Detecting changes in second order structure within oceanographic time series

Rebecca Killick

Joint work with Idris Eckley and Phil Jonathan

Lancaster University

March 26, 2012

- Motivation
- Changepoint recap
- Locally Stationary Wavelet (LSW) model
- Wavelet Likelihood Method for changes in autocovariance
- Simulation Study
- Oceanographic Example

Motivation

-

3

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Interested in detecting start and end of storm season
- Unknown dependence structure changing over time
- Cyclic mean

Changepoint recap

э

For data y_1, \ldots, y_n , if a changepoint exists at τ , then y_1, \ldots, y_τ differ from $y_{\tau+1}, \ldots, y_n$ in some way.

There are many different types of changes.

Change in second order structure

The traditional hypothesis, for some lag, v,

$$\begin{aligned} \mathbf{H_0} &: \operatorname{cov} (X_0, X_{0-\nu}) = \operatorname{cov} (X_1, X_{1-\nu}) = \ldots = \operatorname{cov} (X_{n-1}, X_{n-1-\nu}) = \rho_{0,\nu} \\ \mathbf{H_1} &: \rho_{1,\nu} = \operatorname{cov} (X_0, X_{0-\nu}) = \ldots = \operatorname{cov} (X_{\tau}, X_{\tau-\nu}) \\ &\neq \operatorname{cov} (X_{\tau+1}, X_{\tau+1-\nu}) = \ldots = \operatorname{cov} (X_{n-1}, X_{n-1-\nu}) = \rho_{n,\nu}. \end{aligned}$$

Change in second order structure

The traditional hypothesis, for some lag, v,

$$\begin{aligned} \mathbf{H}_{0} : & \operatorname{cov} \left(X_{0}, X_{0-\nu} \right) = & \operatorname{cov} \left(X_{1}, X_{1-\nu} \right) = \dots = & \operatorname{cov} \left(X_{n-1}, X_{n-1-\nu} \right) = \rho_{0,\nu} \\ \mathbf{H}_{1} : & \rho_{1,\nu} = & \operatorname{cov} \left(X_{0,\lambda_{0-\nu}} \right) = \dots = & \operatorname{cov} \left(X_{\tau}, X_{\tau-\nu} \right) \\ & \neq & \operatorname{cov} \left(X_{\tau+1}, X_{\tau+1-\nu} \right) = \dots = & \operatorname{cov} \left(X_{n-1}, X_{n-1-\nu} \right) = \rho_{n,\nu}. \end{aligned}$$

Likelihood-Based test statistic

$$\lambda = \max_{\tau} \frac{L(y_{1:n}, \tau | \rho_{1,v}, \rho_{n,v}, \theta)}{L(y_{1:n} | \rho_{0,v}, \theta)}.$$

Methods exist that make structural assumptions about the covariance to get $L(\cdot)$, e.g. piecewise AR.

Locally Stationary Wavelet Model

A 10

Locally Stationary Wavelet Model

$$X_{t,n} = \sum_{j} \sum_{k} W_{j} \left(\frac{k}{n}\right) \psi_{j,k-t} \xi_{jk}.$$

Relevant assumptions:

•
$$\mathbb{E}\xi_{jk} = 0$$
, $\operatorname{cov}(\xi_{jk}, \xi_{lm}) = \delta_{jl}\delta_{km}$

- We assume that the $\xi_{jk} \sim Normal$
- Hence $\mathbb{E}X_t = 0$, i.e. remove any mean or trend before analysis
- Bounded total variation condition on the $W_i^2(\cdot)$.

Locally Stationary Wavelet Model

$$X_{t,n} = \sum_{j} \sum_{k} W_{j}\left(\frac{k}{n}\right) \psi_{j,k-t} \xi_{jk}.$$

Reasons for using LSW:

- Models the local structure as it changes over time
- Has a more general covariance structure than other time series models
- Piecewise constant covariance structure \implies p.c. spectrum

