Quantifying the uncertainty of activation periods in fMRI data via changepoint analysis

Christopher F. H. Nam Department of Statistics, University of Warwick Joint work with John A. D. Aston and Adam M. Johansen

> CRiSM Changepoint Workshop, Tuesday 27th March 2012

> > ▲日▼▲□▼▲□▼▲□▼ □ ののの

Introduction	Background	Methodology	Application and Results	Conclusions & References	References
0000					
A Biological App	olication				

fMRI data from an Anxiety Induced Experiment

Task design: Anxiogenic speech preparation task

Figure: Design of Anxiety Induced Experiment

- 215 images/time points
- 24 subjects

Image from Lindquist et al. [2007]

Introduction	Background	Methodology	Application and Results	Conclusions & References	References
00000	000	00000000	00000000	0	000
A Biological Ap	plication				
fMRI D	lata				

Image from Lindquist et al. [2007]

Introduction	Background	Methodology	Application and Results	Conclusions & References	References
A Biological Ap	plication				
Brain F	Regions c	of interest			

Introduction	Background	Methodology	Application and Results	Conclusions & References	References
00000					
A Biological Ap	plication				
Questic	ons of int	terest			

▲日▼▲□▼▲□▼▲□▼ □ ののの

- The exact design of the experiment.
- When might activations have occurred?
- How many activations may have occurred?
- How long are these activation periods?

Introduction ○○○○●	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
Proposal					
Aim					

Propose a methodology to fully capture the uncertainty of changepoint characteristics given a sequence of data $y = y_{1:n} = (y_1, \dots, y_n).$

- Changepoint Probability (CPP) to a regime occurring at time *t*.
- Probability of *m* changepoints occurring in the data.

Focus our attention to these quantities although others are easily accessible.

Introduction 00000	Background ●○○	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
Hidden Markov	Models				
Hidden	Markov	Models			

- Assume y can be generated by a finite number of states.
- Hidden Markov Models (HMMs) to model time series y with {X_t} as our underlying Markov Chain, with finite state space Ω_X.

General Finite State Hidden Markov Model

 $\begin{array}{ll} \text{Emission:} & y_t | y_{1:t-1}, x_{1:t}, \theta \sim f(y_t | x_{t-r:t}, y_{1:t-1}, \theta) \\ \text{Transition:} & p(x_t | y_{1:t-1}, x_{-r+1:t-1}, \theta) = p(x_t | x_{t-1}, \theta) \end{array}$

• Changepoints in this HMM framework.

Introduction 00000	Background ○●○	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
Changepoints					
Change	point De	finition			

Changepoint Definition

Changepoint to a regime is said to have occurred at time t when a state persists for at least k time periods in $\{X_t\}$.

$$x_{t-1} \neq x_t = x_{t+1} = \ldots = x_{t+j}$$
 where $j \ge k-1$

Define $au^{(k)}$ and $M^{(k)}$ to be the time and number of changepoints.

Introduction 00000	Background ○○●	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
Model Paramet	ers				
Model	Paramet	ers			

- θ indicates our model parameter vector which needs to be estimated.
- Components will vary; dependent on the particular type of HMM used.
 - **P**, the $|\Omega_X| \times |\Omega_X|$ probability transition matrix for $\{X_t\}$
 - Parameters for the emission distribution which can be dependent on the underlying state Means μ_{Xt}, variances σ²_{Xt}, Poisson intensity rates λ_{Xt}, ...

Introduction	Background	Methodology	Application and Results	Conclusions & References	References
		0000000			
Proposed Method	ology				

Suppose we are interested in the changepoint probability $P(\tau^{(k)} = t|y)$.

$$P(au^{(k)} = t|y) = \int_{ heta} P(au^{(k)} = t, heta|y) d heta = \int_{ heta} P(au^{(k)} = t| heta, y) p(heta|y) d heta$$

Introduction	Background	Methodology	Application and Results	Conclusions & References	References
		• 0 000000			
Proposed Method	ology				

Suppose we are interested in the changepoint probability $P(\tau^{(k)} = t|y)$.

$$\begin{split} P(\tau^{(k)} = t|y) &= \int_{\theta} P(\tau^{(k)} = t, \theta|y) d\theta = \int_{\theta} P(\tau^{(k)} = t|\theta, y) p(\theta|y) d\theta \\ &\approx \widehat{P^{N}}(\tau^{(k)} = t|y) = \sum_{i=1}^{N} W^{i} P(\tau^{(k)} = t|\theta^{i}, y) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

by standard Monte Carlo results.

