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A Biological Application

fMRI data from an Anxiety Induced Experiment

Figure: Design of Anxiety Induced Experiment

215 images/time points

24 subjects

Image from Lindquist et al. [2007]
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A Biological Application

fMRI Data

Image from Lindquist et al. [2007]
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A Biological Application

Brain Regions of interest
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A Biological Application

Questions of interest

The exact design of the experiment.

When might activations have occurred?

How many activations may have occurred?

How long are these activation periods?
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Proposal

Aim

Propose a methodology to fully capture the uncertainty of
changepoint characteristics given a sequence of data
y = y1:n = (y1, . . . , yn).

Changepoint Probability (CPP) to a regime occurring at time
t.

Probability of m changepoints occurring in the data.

Focus our attention to these quantities although others are easily
accessible.
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Hidden Markov Models

Hidden Markov Models

Assume y can be generated by a finite number of states.

Hidden Markov Models (HMMs) to model time series y
with {Xt} as our underlying Markov Chain, with finite state
space ΩX .

General Finite State Hidden Markov Model

Emission: yt |y1:t−1, x1:t , θ ∼ f (yt |xt−r :t , y1:t−1, θ)

Transition: p(xt |y1:t−1, x−r+1:t−1, θ) = p(xt |xt−1, θ)

Changepoints in this HMM framework.
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Changepoints

Changepoint Definition

Changepoint Definition

Changepoint to a regime is said to have occurred at time t when a
state persists for at least k time periods in {Xt}.

xt−1 6= xt = xt+1 = . . . = xt+j where j ≥ k − 1

Define τ (k) and M(k) to be the time and number of changepoints.
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Model Parameters

Model Parameters

θ indicates our model parameter vector which needs to be
estimated.

Components will vary; dependent on the particular type of
HMM used.

P, the |ΩX | × |ΩX | probability transition matrix for {Xt}
Parameters for the emission distribution which can be
dependent on the underlying state
Means µXt

, variances σ2
Xt
, Poisson intensity rates λXt

, ...
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Proposed Methodology

Suppose we are interested in the changepoint probability
P(τ (k) = t|y).

P(τ (k) = t|y) =

∫

θ

P(τ (k) = t, θ|y)dθ =

∫

θ

P(τ (k) = t|θ, y)p(θ|y)dθ
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Proposed Methodology

Suppose we are interested in the changepoint probability
P(τ (k) = t|y).

P(τ (k) = t|y) =

∫

θ

P(τ (k) = t, θ|y)dθ =

∫

θ

P(τ (k) = t|θ, y)p(θ|y)dθ

≈ P̂N(τ (k) = t|y) =

N∑

i=1

W iP(τ (k) = t|θi , y)

by standard Monte Carlo results.

{W i , θi}Ni=1 approximates p(θ|y)

P(τ (k) = t|θi , y)
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Proposed Methodology

Proposed Methodology

1 Approximate p(θ|y) via SMC samplers to obtain a normalised
weighted cloud of particles {W i , θi}Ni=1.
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Proposed Methodology

Proposed Methodology

1 Approximate p(θ|y) via SMC samplers to obtain a normalised
weighted cloud of particles {W i , θi}Ni=1.

2 For i = 1, . . . ,N, compute the associated exact changepoint
distribution conditioned on θi , P(τ (k) = t|θi , y), via FMCI in
a HMM context.



Introduction Background Methodology Application and Results Conclusions & References References

Proposed Methodology

Proposed Methodology

1 Approximate p(θ|y) via SMC samplers to obtain a normalised
weighted cloud of particles {W i , θi}Ni=1.

2 For i = 1, . . . ,N, compute the associated exact changepoint
distribution conditioned on θi , P(τ (k) = t|θi , y), via FMCI in
a HMM context.

3 Weighted average of these exact changepoint distributions
to obtain the changepoint distributions in light of parameter
uncertainty, P(τ (k) = t|y).
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Proposed Methodology

Proposed Methodology

1 Approximate p(θ|y) via SMC samplers to obtain a normalised
weighted cloud of particles {W i , θi}Ni=1.

2 For i = 1, . . . ,N, compute the associated exact changepoint
distribution conditioned on θi , P(τ (k) = t|θi , y), via FMCI in
a HMM context.

3 Weighted average of these exact changepoint distributions
to obtain the changepoint distributions in light of parameter
uncertainty, P(τ (k) = t|y).

