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Functional Magnetic Resonance Imaging

Neuroimaging:
Measures blood flow in the brain associated with neural activity

Experimental design:

Classical design: Visual or motion based stimulus (instantly
linked to brain activity)

Connection in the brain not due to external stimuli:
Resting state data.

Is the resting-state data stationary?
Are there time periods where blood flow increases to a certain
level before falling back to baseline?
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Functional Change-Point Modeling

Functional Magnetic Resonance Imaging

Statistical Difficulties:

Functional (very high dimensional) data:
105 − 106 observations for each time point,
but only 225 time points!

Dependent data (across time):

Scanner effects.
Dependency in neural activity.

Lindquist et al. (2007): Pointwise testing plus correction:
fMRI-Data with emotional stimulus.

Berkes et al. (2009): Functional change-point analysis:
One-dimensional application such as temperature curves.
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Functional data analysis

Y1(·), . . . ,Yn(·) are random functions in L2(Z), Z compact.

{Yi (·)} stationary and ergodic with EYi (t) = 0 and

E ‖Yi (·)‖2 <∞

Epidemic Change:

Xi (t) = Yi (t) + µ(t) + ∆(t)1{ϑ1n<i6ϑ2n},

i : time point, t: function variable, pixel,

µ(·),∆(·) ∈ L2(Z) unknown, 0 < ϑ1 < ϑ2 < 1 unknown.

Test:

H0 : ∆ ≡ 0 vs. H1 : ∆ 6≡ 0.
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State-of-the-art

At-most-one-change model (ϑ2 = 1):

Berkes et al. 2009:
Development of tests for i.i.d. (across time) data

Aue et al. 2009:
Estimators for change-points i.i.d. (across time) data

Hörmann and Kokoszka 2010:
Test for weakly dependent (across time) data

Our aim:

Tests and estimators for epidemic change taking dependence
(across time) into account.

Estimation in hierarchical models.

Application to fMRI resting state data.
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Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Testing Problem

Main idea:
Dimension reduction via orthonormal system {vk(·), k = 1, . . . , d}:

〈Xi , vl〉 = 〈Yi , vl〉+ 〈µ, vl〉+ 1{ϑ1n<i6ϑ2n}〈∆, vl〉,

where 〈Xi , vl〉 =

∫
Xi (t)vl(t) dt.

Hence: Same type of level shifts present in projection if ∆ not
orthogonal to projection subspace.

We will use: Principal component analysis:
Use estimator {v̂l : l = 1, . . . , d}.

Use multi-dimensional testing procedures on projected data!

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Testing Problem

Main idea:
Dimension reduction via orthonormal system {vk(·), k = 1, . . . , d}:

〈Xi , vl〉 = 〈Yi , vl〉+ 〈µ, vl〉+ 1{ϑ1n<i6ϑ2n}〈∆, vl〉,

where 〈Xi , vl〉 =

∫
Xi (t)vl(t) dt.

Hence: Same type of level shifts present in projection if ∆ not
orthogonal to projection subspace.

We will use: Principal component analysis:
Use estimator {v̂l : l = 1, . . . , d}.

Use multi-dimensional testing procedures on projected data!

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Testing Problem

Main idea:
Dimension reduction via orthonormal system {vk(·), k = 1, . . . , d}:

〈Xi , vl〉 = 〈Yi , vl〉+ 〈µ, vl〉+ 1{ϑ1n<i6ϑ2n}〈∆, vl〉,

where 〈Xi , vl〉 =

∫
Xi (t)vl(t) dt.

Hence: Same type of level shifts present in projection if ∆ not
orthogonal to projection subspace.

We will use: Principal component analysis:
Use estimator {v̂l : l = 1, . . . , d}.

Use multi-dimensional testing procedures on projected data!

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Testing Problem

Main idea:
Dimension reduction via orthonormal system {vk(·), k = 1, . . . , d}:

〈Xi , vl〉 = 〈Yi , vl〉+ 〈µ, vl〉+ 1{ϑ1n<i6ϑ2n}〈∆, vl〉,

where 〈Xi , vl〉 =

∫
Xi (t)vl(t) dt.

Hence: Same type of level shifts present in projection if ∆ not
orthogonal to projection subspace.

We will use: Principal component analysis:
Use estimator {v̂l : l = 1, . . . , d}.

Use multi-dimensional testing procedures on projected data!

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting State Data (Connectome Project)

197 persons from Beijing, China:

Each scan:

225 time points of a 3-dim. image of 64× 64× 33 ≈ 105 voxels.

Preliminary data processing:

Removal of polynomial trend due to scanner drift.

Motion correction.
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Power Analysis for Dimension Reduction Using PCA

Resting State Example 1: Strong level shift

With level shifts: Epidemic change removed:
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Resting State Example 2: Medium level shift
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Power Analysis for Dimension Reduction Using PCA

Resting State Example 3: No level shift?
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Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Assumptions under H0

√
n-Consistency of estimators:

∫
(v̂k(t)− skvk(t))2 dt = OP(n−1),

where sk = sgn
(∫

vk,j(t)v̂k(t) dt
)
.

