 + λ ∑
i

vi(∆zi)
2

• With vi = 1/(x̃2 + β2) instead of vi = 1/
√
(∆z̃i)

2 + β2
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The L0 penalty in action
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Sparseness

• We have many equations (4032 here), but a banded system

• Computation time linear in data length

• R package spam is great (sparse matrices, Matlab-style)

• L2 system solved in 20 milliseconds

# Whittaker smoother
m = length(y)
E = diag.spam(m)
D = diff(E, diff = 2)
P = lambda * t(D) %*% D
z = solve(E + P, y)
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Optimal smoothing

• Interactive use in the hands of biologists is our main goal

• But we can try “optimal” smoothing, using AIC

• AIC = 2m log σ̂ + 2 ∗ ED

• With σ̂2 = ∑(yi − ẑi)
2/m (ML estimate of error SD)

• Effective dimension ED

• ED = tr(I + D′VD), with V = diag(v)

• Serial correlation in errors can spoil AIC (undersmoothing)
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Computational details for AIC

• We need to compute ED = tr(I + D′VD), with V = diag(v)

• But this is a large (4032 squared) matrix

• Beautiful solution: Hutchinson and De Hoog algorithm

• But not yet implemented

• For now: use 400 intervals and indicator basis R

Si = ∑
i
(yi −∑

j
rijaj)

2 + ∑
j

vj(∆aj)
2

• Adaptive weights vj = 1/((∆ãj)
2 + β2)
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AIC for one array
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AIC for the other array
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Tests on simulated data

• We did some tests on simulated data

• Using results in the Bioconductor package VEGA

• Starting with adaptive weights vi ≡ 1

• Graphs will show intermediate results

• And the size of changes per iteration

• The smoother starts with a “wild” solution

• It gradually removes more and more details
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Example of convergence, little noise
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Example of convergence, more noise
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Can we trust it?

• The objective function is non-convex

• In contrast to penalties with L2 or L1 norm

• Yet we consistently get quite good results

• Convergence history looks OK

• We cannot be sure that we found a global minimum

• But should we care?
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A variation on our theme

• Using first order differences in an L0 penalty we get

– constant segments
– jumps between segments

• With second order differences we get

– linear segments
– kinks between segments
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A kinky simulation
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Non-normal data

• We are not limited to a sums of squares

• The L0 penalty can be combined with any log-likelihood

• Example: Poisson distribution

• Observed y, expected values µ = eη

• Extend the IWLS algorithm of the GLM with L0 penalty on ∆η

• No technical complications

• Example: the famous coal mining disaster time series
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Smoothing of coal mining data with L2 penalty
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Smoothing of coal mining data with L1 penalty
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Smoothing of coal mining data with L0 penalty
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Deconvolution

• We observed a “crisp” signal plus noise

• Sometimes the signal has been filtered before

• A crisp input, run through a filter

• So we have penalized deconvolution

• This is not hard to do

• Model: y = Cx + e

• Regression with penalty on x
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Illustrating convolution with step input
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Deconvolution with step input
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Another application: spike deconvolution

• Many (technical) signals consists of peaks

• Often they can be described by convolution

• Spikes as input, convolution with peaked impulse response

• Penalized regression: minimize

S = ||y− Cx||+ κ||x||p

• Ridge regression, p = 2, is no use

• LASSO, p = 1 is an improvement

• But p = 0 works best
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Spike deconvolution (simulated data)
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Summary

• We can implement the L0 norm as a weighted L2 norm

• We get surprisingly good results in segmentation and deconvolution

• Non-convex objective function seems no problem in practice

• Fast, sparse, computations, linear in data length

• Easily combined with any likelihood

• SCALA software for CNV smoothing

• And for much more
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SCALA software (r.c.a.rippe@lumc.nl)
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