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An example
Dynamic Programming (DP, Bellman and Dreyfus 1962)

I to recover the best segmentation in K = 1 to K = 10 segments
Choice of K (model selection)
Likelihood of the best segmentation having its k -th change at t
(Guédon 2009)

Data Likelihood
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Change-point model

Notations:
K = number of segments
r = region (or segment) Jτr , τr+1J (nr = length of r )
m = segmentation: m = {r1, . . . , rK}
Yt = signal at position t (t ∈ J1,nK)

Model:
{Yt} independent
t ∈ r :

Yt ∼ p(·|θr )

e.g.
p(·|θr ) = N (µr , σ

2), N (µr , σ
2
r ), P(λr )
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Inference on the position and number of changes

Change-points are discrete
There is a large collection of possible models (|MK | =

(n−1
K−1

)
)

Some difficulties:
Standard model selection criteria (BIC. . . ) are not theoretically
justified
Confidence on change-points, segments: standard MLE
properties do not hold

Idea:
We would like to select a K such that the confidence on the
change-points is high/good
This should ease the interpretation of the result
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Selection of the number of segments

Outline

1 Selection of the number of segments

2 Selection of the position of the changes

3 Confidence on the change-points, segments . . .

4 Back to the selection of the number of segments
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Selection of the number of segments

Model selection: BIC
The standard Laplace approximation used to derive the BIC criteria

log p(M|Y) = log
∫

p(M, θ|Y)dθ ≈ log p(M|Y, θ̂)− log n
2

dim(M)

is not valid

because the likelihood is not differentiable with respect to the
parameters.

Zhang and Siegmund 2007, based on a continuous-version of the
segmentation problem derived a modified BIC criteria.

pen(K ) = f (|MK |) + g

 ∑
r∈m̂(K )

log nr


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Selection of the number of segments

Model selection: penalized contrasts

Best dimension K :

K̂ = arg min
K
`(Y, m̂(K )) + pen(K )

Best segmentation inMK :

m̂(K ) = arg min
m∈MK

`(Y,m)

Lebarbier 2005: pen(K ) = βf (|MK |)

Constant penalty within each dimensionMK .
Estimation of β.
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Selection of the position of the changes

Outline

1 Selection of the number of segments

2 Selection of the position of the changes

3 Confidence on the change-points, segments . . .

4 Back to the selection of the number of segments
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Selection of the position of the changes

Exploring the segmentation space (best segmentation)

For a given dimension K , the optimal segmentation has to be found
within

MK = {m : |m| = K}, |MK | =

(
n − 1
K − 1

)
An exhaustive search cannot be achieved.

Under a summation assumption (m = {r1, . . . , rK})

p(Y|m, θ) =
∑
r∈m

f (Y r , θr )

Dynamic programming provides the solution (m̂, θ̂) with
complexity O(Kn2).
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Selection of the position of the changes

Dynamic programming algorithm
Cost matrix and cost of a segment r = Ji , jJ

if j > i Cij = f (Y r , θr ) = − log P(Y r |θ̂r )

if j ≤ i Cij = +∞

Optimal cost/likelihood in K of J1,n + 1J:

s(K )1,n+1 = min
m∈MK

∑
k

Cτk ,τk+1

Update rule for K = 2:

s(2)1,n+1 = min
1<t<n

{C1,t+1 + Ct+1,n+1}
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Selection of the position of the changes

Dynamic programming as matrix-vector products

Let’s define: u ∗ v = mini{ui + vi}

The update rule for K = 2 can be rewritten as:

s(2)1,n+1 = min1<t<n {C1,t+1 + Ct+1,n+1}
s(2)1,n+1 = min1≤t≤n+1 {s(1)1,t+1 + Ct+1,n+1}
s(2)1,n+1 = s(1) ∗ C.,n+1

Then the line vector s(2) is obtained as

s(2) = s(1) ∗ C

More generally:
s(k + 1) = s(k) ∗ C

G. Rigaill et al. (INRA/UEVE) March 2012 11 / 29



Selection of the position of the changes

Exploring the segmentation space

Best segmentation in K with its k -th change at t

s(k)1,t+1 + s(K − k)t+1,n+1

Best segmentation in K with a change at t :

mink{s(k)1,t+1 + s(K − k)t+1,n+1}

Best segmentation in K with its k -th segment r = Jt1, t2J

s(k − 1)1,t1 + Ct1,t2 + s(K − k − 1)t2,n+1

. . .
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Confidence on the change-points, segments . . .

