Exact posterior distributions and model selection for multiple change-point detection problems

G. Rigaill, E. Lebarbier, S. Robin

March, 2012

An example

- Dynamic Programming (DP, Bellman and Dreyfus 1962)
- to recover the best segmentation in $K=1$ to $K=10$ segments
- Choice of K (model selection)
- Likelihood of the best segmentation having its k-th change at t (Guédon 2009)

Likelihood

Change-point model

Notations:

- $K=$ number of segments
- $r=$ region (or segment) $\llbracket \tau_{r}, \tau_{r+1} \llbracket \quad\left(n_{r}=\right.$ length of $\left.r\right)$
- $m=$ segmentation: $m=\left\{r_{1}, \ldots, r_{K}\right\}$
- $Y_{t}=$ signal at position $t(t \in \llbracket 1, n \rrbracket)$

Model:

- $\left\{Y_{t}\right\}$ independent
- $t \in r$:

$$
Y_{t} \sim p\left(\cdot \mid \theta_{r}\right)
$$

e.g.

$$
p\left(\cdot \mid \theta_{r}\right)=\mathcal{N}\left(\mu_{r}, \sigma^{2}\right), \quad \mathcal{N}\left(\mu_{r}, \sigma_{r}^{2}\right), \quad \mathcal{P}\left(\lambda_{r}\right)
$$

Inference on the position and number of changes

- Change-points are discrete
- There is a large collection of possible models $\left(\left|\mathcal{M}_{K}\right|=\binom{n-1}{K-1}\right)$

Some difficulties:

- Standard model selection criteria (BIC...) are not theoretically justified
- Confidence on change-points, segments: standard MLE properties do not hold

Idea:

- We would like to select a K such that the confidence on the change-points is high/good
- This should ease the interpretation of the result

Outline

(1) Selection of the number of segments

(2) Selection of the position of the changes

(3) Confidence on the change-points, segments
4. Back to the selection of the number of segments

Model selection: BIC

The standard Laplace approximation used to derive the BIC criteria

$$
\log p(M \mid \mathbf{Y})=\log \int p(M, \theta \mid \mathbf{Y}) \mathrm{d} \theta \approx \log p(M \mid \mathbf{Y}, \widehat{\theta})-\frac{\log n}{2} \operatorname{dim}(M)
$$

is not valid

because the likelihood is not differentiable with respect to the parameters.

Zhang and Siegmund 2007, based on a continuous-version of the segmentation problem derived a modified BIC criteria.

$$
\operatorname{pen}(K)=f\left(\left|\mathcal{M}_{K}\right|\right)+g\left(\sum_{r \in \hat{m}(K)} \log n_{r}\right)
$$

Model selection: penalized contrasts

- Best dimension K :

$$
\widehat{K}=\arg \min _{K} \ell(\mathbf{Y}, \widehat{m}(K))+\operatorname{pen}(K)
$$

- Best segmentation in \mathcal{M}_{K} :

$$
\widehat{m}(K)=\arg \min _{m \in \mathcal{M}_{K}} \ell(\mathbf{Y}, m)
$$

- Lebarbier 2005: $\quad \operatorname{pen}(K)=\beta f\left(\left|\mathcal{M}_{K}\right|\right)$
- Constant penalty within each dimension \mathcal{M}_{K}.
- Estimation of β.

Outline

(1) Selection of the number of segments

(2) Selection of the position of the changes
(3) Confidence on the change-points, segments

4 Back to the selection of the number of segments

Exploring the segmentation space (best segmentation)

For a given dimension K, the optimal segmentation has to be found within

$$
\mathcal{M}_{K}=\{m:|m|=K\}, \quad\left|\mathcal{M}_{K}\right|=\binom{n-1}{K-1}
$$

- An exhaustive search cannot be achieved.

Under a summation assumption ($m=\left\{r_{1}, \ldots, r_{k}\right\}$)

$$
p(\mathbf{Y} \mid m, \theta)=\sum_{r \in m} f\left(Y^{r}, \theta_{r}\right)
$$

- Dynamic programming provides the solution ($\widehat{m}, \widehat{\boldsymbol{\theta}})$ with complexity $\mathcal{O}\left(K n^{2}\right)$.