Wavelet Likelihood Method

< A

The traditional hypothesis, for some lag, v,

$$\begin{aligned} \mathbf{H_0} &: \operatorname{cov} \left(X_0, X_{0-\nu} \right) = \operatorname{cov} \left(X_1, X_{1-\nu} \right) = \ldots = \operatorname{cov} \left(X_{n-1}, X_{n-1-\nu} \right) = \rho_{0,\nu} \\ \mathbf{H_1} &: \rho_{1,\nu} = \operatorname{cov} \left(X_0, X_{0-\nu} \right) = \ldots = \operatorname{cov} \left(X_{\tau}, X_{\tau-\nu} \right) \\ &\neq \operatorname{cov} \left(X_{\tau+1}, X_{\tau+1-\nu} \right) = \ldots = \operatorname{cov} \left(X_{n-1}, X_{n-1-\nu} \right) = \rho_{n,\nu}. \end{aligned}$$

is equivalent to

$$\begin{aligned} \mathbf{H}_{\mathbf{0}} &: W_{j}^{2}\left(\frac{0}{n}\right) = W_{j}^{2}\left(\frac{1}{n}\right) = \ldots = W_{j}^{2}\left(\frac{n-1}{n}\right) = \gamma_{0,j} \qquad \forall j \\ \mathbf{H}_{\mathbf{1}} &: \gamma_{1,j} = W_{j}^{2}\left(\frac{0}{n}\right) = \ldots = W_{j}^{2}\left(\frac{\tau}{n}\right) \neq W_{j}^{2}\left(\frac{\tau+1}{n}\right) = \ldots = W_{j}^{2}\left(\frac{n-1}{n}\right) = \gamma_{n,j}, \\ \text{for some } j \in \{1, 2, \ldots, J = \log_{2} n\}. \end{aligned}$$

Image: A matrix and a matrix

3

$$X_{t,n} = \sum_{j} \sum_{k} W_{j} \left(\frac{k}{n}\right) \psi_{j,k-t} \xi_{jk}.$$

If ξ are Gaussian then,

$$\ell(W|\mathbf{x}) = rac{n}{2}\log 2\pi - rac{1}{2}\log |\Sigma_W| - rac{1}{2}\mathbf{x}'\Sigma_W^{-1}\mathbf{x},$$

where the variance-covariance matrix, Σ_W , has the following form:

$$\Sigma_W(k,k') = \operatorname{cov}(X_k,X_{k'}) = \sum_l \sum_m W_l^2\left(\frac{m}{n}\right) \psi_{l,m-k} \psi_{l,m-k'}.$$

$$\lambda_{\tau} = \max_{J < \tau < n-J} \left\{ \log \left| \hat{\boldsymbol{\Sigma}}_0 \right| + \mathbf{x}' \hat{\boldsymbol{\Sigma}}_0^{-1} \mathbf{x} - \log \left| \hat{\boldsymbol{\Sigma}}_1 \right| - \mathbf{x}' \hat{\boldsymbol{\Sigma}}_1^{-1} \mathbf{x} \right\}.$$

Here $\hat{\Sigma}_0$ and $\hat{\Sigma}_1$ have elements,

$$\begin{split} \hat{\Sigma}_{0}(k,k') &= \sum_{I} \sum_{m} \hat{\gamma}_{0,I} \psi_{I,m-k} \psi_{I,m-k'}, \\ \hat{\Sigma}_{1}(k,k') &= \sum_{I} \sum_{m \leq \tau} \hat{\gamma}_{1,I} \psi_{I,m-k} \psi_{I,m-k'} + \sum_{m > \tau} \hat{\gamma}_{n,I} \psi_{I,m-k} \psi_{I,m-k'}, \end{split}$$

Simulation Study

Image: A matrix

э

We compare with

- AutoPARM (AP) Davis, Lee, Rodriguez, Yam (2006)
 - Piecewise AR models
 - Likelihood ratio test statistic
 - Minimum Description Length Penalty
- CF Cho, Fryzlewicz (2011)
 - LSW model with Gaussian innovations
 - Designed to stabilize variance prior to changepoint estimation
 - Non-parametric test statistic

Important measures,

- Number of changepoints identified
- Location of changepoints

Stationary AR Model

$$X_t = aX_{t-1} + \epsilon_t \qquad \text{for } 1 \le t \le 1024.$$

а		-0.7			-0.1			0.4			0.7	
no. cpts	WL	CF	AP	WL	CF	AP	WL	CF	AP	WL	CF	AP
0	100	71	100	100	89	100	100	94	100	91	92	100
1	0	24	0	0	11	0	0	5	0	9	7	0
≥ 2	0	5	0	0	0	0	0	1	0	0	1	0