Outline

1 Selection of the number of segments

2 Selection of the position of the changes

3 Confidence on the change-points, segments . . .

4 Back to the selection of the number of segments
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Confidence on the change-points, segments . . .

Assessing the confidence on those changes

Discrete nature of breakpoints
Asymptotic results (Feder (1975), Bai and Perron (2003); Muggeo
(2003))
Bootstrapping (Husková and Kirch (2008))
Exact exploration of the segmentation space (Guédon (2009),
Fearnhead (2006))
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Confidence on the change-points, segments . . .

Exploring the segmentation space (posterior
probabilities)

For a given dimension K ,

MK = {m : |m| = K}, |MK | =

(
n − 1
K − 1

)

Exhaustive exploration cannot be achieved.

Under a factorisation assumption (m = {r1, . . . , rK})

p(Y|m, θ) =
∏
r∈m

f (Y r , θr )

A DP-like algorithm provides the solution with complexity O(Kn2).
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Confidence on the change-points, segments . . .

DP-like algorithm
Probability matrix and probability of a segment r = Ji , jJ

if j > i Aij = f (Y r , θr ) =

∫
p(Y r |θr )p(θr )dθr

if j ≤ i Aij = 0

Posterior probability of K for J1,n + 1J:

p(K )1,n+1 =
∑

m∈MK

∏
k

Aτk ,τk+1

Update rule for K = 2:

p(2)1,n+1 =
∑

1<t<n

A1,t+1At+1,n+1
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Confidence on the change-points, segments . . .

Matrix-vector products

As for the optimization problem this can be seen as a matrix-vector
product:

uv = mini{uivi}

The line vector p(2) is obtained as

p(2) = p(1) A

More generally:
p(k + 1) = p(k) A

and
p(k + 1) = p(1) Ak
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Confidence on the change-points, segments . . .

Exploring the segmentation space

Localisation of the k -th change

Pr{τk = t |K} = p(k)1,t+1p(K − k)t+1,n+1

The probability that there is a breakpoint at position t :

Pr{∃k : τk = t |Y,K} =
K∑

k=1

Pr{τk = t |K}

The probability of segment r = Jt1, t2J for a given K
The posterior entropy of m within a dimension:

H(K ) = −
∑

m∈MK

p(m|Y,K ) log p(m|Y,K )
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Confidence on the change-points, segments . . .

An example, K=3 and K=4

Best segmentation
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Confidence on the change-points, segments . . .

An example, K=3 and K=4
Segment probability
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Back to the selection of the number of segments

Outline

1 Selection of the number of segments

2 Selection of the position of the changes

3 Confidence on the change-points, segments . . .

4 Back to the selection of the number of segments
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Back to the selection of the number of segments

Back to model selection

Posterior probability of a segmentation

P(m|Y ) , or "exact" BIC − log(P(m|Y ))

"Exact" Deviance Information Criteria (Spiegelhalter et al. (2002))
I f (Y ) is the likelihood of the saturated model.
I Deviance: D(Θ) = −2 log P(Y |Θ) + 2 log f (Y )

DIC(K ) = −D(E[Θ|Y ,K ]) + 2E[D(Θ)|Y ,K ]

"Exact" Integrated Completed Likelihood (Biernacki et al. (2000))

ICL(K ) = − log P(K |Y ) +H(K )

I It favors a K where the best segmentation is by far the most
probable
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Back to the selection of the number of segments

Selection of the number of breakpoints

Simulations
Comparison of P(m|Y), DIC(K) and ICL(K)
150 observations with 6 breakpoints
Increasing signal to noise ratio
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Back to the selection of the number of segments

Back to the example

Data Likelihood
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Back to the selection of the number of segments

Conclusion and perspectives
DP as a matrix-vector product (O(Kn2) runtime)

I Best segmentation
I Best segmentation with a change at t
I Posterior probability of a change at t
I Posterior probability of a segment
I Posterior entropy

Model selection
I "Exact" BIC for segmentation
I "Exact" DIC for segmentation
I "Exact" ICL for segmentation (using the entropy)

I Priors

More details in our paper

Runtime for large n? (see The Minh Luong and Alice Cleynen’s
presentations)
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Back to the selection of the number of segments
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Back to the selection of the number of segments

Thank you
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Back to the selection of the number of segments

An example, K=3 and K=4

Best segmentation in K with its k -th change at t
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Back to the selection of the number of segments

An example, K=3 and K=4

Change-point probability
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