•
$$\{W^i, \theta^i\}_{i=1}^N$$
 approximates $p(\theta|y)$
• $P(\tau^{(k)} = t|\theta^i, y)$

Introduction 00000	Background 000	Methodology 0●000000	Application and Results	Conclusions & References 0	References 000
Proposed Metho	dology				
Propose	ed Metho	odology			

• Approximate $p(\theta|y)$ via SMC samplers to obtain a normalised weighted cloud of particles $\{W^i, \theta^i\}_{i=1}^N$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction 00000	Background 000	Methodology ○●○○○○○○	Application and Results	Conclusions & References 0	References 000
Proposed Meth	odology				
Propos	ed Meth	odology			

- Approximate p(θ|y) via SMC samplers to obtain a normalised weighted cloud of particles {Wⁱ, θⁱ}_{i=1}^N.
- For i = 1,..., N, compute the associated exact changepoint distribution conditioned on θⁱ, P(τ^(k) = t|θⁱ, y), via FMCI in a HMM context.

Introduction 00000	Background 000	Methodology ○●○○○○○○	Application and Results	Conclusions & References 0	References 000
Proposed Meth	odology				
Propos	ed Meth	odology			

- Approximate p(θ|y) via SMC samplers to obtain a normalised weighted cloud of particles {Wⁱ, θⁱ}_{i=1}^N.
- For i = 1,..., N, compute the associated exact changepoint distribution conditioned on θⁱ, P(τ^(k) = t|θⁱ, y), via FMCI in a HMM context.
- Weighted average of these exact changepoint distributions to obtain the changepoint distributions in light of parameter uncertainty, P(\(\au\)^(k) = t \|y\).

Introduction 00000	Background 000	Methodology ○●○○○○○○	Application and Results	Conclusions & References 0	References 000
Proposed Meth	odology				
Propos	ed Meth	odology			

- Approximate p(θ|y) via SMC samplers to obtain a normalised weighted cloud of particles {Wⁱ, θⁱ}_{i=1}^N.
- For i = 1,..., N, compute the associated exact changepoint distribution conditioned on θⁱ, P(τ^(k) = t|θⁱ, y), via FMCI in a HMM context.
- Weighted average of these exact changepoint distributions to obtain the changepoint distributions in light of parameter uncertainty, P(\(\au\)^(k) = t \|y\).

Introduction 00000	Background 000	Methodology ○●○○○○○○	Application and Results	Conclusions & References 0	References 000
Proposed Meth	nodology				
Propos	ed Meth	odology			

- Approximate $p(\theta|y)$ via SMC samplers to obtain a normalised weighted cloud of particles $\{W^i, \theta^i\}_{i=1}^N$.
- For i = 1,..., N, compute the associated exact changepoint distribution conditioned on θⁱ, P(τ^(k) = t|θⁱ, y), via FMCI in a HMM context.
- Weighted average of these exact changepoint distributions to obtain the changepoint distributions in light of parameter uncertainty, P(\(\au\)^(k) = t \|y\).

Combines recent work of Del Moral et al. [2006] and Aston et al. [2009].

Specific details can be found in Nam et al. [in press].

Introduction 00000 Background Methodology

Application and Results

Conclusions & References o References 000

Approximating $p(\theta|y)$, the model parameter posterior

Sequential Monte Carlo (SMC) Samplers

SMC Samplers

 $\pi_b \propto p(heta) l(y| heta)^{\gamma_b}$

where

- $p(\theta) = \text{prior of}$ the model parameters
- $l(y|\theta) =$ likelihood
- $0 = \gamma_1 \leq \gamma_2 \leq$ $\dots \leq \gamma_B = 1$, a tempering schedule

Introduction	Background	Methodology	Application and Results	Conclusions & References	References			
		0000000						
Exact distribution	Exact distributions conditional on model parameters, ${\cal P}(au^{(k)} heta^i,y)$							
Exact distributions								

• Exact computation of $P(\tau^{(k)} = t | \theta^i, y)$.