Combines recent work of Del Moral et al. [2006] and Aston et al.
[2009].
Specific details can be found in Nam et al. [in press].
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Approximating p(θ|y), the model parameter posterior

Sequential Monte Carlo (SMC) Samplers

SMC Samplers

πb ∝ p(θ)l(y |θ)γb

where

p(θ) = prior of
the model
parameters

l(y |θ) =
likelihood

0 = γ1 ≤ γ2 ≤
. . . ≤ γB = 1,
a tempering
schedule
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

Exact distributions

Exact computation of P(τ (k) = t|θi , y).
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

Exact distributions

Exact computation of P(τ (k) = t|θi , y).

τ
(k)
u denote the uth changepoint under our definition.

P(τ (k) = t|θi , y) =
∑

u=1,2,... P(τ
(k)
u = t|θi , y).

P(τ
(k)
u = t|θi , y) ≡ P(W (k , u) = t + k − 1|θi , y) re-express

as a waiting time for runs.
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

Exact distributions

Exact computation of P(τ (k) = t|θi , y).

τ
(k)
u denote the uth changepoint under our definition.

P(τ (k) = t|θi , y) =
∑

u=1,2,... P(τ
(k)
u = t|θi , y).

P(τ
(k)
u = t|θi , y) ≡ P(W (k , u) = t + k − 1|θi , y) re-express

as a waiting time for runs.

Waiting time distribution for runs can be computed exactly
via Finite Markov Chain Imbedding (FMCI).



Finite Markov Chain Imbedding (FMCI)
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

Waiting Time Distributions via FMCI

P(W (k , u) ≤ t + k − 1|θi ) = P(Z
(u)
t+k−1 ∈ A|θi) where A

denotes the set of absorption states in ΩZ .

Computed by standard Markov Chain results.
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

FMCI in a HMM context

Inference on the underlying state sequence.
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

FMCI in a HMM context

Inference on the underlying state sequence.

Compute posterior transition probabilities P(Xt |Xt−1, y) to
consider all possible state sequences.

Sequence of time dependent posterior transition probability
matrices {P̃1, P̃2, . . . , P̃n}.
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

FMCI in a HMM context

Inference on the underlying state sequence.

Compute posterior transition probabilities P(Xt |Xt−1, y) to
consider all possible state sequences.

Sequence of time dependent posterior transition probability
matrices {P̃1, P̃2, . . . , P̃n}.

Results in a sequence of time dependent posterior transition
probability matrices {M̃1, M̃2, . . . , M̃n} for the auxiliary MCs
{Zt}.
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Exact distributions conditional on model parameters, P(τ (k)|θi , y)

Exact Distributions for Changepoint characteristics

Probability of uth changepoint at specific time

P(τ
(k)
u = t|θi , y) = P(W (k , u) = t + k − 1|θi , y)

= P(W (k , u) ≤ t + k − 1|θi , y)− P(W (k , u) ≤ t + k − 2|θi , y)

Distribution of the number of changepoints,

P(M(k) = u|θi) = P(W (k , u) ≤ n|θi , y)− P(W (k , u + 1) ≤ n|θi , y)



Introduction Background Methodology Application and Results Conclusions & References References

fMRI application

fMRI data
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fMRI application

Preliminary I

AR error process leads to a HMS-AR model.

Detrending within model.

HMS-AR(r) with detrending

yt − µxt −m‘
tβ = at
at = φ1at−1 + . . . + φrat−r + ǫt , ǫt ∼ N(0, σ2)

Detrending parameters within model → Estimated within
SMC samplers.
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fMRI application

Preliminary II

Detrending types:
No detrending, Polynomial of order 3, Discrete Cosine
Basis
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fMRI application
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Detrending types:
No detrending, Polynomial of order 3, Discrete Cosine
Basis

HMS-AR of order 0 and 1
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fMRI application

Preliminary II

Detrending types:
No detrending, Polynomial of order 3, Discrete Cosine
Basis

HMS-AR of order 0 and 1

ΩX = {“resting”, “active”}
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fMRI application

Preliminary II

Detrending types:
No detrending, Polynomial of order 3, Discrete Cosine
Basis

HMS-AR of order 0 and 1

ΩX = {“resting”, “active”}

5 consecutive active states for activated region (k = 5)
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fMRI application

Preliminary II

Detrending types:
No detrending, Polynomial of order 3, Discrete Cosine
Basis

HMS-AR of order 0 and 1

ΩX = {“resting”, “active”}

5 consecutive active states for activated region (k = 5)

SMC samplers: 500 = N particles, 100 = B iterations
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Cluster 6, CPP, HMS-AR(1)
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(j) AR(1), No detrending
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(k) AR(1), Poly detrending
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fMRI application

Cluster 6, Distribution of Number Activation Regimes
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Cluster 20, CPP HMS-AR(0)
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Cluster 20, CPP, HMS-AR(1)
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fMRI application

Cluster 20, Distribution of Number Activation Regimes
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Conclusions

Conclusions

Proposed methodology quantifying the uncertainty for
changepoint characteristics in light of model parameter
uncertainty.
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Conclusions

Conclusions

Proposed methodology quantifying the uncertainty for
changepoint characteristics in light of model parameter
uncertainty.