Principal Components:

d + 1 distinct eigenvalues.√
n-Consistency of sample covariance function.

Let ηi ,l = 〈Yi , vl〉. Assume

{ηi = (ηi ,1, . . . , ηi ,d) : i > 1} (across time!) are stationary
and short-range dependent

and fulfill FCLT, asymptotic long-run covariance:
Σ = limn→∞

1
n E (

∑n
i=1 ηi ) (

∑n
i=1 ηi )

T .

Examples:

Yi (·) i.i.d. (Berkes et al. 2009)

Yi (·) L4 −m-approximable (Hörmann and Kokoszka 2010)

Yi (·) α-mixing (Aston, K. 2012)
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Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Null Asymptotics

Change-point tests typically based on:

Ŝk1,k2 =
(∑

k1<i6k2

(
η̂i ,l − ¯̂ηl

))
l=1,...,d

, ¯̂ηl = 1
n

∑n
i=1 η̂i ,l , where

η̂i ,l = 〈Xi , v̂l〉.

Theorem (Aston, K. (2012))

Test statistic for epidemic change:

Tn :=
1

n3

∑
16k1<k26n

ŜT
k1,k2

Σ̂−1Ŝk1,k2

D−→
∑

16l6d

∫ ∫
06x<y61

(Bl(y)− Bl(x))2 dx dy under H0,

where Σ̂ estimator for the long-run covariance matrix Σ

and Bl(·) are independent Brownian bridges.
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Test statistic for epidemic change:

Tn :=
1

n3

∑
16k1<k26n

ŜT
k1,k2

Σ̂−1Ŝk1,k2

D−→
∑

16l6d

∫ ∫
06x<y61

(Bl(y)− Bl(x))2 dx dy under H0,

where Σ̂ estimator for the long-run covariance matrix Σ

and Bl(·) are independent Brownian bridges.

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
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Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting state data

Problem: Estimation of the inverse of long-run covariance matrix!

d × d matrix (d = 64, 125) but only 225 time points:

Standard estimators are no longer statistically stable: About 1/3
negative eigenvalues of estimate for positive-definite matrix.

=⇒ Problematic since inverse is needed.

Even if inverse of small eigenvalues is set to zero (conservative):
Every resting state data set rejects the null hypothesis!

Therefore: Use only diagonal matrix of long-run variances!

Theory still applies, but limit no longer pivotal:
Dependency between Brownian bridges.

Therefore: Bootstrap methods necessary.

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting state data

Problem: Estimation of the inverse of long-run covariance matrix!

d × d matrix (d = 64, 125) but only 225 time points:

Standard estimators are no longer statistically stable: About 1/3
negative eigenvalues of estimate for positive-definite matrix.

=⇒ Problematic since inverse is needed.

Even if inverse of small eigenvalues is set to zero (conservative):
Every resting state data set rejects the null hypothesis!

Therefore: Use only diagonal matrix of long-run variances!

Theory still applies, but limit no longer pivotal:
Dependency between Brownian bridges.

Therefore: Bootstrap methods necessary.

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting state data

Problem: Estimation of the inverse of long-run covariance matrix!

d × d matrix (d = 64, 125) but only 225 time points:

Standard estimators are no longer statistically stable: About 1/3
negative eigenvalues of estimate for positive-definite matrix.

=⇒ Problematic since inverse is needed.

Even if inverse of small eigenvalues is set to zero (conservative):
Every resting state data set rejects the null hypothesis!

Therefore: Use only diagonal matrix of long-run variances!

Theory still applies, but limit no longer pivotal:
Dependency between Brownian bridges.

Therefore: Bootstrap methods necessary.

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting state data

Problem: Estimation of the inverse of long-run covariance matrix!

d × d matrix (d = 64, 125) but only 225 time points:

Standard estimators are no longer statistically stable: About 1/3
negative eigenvalues of estimate for positive-definite matrix.

=⇒ Problematic since inverse is needed.

Even if inverse of small eigenvalues is set to zero (conservative):
Every resting state data set rejects the null hypothesis!

Therefore: Use only diagonal matrix of long-run variances!

Theory still applies, but limit no longer pivotal:
Dependency between Brownian bridges.

Therefore: Bootstrap methods necessary.

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting state data

Problem: Estimation of the inverse of long-run covariance matrix!

d × d matrix (d = 64, 125) but only 225 time points:

Standard estimators are no longer statistically stable: About 1/3
negative eigenvalues of estimate for positive-definite matrix.

=⇒ Problematic since inverse is needed.

Even if inverse of small eigenvalues is set to zero (conservative):
Every resting state data set rejects the null hypothesis!

Therefore: Use only diagonal matrix of long-run variances!

Theory still applies, but limit no longer pivotal:
Dependency between Brownian bridges.

Therefore: Bootstrap methods necessary.

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting state data

Problem: Estimation of the inverse of long-run covariance matrix!

d × d matrix (d = 64, 125) but only 225 time points:

Standard estimators are no longer statistically stable: About 1/3
negative eigenvalues of estimate for positive-definite matrix.