Introduction	Background	Methodology	Application and Results	Conclusions & References	References			
		00000000						
Exact distributio	Exact distributions conditional on model parameters, ${\cal P}(au^{(k)} heta^{j},y)$							
Exact distributions								

- Exact computation of $P(\tau^{(k)} = t | \theta^i, y)$.
- $\tau_u^{(k)}$ denote the *u*th changepoint under our definition.

•
$$P(\tau^{(k)} = t | \theta^i, y) = \sum_{u=1,2,\dots} P(\tau_u^{(k)} = t | \theta^i, y).$$

P(τ_u^(k) = t |θⁱ, y) ≡ P(W(k, u) = t + k - 1|θⁱ, y) re-express as a waiting time for runs.

Introduction	Background	Methodology	Application and Results	Conclusions & References	References			
		00000000						
Exact distributio	Exact distributions conditional on model parameters, ${\cal P}(au^{(k)} heta^{j},y)$							
Exact distributions								

- Exact computation of $P(\tau^{(k)} = t | \theta^i, y)$.
- $\tau_u^{(k)}$ denote the *u*th changepoint under our definition.

•
$$P(\tau^{(k)} = t | \theta^i, y) = \sum_{u=1,2,\dots} P(\tau_u^{(k)} = t | \theta^i, y).$$

- P(τ_u^(k) = t | θⁱ, y) ≡ P(W(k, u) = t + k 1|θⁱ, y) re-express as a waiting time for runs.
- Waiting time distribution for runs can be computed exactly via Finite Markov Chain Imbedding (FMCI).

Finite Markov Chain Imbedding (FMCI)

■ うへで

• $P(W(k, u) \le t + k - 1|\theta^i) = P(Z_{t+k-1}^{(u)} \in A|\theta^i)$ where A denotes the set of absorption states in Ω_Z .

• Computed by standard Markov Chain results.

Exact distributions conditional on model parameters, ${\cal P}(au^{(k)} heta^i,y)$							
FMCI in a HMM context							

• Inference on the underlying state sequence.

Introduction 00000	Background 000	Methodology ○○○○○○●○	Application and Results	Conclusions & References 0	References 000			
Exact distribution	Exact distributions conditional on model parameters, ${\cal P}(au^{(k)} heta^i,y)$							
FMCI in a HMM context								

- Inference on the underlying state sequence.
- Compute posterior transition probabilities $P(X_t|X_{t-1}, y)$ to consider all possible state sequences.
- Sequence of time dependent posterior transition probability matrices {\$\tilde{P}_1, \tilde{P}_2, \ldots, \$\tilde{P}_n\$}.

Introduction 00000	Background 000	Methodology ○○○○○○●○	Application and Results	Conclusions & References 0	References 000			
Exact distribution	Exact distributions conditional on model parameters, ${\cal P}(au^{(k)} heta^i,y)$							
FMCI in a HMM context								

- Inference on the underlying state sequence.
- Compute posterior transition probabilities $P(X_t|X_{t-1}, y)$ to consider all possible state sequences.
- Sequence of time dependent posterior transition probability matrices {\$\tilde{P}_1, \tilde{P}_2, \ldots, \tilde{P}_n\$}.
- Results in a sequence of time dependent posterior transition probability matrices { M
 ₁, M
 ₂,..., M
 _n} for the auxiliary MCs {Z_t}.

Introduction	Background	Methodology	Application and Results	Conclusions & References	References			
		0000000						
Exact distribution	Exact distributions conditional on model parameters, ${\cal P}(au^{(k)} heta^i, extsf{y})$							

Exact Distributions for Changepoint characteristics

Probability of uth changepoint at specific time

$$\mathsf{P}(au_u^{(k)}=t| heta^i,y)=\mathsf{P}(\mathsf{W}(k,u)=t+k-1| heta^i,y)$$

$$= P(W(k,u) \leq t+k-1|\theta^i,y) - P(W(k,u) \leq t+k-2|\theta^i,y)$$

Distribution of the number of changepoints,

$$P(M^{(k)} = u|\theta^i) = P(W(k, u) \le n|\theta^i, y) - P(W(k, u+1) \le n|\theta^i, y)$$

Introduction	Background	Methodology	Application and Results	Conclusions & References	References
fMRI application	1				
fMRI d	ata				

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
fMRI application					
Prelimir	nary I				

- AR error process leads to a HMS-AR model.
- Detrending within model.