Dynamic programming algorithm

Cost matrix and cost of a segment $r=\llbracket i, j \llbracket$

$$
\begin{array}{ll}
\text { if } j>i & \mathbf{c}_{i j}=f\left(Y^{r}, \theta_{r}\right)=-\log P\left(Y^{r} \mid \widehat{\theta}^{r}\right) \\
\text { if } j \leq i & \mathbf{c}_{i j}=+\infty
\end{array}
$$

Optimal cost/likelihood in K of $\llbracket 1, n+1 \llbracket$:

$$
s(K)_{1, n+1}=\min _{m \in \mathcal{M}_{K}} \sum_{k} \mathbf{C}_{\tau_{k}, \tau_{k+1}}
$$

Update rule for $K=2$:

$$
s(2)_{1, n+1}=\min _{1<t<n}\left\{\mathbf{C}_{1, t+1}+\mathbf{C}_{t+1, n+1}\right\}
$$

Dynamic programming as matrix-vector products

Let's define:

$$
\mathbf{u} * \mathbf{v}=\min _{i}\left\{u_{i}+v_{i}\right\}
$$

The update rule for $K=2$ can be rewritten as:

$$
\begin{array}{ll}
s(2)_{1, n+1}= & \min _{1<t<n} \\
s(2)_{1, n+1}= & \left\{\mathbf{C}_{1, t+1}+\mathbf{C}_{t+1, n+1}\right\} \\
\min _{1 \leq t \leq n+1} & \left\{s(1)_{1, t+1}+\mathbf{C}_{t+1, n+1}\right\} \\
s(2)_{1, n+1}= & \mathbf{s}(1) * \mathbf{C}_{., n+1}
\end{array}
$$

Then the line vector $\mathbf{s}(\mathbf{2})$ is obtained as

$$
\mathbf{s}(2)=\mathbf{s}(1) * \mathbf{C}
$$

More generally:

$$
\mathbf{s}(\mathbf{k}+\mathbf{1})=\mathbf{s}(\mathbf{k}) * \mathbf{C}
$$

Exploring the segmentation space

- Best segmentation in K with its k-th change at t

$$
s(k)_{1, t+1}+s(K-k)_{t+1, n+1}
$$

- Best segmentation in K with a change at t :

$$
\min _{k}\left\{s(k)_{1, t+1}+s(K-k)_{t+1, n+1}\right\}
$$

- Best segmentation in K with its k-th segment $r=\llbracket t_{1}, t_{2} \llbracket$

$$
s(k-1)_{1, t_{1}}+C_{t_{1}, t_{2}}+s(K-k-1)_{t_{2}, n+1}
$$

Outline

(1) Selection of the number of segments

(2) Selection of the position of the changes

(3) Confidence on the change-points, segments ...

4. Back to the selection of the number of segments

Assessing the confidence on those changes

- Discrete nature of breakpoints
- Asymptotic results (Feder (1975), Bai and Perron (2003); Muggeo (2003))
- Bootstrapping (Husková and Kirch (2008))
- Exact exploration of the segmentation space (Guédon (2009), Fearnhead (2006))

Exploring the segmentation space (posterior probabilities)

For a given dimension K,

$$
\mathcal{M}_{K}=\{m:|m|=K\}, \quad\left|\mathcal{M}_{K}\right|=\binom{n-1}{K-1}
$$

- Exhaustive exploration cannot be achieved.

Under a factorisation assumption $\left(m=\left\{r_{1}, \ldots, r_{k}\right\}\right)$

$$
p(\mathbf{Y} \mid m, \theta)=\prod_{r \in m} f\left(Y^{r}, \theta_{r}\right)
$$

- A DP-like algorithm provides the solution with complexity $\mathcal{O}\left(K n^{2}\right)$.

