## Fast estimation of posterior change-point probabilities for CNV data

The Minh Luong, Gregory Nuel, Yves Rozenholc, MAP5, Université Paris Descartes

March 27, 2012

## Introduction

- Change-point methods: applications in economics, engineering, bioinformatics
- Common application: copy number variation (CNV), identifies regions of DNA with gain or deletion that may be related to disease susceptibility
- High-resolution data, 10's thousands of clones per chromosome
- Array comparative genomic hybridization (aCGH)
- Single nucleotide polymorphism (SNP) array


## Example: array CGH data with copy number variations



Figure: A: array CGH profile, B: identified DNA copy gains and losses, source: Redon and Carter, Methods Mol Biol. 2009; 529: 3749.

## Finding a best segmentation for CNV

Unsupervised hidden Markov model (HMM) approaches

- Willenbrock and Fridyland (2005) - aCGH package
- Marioni et al (2006) - snapCGH package

Non-HMM segmentation approaches

- Venkatraman and Olshen (2004) - DNAcopy package
- Hupé et al (2004) - GLAD package

Estimate number of segments in aCGH data

- Picard et al (2005)
- Zhang and Siegmund (2007)


## Posterior probabilities of change-point location

Methods to find posterior uncertainty of estimated change-point locations

- Asymptotic estimates: Bai (2003), Muggeo (2003)
- Bootstrapping methods: Hušková and Kirch (2008)
- Stochastic methods (Lai et al. 2008).
- Exact posterior distribution: Guédon (2008), Rigaill et al. (2011)


## Motivation

- Relatively few algorithms for assessing uncertainty of change-point estimates
- Methods for finding posterior probabilities of change-points: $O\left(n^{2}\right)$ complexity
- Given high-resolution data in genomics technologies ( $>10,000$ ) observations per chromosome:
- Smaller inter-segmental differences: need to characterize uncertainty
- More data: need efficient estimates $O\left(n^{2}\right)$ not feasible


## Segmentation approach to change-point model

- Dataset: $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of real-valued observations
- Segment indices: $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$.
- Find best partitioning $S \in \mathcal{M}_{K}$ of the data into $K \geq 2$ non-overlapping intervals, assuming distribution is homogeneous within each interval.

$$
\begin{equation*}
\mathbb{P}(X \mid S ; \theta)=\prod_{i=1}^{n} g\left(X_{i} ; \theta_{S_{i}}\right)=\prod_{k=1}^{K} \prod_{i, S_{i}=k} g\left(X_{i} ; \theta_{k}\right) \tag{1}
\end{equation*}
$$

- $G\left(\cdot ; \theta_{k}\right)$ is the parametric distribution (typically: Poisson or Gaussian) with parameter $\theta_{k}, \theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$ is the global parameter.
- $\mathbb{P}(S)=\mathbb{P}\left(S_{1}=s_{1}\right) \prod_{i=2}^{n} \mathbb{P}\left(S_{i}=s_{i} \mid S_{i-1}=s_{i-1}\right)$


## Constrained hidden Markov model (HMM) model

Choose constraints on HMM to correspond exactly to a segmentation change-point model.

- Permits use of HMM algorithms to estimate posterior probabilities with linear complexity
$S$ : heterogeneous Markov chain over $\{1,2, \ldots, K, K+1\}$
- $\left\{S \in \mathcal{M}_{K}\right\}: K$ states in $n$ observations
- $S_{1}=1, S_{n}=K$, junk state: $K+1$

Transitions: for all $2 \leqslant i \leqslant n$, and $1 \leqslant k \leqslant K$ :

- $\mathbb{P}\left(S_{i}=k+1 \mid S_{i-1}=k\right)=\eta_{k}(i)$
- $\mathbb{P}\left(S_{i}=k \mid S_{i-1}=k\right)=1-\eta_{k}(i)$
- Allows for transitions of only 0 or $+1, S_{i}-S_{i-1} \in\{0,1\}$


## HMM example



Figure: HMM topology. For $i=1 \ldots 5, S_{i}$ are the hidden states, and $X_{i}$ are the observed states. White circles: $S_{i}=1$, grey circles: $S_{i}=2$

Example: if $n=5, K=2$, with change after $i=2$ then:

- $S=(1,1,2,2,2)$
- $\mathbb{P}(S)=\left(1-\eta_{1}(2)\right) \eta_{2}(3)\left(1-\eta_{2}(4)\right)\left(1-\eta_{2}(5)\right)$.