HMS-AR(r) with detrending

$$y_t - \mu_{x_t} - \mathbf{m}_t^{'} \beta = a_t$$

$$a_t = \phi_1 a_{t-1} + \ldots + \phi_r a_{t-r} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

 \bullet Detrending parameters within model \rightarrow Estimated within SMC samplers.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
fMRI application					
Prelimi	nary II				

 Detrending types: No detrending, Polynomial of order 3, Discrete Cosine Basis

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
fMRI application					
Prelimi	nary II				

 Detrending types: No detrending, Polynomial of order 3, Discrete Cosine Basis

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• HMS-AR of order 0 and 1

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
fMRI application					
Prelimi	nary II				

 Detrending types: No detrending, Polynomial of order 3, Discrete Cosine Basis

- HMS-AR of order 0 and 1
- $\Omega_X = \{$ "resting", "active" $\}$

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
fMRI application					
Prelimi	nary II				

- Detrending types: No detrending, Polynomial of order 3, Discrete Cosine Basis
- HMS-AR of order 0 and 1
- $\Omega_X = \{$ "resting", "active" $\}$
- 5 consecutive active states for activated region (k = 5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 000
fMRI application					
Prelimi	nary II				

- Detrending types: No detrending, Polynomial of order 3, Discrete Cosine Basis
- HMS-AR of order 0 and 1
- $\Omega_X = \{$ "resting", "active" $\}$
- 5 consecutive active states for activated region (k = 5)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• SMC samplers: 500 = N particles, 100 = B iterations

Cluster 6, CPP HMS-AR(0)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Cluster 6, CPP, HMS-AR(1)

Cluster 6, Distribution of Number Activation Regimes

æ

Cluster 20, CPP HMS-AR(0)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Cluster 20, CPP, HMS-AR(1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Cluster 20, Distribution of Number Activation Regimes

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References	References 000
Conclusions					
Conclus	sions				

 Proposed methodology quantifying the uncertainty for changepoint characteristics in light of model parameter uncertainty.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References	References 000
Conclusions					
Conclus	sions				

- Proposed methodology quantifying the uncertainty for changepoint characteristics in light of model parameter uncertainty.
- Combines recent work of exact changepoint distributions via FMCI in HMM.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References •	References 000
Conclusions					
Conclus	sions				

- Proposed methodology quantifying the uncertainty for changepoint characteristics in light of model parameter uncertainty.
- Combines recent work of exact changepoint distributions via FMCI in HMM.

▲日▼▲□▼▲□▼▲□▼ □ ののの

• Accounts for parameter uncertainty via SMC samplers.

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References •	References 000
Conclusions					
Conclus	sions				

- Proposed methodology quantifying the uncertainty for changepoint characteristics in light of model parameter uncertainty.
- Combines recent work of exact changepoint distributions via FMCI in HMM.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Accounts for parameter uncertainty via SMC samplers.
- Application to fMRI data.

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References	References 000
Conclusions					
Conclus	sions				

- Proposed methodology quantifying the uncertainty for changepoint characteristics in light of model parameter uncertainty.
- Combines recent work of exact changepoint distributions via FMCI in HMM.
- Accounts for parameter uncertainty via SMC samplers.
- Application to fMRI data.
- Effects of error process assumptions and types of detrending.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References
References					
Referen	ces				

- John A. D. Aston, J. Y. Peng, and Donald E. K. Martin. Implied distributions in multiple change point problems. CRiSM Research Report 08-26, University of Warwick, 2009.
- Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. *Journal of the Royal Statistical Society Series B*, 68 (3):411–436, 2006.
- Martin A. Lindquist, Christian Waugh, and Tor D. Wager. Modeling state-related fMRI activity using change-point theory. *NeuroImage*, 35 (3):1125–1141, 2007. doi: 10.1016/j.neuroimage.2007.01.004.

C. F. H. Nam, J. A. D. Aston, and A. M. Johansen. Quantifying the uncertainty in change points. *Journal of Time Series Analysis*, (in press).