Combines recent work of exact changepoint distributions via
FMCI in HMM.

Accounts for parameter uncertainty via SMC samplers.

Application to fMRI data.
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Conclusions

Conclusions

Proposed methodology quantifying the uncertainty for
changepoint characteristics in light of model parameter
uncertainty.

Combines recent work of exact changepoint distributions via
FMCI in HMM.

Accounts for parameter uncertainty via SMC samplers.

Application to fMRI data.

Effects of error process assumptions and types of detrending.
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Additional Information

Implementation of SMC samplers I

Consider the model parameters for a 2-state Hamilton’s
MS-AR(r) model. θ = (P, µ1, µ2, σ

2, φ1, . . . , φr )

Simple linear tempering schedule,
γb = b−1

B−1 , b = 1, . . . ,B .
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Additional Information

Implementation of SMC samplers I

Consider the model parameters for a 2-state Hamilton’s
MS-AR(r) model. θ = (P, µ1, µ2, σ

2, φ1, . . . , φr )

Simple linear tempering schedule,
γb = b−1

B−1 , b = 1, . . . ,B .

Reparameterisation of variances to precisions, λ = 1/σ2

-AR parameters to Partial Autocorrelation Coefficients (PAC).
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Additional Information

Implementation of SMC samplers II

Initialisation: Assume independence between the components
of θ, and sample from Bayesian priors.

Approximation of posterior

p(θ|y) ≈ {W
(i)
B , θ

(i)
B }

N
i=1 = {W

i , θi}Ni=1
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Additional Information

Implementation of SMC samplers II

Initialisation: Assume independence between the components
of θ, and sample from Bayesian priors.

Mutation: Random Walk Metropolis Hastings (RWMH).

Approximation of posterior

p(θ|y) ≈ {W
(i)
B , θ

(i)
B }

N
i=1 = {W

i , θi}Ni=1



Introduction Background Methodology Application and Results Conclusions & References References

Additional Information

Implementation of SMC samplers II

Initialisation: Assume independence between the components
of θ, and sample from Bayesian priors.

Mutation: Random Walk Metropolis Hastings (RWMH).

Selection: Resample if ESS = {
∑N

i=1(W
(i)
b )2}−1 < N/2.

Re-weight resampled particles to 1/N.

Approximation of posterior

p(θ|y) ≈ {W
(i)
B , θ

(i)
B }

N
i=1 = {W

i , θi}Ni=1
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Additional Information

Implementation of SMC samplers II

Initialisation: Assume independence between the components
of θ, and sample from Bayesian priors.

Mutation: Random Walk Metropolis Hastings (RWMH).

Selection: Resample if ESS = {
∑N

i=1(W
(i)
b )2}−1 < N/2.

Re-weight resampled particles to 1/N.

Intermediary Output: Weighted cloud of N particles,

{W
(i)
b
, θ

(i)
b
}Ni=1 approximates the distribution πb.

Approximation of posterior

p(θ|y) ≈ {W
(i)
B , θ

(i)
B }

N
i=1 = {W

i , θi}Ni=1
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Additional Information

Waiting Time Distributions for Runs in HMM context

For t = 1, . . . , n

Ψt = Ψt−1M̃t

ψ
(u)
t ← ψ

(u)
t + ψ

(u−1)
t−1 (M̃t − I)Υ, u = 2, . . . , ⌊n/k⌋

P(W (k , u|θi , y) ≤ t) = P(Z
(u)
t ∈ A) = ψ

(u)
t U(A)

where :ψ
(u)
t = 1× |ΩZ | vector storing probabilities of the uth chain

being in the corresponding state.

Ψt = ⌊n/k⌋ × |ΩZ | with (ψ
(1)
t , ψ

(2)
t , . . .) as row vectors.

I = |ΩZ | × |ΩZ | identity matrix

Υ = |ΩZ | × |ΩZ | matrix connecting absorption state

to the corresponding continuation state

U(A) = |ΩZ | × 1 vector with 1s in location of absorption states

0s elsewhere.
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