DP-like algorithm

Probability matrix and probability of a segment $r=\llbracket i, j \llbracket$

$$
\begin{array}{ll}
\text { if } j>i & \mathbf{A}_{i j}=f\left(Y^{r}, \theta_{r}\right)=\int p\left(Y^{r} \mid \theta_{r}\right) p\left(\theta_{r}\right) \mathrm{d} \theta_{r} \\
\text { if } j \leq i & \mathbf{A}_{i j}=0
\end{array}
$$

Posterior probability of K for $\llbracket 1, n+1 \llbracket$:

$$
p(K)_{1, n+1}=\sum_{m \in \mathcal{M}_{K}} \prod_{k} \mathbf{A}_{\tau_{k}, \tau_{k+1}}
$$

Update rule for $K=2$:

$$
p(2)_{1, n+1}=\sum_{1<t<n} \mathbf{A}_{1, t+1} \mathbf{A}_{t+1, n+1}
$$

Matrix-vector products

As for the optimization problem this can be seen as a matrix-vector product:

$$
\mathbf{u v}=\min _{i}\left\{u_{i} v_{i}\right\}
$$

The line vector $\mathbf{p (2)}$ is obtained as

$$
p(2)=p(1) A
$$

More generally:

$$
\mathbf{p}(\mathbf{k}+\mathbf{1})=\mathbf{p}(\mathbf{k}) \mathbf{A}
$$

and

$$
\mathbf{p}(k+1)=p(1) \mathbf{A}^{k}
$$

Exploring the segmentation space

- Localisation of the k-th change

$$
\operatorname{Pr}\left\{\tau_{k}=t \mid K\right\}=p(k)_{1, t+1} p(K-k)_{t+1, n+1}
$$

- The probability that there is a breakpoint at position t :

$$
\operatorname{Pr}\left\{\exists k: \tau_{k}=t \mid \mathbf{Y}, K\right\}=\sum_{k=1}^{K} \operatorname{Pr}\left\{\tau_{k}=t \mid K\right\}
$$

- The probability of segment $r=\llbracket t_{1}, t_{2} \llbracket$ for a given K
- The posterior entropy of m within a dimension:

$$
\mathcal{H}(K)=-\sum_{m \in \mathcal{M}_{K}} p(m \mid \mathbf{Y}, K) \log p(m \mid \mathbf{Y}, K)
$$

An example, $\mathrm{K}=3$ and $\mathrm{K}=4$

Best segmentation

An example, $\mathrm{K}=3$ and $\mathrm{K}=4$

Segment probability

Outline

(1) Selection of the number of segments

(2) Selection of the position of the changes

(3) Confidence on the change-points, segments
4. Back to the selection of the number of segments

Back to model selection

- Posterior probability of a segmentation

$$
P(m \mid Y) \quad \text {, or "exact" BIC } \quad-\log (P(m \mid Y))
$$

- "Exact" Deviance Information Criteria (Spiegelhalter et al. (2002))
- $f(Y)$ is the likelihood of the saturated model.
- Deviance: $D(\Theta)=-2 \log P(Y \mid \Theta)+2 \log f(Y)$

$$
D I C(K)=-D(\mathbb{E}[\Theta \mid Y, K])+2 \mathbb{E}[D(\Theta) \mid Y, K]
$$

- "Exact" Integrated Completed Likelihood (Biernacki et al. (2000))

$$
\operatorname{ICL}(K)=-\log P(K \mid Y)+\mathcal{H}(K)
$$

- It favors a K where the best segmentation is by far the most probable

Selection of the number of breakpoints

Simulations

- Comparison of $\mathrm{P}(\mathrm{m} \mid \mathrm{Y})$, $\mathrm{DIC}(\mathrm{K})$ and $\mathrm{ICL}(\mathrm{K})$
- 150 observations with 6 breakpoints
- Increasing signal to noise ratio

Back to the example

Likelihood

Conclusion and perspectives

- DP as a matrix-vector product ($\mathcal{O}\left(K n^{2}\right)$ runtime)
- Best segmentation
- Best segmentation with a change at t
- Posterior probability of a change at t
- Posterior probability of a segment
- Posterior entropy
- Model selection
- "Exact" BIC for segmentation
- "Exact" DIC for segmentation
- "Exact" ICL for segmentation (using the entropy)
- Priors
- More details in our paper
- Runtime for large n ? (see The Minh Luong and Alice Cleynen's presentations)

Acknowledgements

- Emilie Lebarbier, Stéphane Robin
- Alice Cleynen, Michel Koskas
- Lodewyk Wessels

Thank you

An example, $\mathrm{K}=3$ and $\mathrm{K}=4$

Best segmentation in K with its k-th change at t

An example, $\mathrm{K}=3$ and $\mathrm{K}=4$

Change-point probability