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References ●00				
Additional Information									
Implementation of SMC samplers I									

• Consider the model parameters for a 2-state Hamilton's MS-AR(r) model. $\theta = (\mathbf{P}, \mu_1, \mu_2, \sigma^2, \phi_1, \dots, \phi_r)$

• Simple linear tempering schedule,

$$\gamma_b = \frac{b-1}{B-1}, \qquad b = 1, \dots, B.$$

Implementation of SMC samplers I							
Additional Inform	ation						
Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References o	References ●00		

- Consider the model parameters for a 2-state Hamilton's MS-AR(r) model. $\theta = (\mathbf{P}, \mu_1, \mu_2, \sigma^2, \phi_1, \dots, \phi_r)$
- Simple linear tempering schedule, $\gamma_b = \frac{b-1}{B-1}, \quad b = 1, \dots, B.$
- Reparameterisation of variances to precisions, $\lambda = 1/\sigma^2$ -AR parameters to Partial Autocorrelation Coefficients (PAC).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 0●0			
Additional Info	rmation							
Implementation of SMC samplers II								

• Initialisation: Assume independence between the components of *θ*, and sample from Bayesian priors.

Approximation of posterior

$$p(\theta|y) \approx \{W_B^{(i)}, \theta_B^{(i)}\}_{i=1}^N = \{W^i, \theta^i\}_{i=1}^N$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Implementation of SMC samplers II								
Additional Information								
Introduction	n Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 0●0			

- Initialisation: Assume independence between the components of *θ*, and sample from Bayesian priors.
- Mutation: Random Walk Metropolis Hastings (RWMH).

Approximation of posterior

$$p(\theta|y) \approx \{W_B^{(i)}, \theta_B^{(i)}\}_{i=1}^N = \{W^i, \theta^i\}_{i=1}^N$$

◆□> ◆□> ◆三> ◆三> ・三 のへで

- Initialisation: Assume independence between the components of *θ*, and sample from Bayesian priors.
- Mutation: Random Walk Metropolis Hastings (RWMH).
- Selection: Resample if $ESS = \{\sum_{i=1}^{N} (W_b^{(i)})^2\}^{-1} < N/2$. Re-weight resampled particles to 1/N.

Approximation of posterior

$$p(\theta|y) \approx \{W_B^{(i)}, \theta_B^{(i)}\}_{i=1}^N = \{W^i, \theta^i\}_{i=1}^N$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Initialisation: Assume independence between the components of θ , and sample from Bayesian priors.
- Mutation: Random Walk Metropolis Hastings (RWMH).
- Selection: Resample if $ESS = \{\sum_{i=1}^{N} (W_b^{(i)})^2\}^{-1} < N/2$. Re-weight resampled particles to 1/N.
- Intermediary Output: Weighted cloud of N particles, $\{W_b^{(i)}, \theta_b^{(i)}\}_{i=1}^N$ approximates the distribution π_b .

Approximation of posterior

$$p(\theta|y) \approx \{W_B^{(i)}, \theta_B^{(i)}\}_{i=1}^N = \{W^i, \theta^i\}_{i=1}^N$$

Introduction 00000	Background 000	Methodology 00000000	Application and Results	Conclusions & References 0	References 00●
Additional Infor	mation				
Waiti	ng Time Dis	tributions for	Runs in HMM conte	ext	
For t	$=1,\ldots,n$				

$$\begin{split} \Psi_t &= \Psi_{t-1} \tilde{\mathbf{M}}_t \\ \psi_t^{(u)} &\leftarrow \psi_t^{(u)} + \psi_{t-1}^{(u-1)} (\tilde{\mathbf{M}}_t - \mathbf{I}) \Upsilon, \quad u = 2, \dots, \lfloor n/k \rfloor \\ P(W(k, u | \theta^i, y) \leq t) &= P(Z_t^{(u)} \in A) = \psi_t^{(u)} U(A) \end{split}$$

where $:\psi_t^{(u)} = 1 \times |\Omega_Z|$ vector storing probabilities of the *u*th chain being in the corresponding state.

$$\Psi_t = \lfloor n/k \rfloor \times |\Omega_Z|$$
 with $(\psi_t^{(1)}, \psi_t^{(2)}, ...)$ as row vectors.

$$\mathbf{I} = |\Omega_Z| imes |\Omega_Z|$$
 identity matrix

 $\Upsilon = |\Omega_Z| \times |\Omega_Z|$ matrix connecting absorption state

to the corresponding continuation state

 $U(A) = |\Omega_Z| \times 1$ vector with 1s in location of absorption states 0s elsewhere.