## Homogeneous constrained HMM

- Markov chain is homogeneous if $\left.\eta_{k}(i)=\eta \in\right] 0,1[$ for all $k, i$
- Homogeneous HMM results in: $\mathbb{P}\left(S \mid S \in \mathcal{M}_{K}\right)=1 /\left|\mathcal{M}_{K}\right|$
- constant and independent of $S$
- $S=(1,1,2,2,2)$
- For $\eta=0.5: \mathbb{P}(S)=\eta(1-\eta)^{3}=0.5^{4}$.
- Can specify different $\eta_{k}(i)$ for heterogeneous HMM.


## Forward-backward algorithm

Forward and backward quantities, for observation $i$ and state $k$ :
For $1 \leqslant i \leqslant n-1$ :

$$
\begin{align*}
& F_{i}(k)=\mathbb{P}\left(X_{1: i}=x_{1: i}, S_{i}=k\right)  \tag{2}\\
& B_{i}(k)=\mathbb{P}\left(X_{i+1: n}=x_{i+1: n}, S_{n}=K \mid S_{i}=k\right) \tag{3}
\end{align*}
$$

Forward recursion:

$$
\begin{align*}
& F_{1}(k)= \begin{cases}G_{\theta_{1}}\left(x_{1}\right) & \text { if } k=1 \\
0 & \text { else }\end{cases}  \tag{4}\\
& F_{i}(k)=\left[F_{i-1}(k)\left(1-\eta_{k}(i)\right)+\mathbf{1}_{k>1} F_{i-1}(k-1) \eta_{k}(i)\right] G_{\theta_{k}}\left(x_{i}\right) \tag{5}
\end{align*}
$$

Emission distribution of observed data $G_{\theta_{k}}\left(x_{i}\right)$

## Forward-backward algorithm (cont)

Backward recursion:

$$
\begin{align*}
& B_{n-1}(k)= \begin{cases}G_{\theta_{k}}\left(x_{n}\right) \eta_{K}\left(x_{n}\right) & \text { if } k=K-1 \\
G_{\theta_{k}}\left(x_{n}\right)\left(1-\eta_{K}\left(x_{n}\right)\right) & \text { if } k=K \\
0 & \text { else }\end{cases} \\
& B_{i-1}(k)=\left(1-\eta_{k}(i)\right) G_{\theta_{k}}\left(x_{i}\right) B_{i}(k)+\mathbf{1}_{k<K} \eta_{k+1}(i) G_{\theta_{k+1}}\left(x_{i}\right) B_{i}(k+1) \tag{7}
\end{align*}
$$

## Posterior probability of state $k$ for observation $i$

$$
\mathbb{P}\left(S_{i}=k \mid X_{1: n}=x_{1: n}\right)=\frac{F_{i}(k) B_{i}(k)}{F_{1}(1) B_{1}(1)} .
$$



Figure: Posterior probability of observation 2 being in state 1 , $\mathbb{P}\left(S_{2}=1 \mid X_{1: n}=x_{1: n}\right)$

## Posterior probability of $k^{\text {th }}$ change-point occurring after observation i

$$
\mathbb{P}\left(S_{i}=k, S_{i+1}=k+1 \mid X_{1: n}=x_{1: n}\right)=\frac{F_{i}(k) \eta_{k}(i) G_{\theta_{k+1}}\left(x_{k+1}\right) B_{i+1}(k+1)}{F_{1}(1) B_{1}(1)}
$$

Figure: Posterior probability of change from state 1 to state 2 after observation $2, \mathbb{P}\left(S_{2}=1, S_{3}=2 \mid X_{1: n}=x_{1: n}\right)$

## Best set of change-points (Viterbi algorithm)

Recursion (modified forward quantities):

$$
\begin{array}{lr}
V_{1}(1)=G_{\theta_{1}}\left(x_{1}\right) & \text { if } i \geq 2 \\
V_{i}(1)=V_{i-1}(1)\left(1-\eta_{k}\left(x_{i}\right)\right) G_{\theta_{1}}\left(x_{i}\right) & \text { if } i, k \geq 2
\end{array}
$$

Obtain set of change-points with highest posterior probability by using path of indices $k$ used to calculate $V_{i, k}$ :

- $K-1^{\text {th }}$ change-point $C P_{K-1}$ : largest $i$ in $V_{i}(K-1)$ used to calculate $V_{i+1}(K)$
- $k^{\text {th }}$ change-point $C P_{k}$ : largest $i$ in $V_{i}(k)$ used to calculate $V_{i+1}(k+1)$ (where $\left.C P_{k}<C P_{k+1}\right)$