=⇒ Problematic since inverse is needed.

Even if inverse of small eigenvalues is set to zero (conservative):
Every resting state data set rejects the null hypothesis!

Therefore: Use only diagonal matrix of long-run variances!

Theory still applies, but limit no longer pivotal:
Dependency between Brownian bridges.

Therefore: Bootstrap methods necessary.

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Bootstrap distribution

Bootstrap distribution
with no change detected

Bootstrap distributions
with change detected
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Bootstrap distribution

Distribution of bootstrap 5% critical values from 197 scans
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Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

How to do PCA for such a data set?

Very high-dimensional data set (105 voxel),
very short time series (225 time points):

=⇒ inaccurate estimate of principal components (e.g. 6 225
non-zero eigenvalues).

Semiparametric approach: Make use of 3-dimensional structure
T1 × T2 × T3.

Parametric assumption: Separable covariance structure:

c((t1, t2, t3), (s1, s2, s3)) = c1(t1, s1) c2(t2, s2) c3(t3, s3).

Eigenfunctions are product of eigenfunctions of c1, c2 and c3

=⇒ dimension reduction in solving eigenvalue problem.

Misspecification not that problematic since still valid dimension
reduction with favorable properties under alternatives.
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Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Why is PCA reasonable in this context?

Resting state scan: Typically,

relatively flat eigenvalues,

64 components explain less than 1% of variation.

Useless for standard PCA applications!

Change-point analysis:

Under null hypothesis: We still obtain valid size α test!

Under alternatives: v̂l will generally converge to contaminated
subspace wl .

Theorem (Aston, K. (2012))

If
∫

(v̂k(t)− skwk(t))2 dt = oP(1), k = 1, . . . , d , and

〈∆,wl〉 6= 0, for some l = 1, . . . , d , then Tn
P−→∞, i.e. the test has

asymptotic power one.

Recall: 〈Xi , v̂l〉 = 〈µ1, v̂l〉+ 〈Yi , v̂l〉+ 1{ϑ1n<i6ϑ2n}〈∆, v̂l〉.
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Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Standard Principal Component Analysis

Contaminated subspace:
{wk} eigenfunctions of c(t, s) + θ(1− θ)∆(t)∆(s), θ = ϑ2 − ϑ1

(d + 1 distinct eigenvalues needed).

Theorem (Aston, K. (2012))

a) Any change not orthogonal to the non-contaminated eigenspace
is detectable also by contaminated eigenspace.

b) Any large enough change will be detectable using only the first
principal component!

Principle of PCA: Choice of subspace such that most of the
sample variance is explained by few components.

Under alternatives the variability of the sample increases in the
direction of the change!

Change will likely be ’included’ in few principal components.
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{wk} eigenfunctions of c(t, s) + θ(1− θ)∆(t)∆(s), θ = ϑ2 − ϑ1

(d + 1 distinct eigenvalues needed).

Theorem (Aston, K. (2012))

a) Any change not orthogonal to the non-contaminated eigenspace
is detectable also by contaminated eigenspace.

b) Any large enough change will be detectable using only the first
principal component!

Remark:

The second feature works best for flat eigenvalues.

Separable PCA: If ∆(t1, t2, t3) = ∆1(t1)∆2(t2)∆3(t3), then
analogous assertion hold (Aston, K. (2011)).
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Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting State Data

Test results:

64 (= 43) components: 78 (of 197) reject at 5% level
70 after FDR-Correction, FDR threshold: 0.022

125 (= 53) components: 82 (of 197) reject at 5% level
76 after FDR-Correction, FDR threshold: 0.022

Estimators of location of change-points:

(ϑ̂1, ϑ̂2) = arg max
x<y

ŜT
bnxc,bnycΣ̂

−1Ŝbnxc,bnyc.

Theorem (Aston, K. (2012))

a) If the change is detectable, then (ϑ̂1 − ϑ1, ϑ̂2 − ϑ2)T = oP(1).

b) If additionally a Hájek-Rényi-type condition holds for 〈Yi ,wl〉,
then n(ϑ̂1 − ϑ1, ϑ̂2 − ϑ2)T = OP(1).
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John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Resting State Data

Test results:
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b) If additionally a Hájek-Rényi-type condition holds for 〈Yi ,wl〉,
then n(ϑ̂1 − ϑ1, ϑ̂2 − ϑ2)T = OP(1).

John Aston, Claudia Kirch Evaluating stationarity for fMRI data



Introduction
Testing for Stationarity Using Change-Point Alternatives

Asymptotics under the Null Hypothesis
Power Analysis for Dimension Reduction Using PCA

Estimated Change and Duration Distribution

Observations of several independent time series (persons) involving
epidemic changes.
Of interest: Delay and duration distribution!

If estimators are consistent with certain rate (related to
bandwidth), then Kernel density estimators based on estimated
change-points are consistent (Aston, K. (2011)).

(125 separable principal components)
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Detecting changes in the mean of functional observations.
J. R. Stat. Soc. Ser. B, 71:927-946, 2009.
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