-

Simulation Results

Piecewise AR Models

$$B \qquad X_t = \begin{cases} 0.9X_{t-1} + \epsilon_t & \text{if } 1 \le t \le 512, \\ 1.68X_{t-1} - 0.81X_{t-2} + \epsilon_t & \text{if } 513 \le t \le 768, \\ 1.32X_{t-1} - 0.81X_{t-2} + \epsilon_t & \text{if } 769 \le t \le 1024, \end{cases}$$

$$C \qquad X_t = \begin{cases} 0.4X_{t-1} + \epsilon_t & \text{if } 1 \le t \le 400, \\ -0.6X_{t-1} + \epsilon_t & \text{if } 401 \le t \le 612, \\ 0.5X_{t-1} + \epsilon_t & \text{if } 613 \le t \le 1024, \end{cases}$$

$$D \qquad X_t = \begin{cases} 0.75X_{t-1} + \epsilon_t & \text{if } 1 \le t \le 50, \\ -0.5X_{t-1} + \epsilon_t & \text{if } 51 \le t \le 1024. \end{cases}$$

no. of	N	lodel l	3	Ν	/lodel	С	Model D			
cpts	WL	CF	AP	WL	CF	AP	WL	CF	AP	
0	0	0	0	0	0	0	4	2	0	
1	0	0	0	0	0	0	94	83	100	
2	98	70	94	94	76	100	2	15	0	
3	2	27	6	6	22	0	0	0	0	
\geq 4	0	3	0	1	2	0	0	0	0	

イロト イポト イヨト イヨト

э

Simulation Results

Models

$$\begin{split} \mathbf{E} \qquad X_t = \begin{cases} 1.399X_{t-1} - 0.4X_{t-2} + \epsilon_t, & \epsilon_t \sim \mathcal{N}(0, 0.8^2) & \text{if } 1 \leq t \leq 400, \\ 0.999X_{t-1} + \epsilon_t, & \epsilon_t \sim \mathcal{N}(0, 1.2^2) & \text{if } 401 \leq t \leq 750, \\ 0.699X_{t-1} + 0.3X_{t-2} + \epsilon_t & \epsilon_t \sim \mathcal{N}(0, 1) & \text{if } 751 \leq t \leq 1024. \end{cases} \\ \mathbf{F} \qquad X_t = \begin{cases} 0.7X_{t-1} + \epsilon_t + 0.6\epsilon_{t-1} & \text{if } 1 \leq t \leq 125, \\ 0.3X_{t-1} + \epsilon_t + 0.3\epsilon_{t-1} & \text{if } 126 \leq t \leq 352, \\ 0.9X_{t-1} + \epsilon_t & \text{if } 353 \leq t \leq 704, \\ 0.1X_{t-1} + \epsilon_t - 0.5\epsilon_{t-1} & \text{if } 705 \leq t \leq 1024. \end{cases} \\ \mathbf{G} \qquad X_t = \begin{cases} \epsilon_t + 0.8\epsilon_{t-1} & \text{if } 1 \leq t \leq 128, \\ \epsilon_t + 1.68\epsilon_{t-1} - 0.81\epsilon_{t-2} & \text{if } 129 \leq t \leq 256, \end{cases} \end{split}$$

no. of	N N	1odel	E	N	lodel	F				
cpts	WL	CF	AP	WL	CF	AP	WL	CF	AP	
0	0	0	0	0	0	0	0	0	0	
1	26	9	9	20	12	51	99	85	100	
2	45	75	33	22	36	33	1	15	0	
3	26	15	31	35	45	16	0	0	0	
≥ 4	3	1	27	23	7	0	• □0 •	· 🗗 🖪 🗸	≣⇒0∢ ≣	► Ę

Rebecca Killick (Lancaster University)

March 26, 2012

Simulation Results

Rebecca Killick (Lancaster University)

Changes in autocovariance

March 26, 2012 21 /

Oceanographic Example

∃ >

э

- Significant Wave Heights at a Central North Sea location
- March 1992 December 1994
- First difference to remove the mean

Application to North Sea Wave Heights

Black - WL Red - AP Blue - CF

Ocean Engineers when presented with the results preferred the WL estimates.

Summary

3

∃ ► < ∃ ►</p>

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Demonstrated why changes in second order structure are important
- Developed a method that:
 - has less restrictive assumptions than existing likelihood-based methods
 - performs on par with existing likelihood-based methods for AR models
 - is useful in practice when the covariance structure is unknown

- Cho, H. and Fryzlewicz, P. (2011) *Multiscale and multilevel technique for consistent segmentation of nonstationary time series* Statistica Sinica, 22:207229
- Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2006) Structural break estimation for nonstationary time series models JASA, 101:223239.
- Killick, R., Eckley, I. A., Jonathan, P. (2012) *Detecting changes in second order structure within oceanographic time series* In Submission.