## R package: postCP

Output includes:

- Confidence intervals around each initial change-point (either specified by user or found by Viterbi algorithm)
- Posterior probabilities of hidden state and change-point for each observation
- (Optional) Sampling from original data set by generating random sets of change-points


## Analysis of colorectal cancer, SNP array data

- Used DNAcopy (Olshen), which found 10 change-points within 14,241 observations
- postCP took $<0.1$
sec to estimate change-point probabilities


Figure: SNP array data with 11 segments

## R package: postCP

| >postCP (data=LRR.PLP [chrom |  |  |  |
| ---: | ---: | ---: | ---: |
| ci=0.95) \$cp.est |  |  |  |
| est |  |  |  |
| lo. 0.9 | hi. 0.9 |  |  |
| $[1]$, | 211 | 211 | 211 |
| $[2]$, | 215 | 215 | 215 |
| $[3]$, | 273 | 271 | 273 |
| $[4]$, | 383 | 382 | 384 |
| $[5]$, | 736 | 695 | 755 |
| $[6]$, | 3091 | 3090 | 3091 |
| $[7]$, | 3102 | 3101 | 3102 |
| $[8]$, | 8308 | 8286 | 8417 |
| $[9]$, | 8760 | 8703 | 8780 |
| $[10]$, | 12383 | 11931 | 12452 |

## Posterior-change point probabilities for first 5 change-points in SNP array data, $n=14,241$, (Laurent-Puig) by postCP

| CP | Est | Post <br> Prob | $\Delta$ <br> Mean | width <br> 0.9 Cl |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 211 | 0.973 | -0.582 | 1 |
| 2 | 215 | 0.918 | 0.523 | 1 |
| 3 | 273 | 0.556 | -0.293 | 3 |
| 4 | 383 | 0.580 | 0.381 | 3 |
| 5 | 736 | 0.028 | -0.081 | 61 |



Figure: postCP: first 5

## Posterior-change point probabilities for 10th change-point in SNP array data, $n=14,241$, (Laurent-Puig) by postCP



Figure: postCP: 10th change-point

## Change-point location estimates for Snijders breast cancer aCGH data (2001)

- Initial
change-points from modified greedy K-means algorithm.
- Less conservative intervals found by postCP
- Frequentist approach: fixed parameter values

| CP | $\Delta$ | est | postCP | Bayes |
| :---: | ---: | :---: | :---: | ---: |
| Three segments |  |  |  |  |
| 1 | -0.22 | 68 | $66-76$ | $64-78$ |
| 2 | -0.71 | 96 | $96-96$ | $92-97$ |
| Four segments |  |  |  |  |
| 1 | -0.34 | 68 | $66-76$ | $66-78$ |
| 2 | -0.20 | 80 | $79-85$ | $78-97$ |
| 3 | -0.80 | 96 | $96-96$ | $91-112$ |

## Posterior-change point probabilities for aCGH data, $n=120$, (Snijders et al, 2001) by postCP



Figure: postCP: 3 segments


Figure: postCP: 4 segments

## Misclassified initial change-points, normal data, one true change-point at $i=500$



Figure: Misplaced initial change-point $i=100$


Figure: Extra initial change-point $i=100$ and $i=500$

## Summary

- Estimates of change-point probabilities in linear time $O(K n)$
- Calculations for 10 change-points in $>14000$ SNPs took $<0.1$ second, took $\sim 10$ seconds for $\sim 100$ change-points 200000 observations
- Less conservative confidence intervals than those from exact formulae (Rigaill, 2011), postCP uses frequentist framework
- Probability estimates may be inaccurate if change-point locations misspecified


## Practical applications

- Useful when combined with effective method to obtain initial estimates of distribution of change-points
- Efficient calculations, feasible for high-throughput data such as CNV data from SNP arrays
- Overlapping confidence intervals across multiple samples may yield useful information


## Future work

- Combination in $R$ package with dynamic programming algorithm for detecting change-points from Rozenholc (2011)
- Model selection through criteria (BIC, ICL) using posterior probabilities from forward-backward algorithm
- ICL uses entropy: $\sum_{S} \mathbb{P}\left(S \mid X, K, \hat{\theta}_{K}\right) \log \mathbb{P}\left(S \mid X, K, \hat{\theta}_{K}\right)$
- Specification of priors, E-M algorithm
- Segmentation of multiple outcomes (LRR and BAF in CNV)

