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Dynamic Networks Networks

Networks

Networks are representational forms for systems in nature, society and
technology, for example

data traffic flows on a computer network
communications between individuals in a social network such as
facebook or other communities of interest

Dynamic networks are characterised by

members becoming active/inactive
links between members weakening/strengthening
appearance/disappearance of members

Graphs are considered the most appropriate data form to store
information about the network.
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Dynamic Networks Motivating Problem

Motivating Problem

Detect anomalies in dynamic networks in real time.

Precise definition of an anomaly depends on application of interest
sudden changes in connectivity between nodes
links between unrelated nodes
changes within substructures

Anomaly detection has important security applications
virus detection in a computer network
monitoring telecommunication networks
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Dynamic Networks Features of the data

Features of the data

Large number of nodes
High frequency traffic arriving as a data stream
Often the data exhibit seasonality; weekends

Need fast, parallelisable methods to do inference in real time.
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Dynamic Networks Methodology

Methodology

If a network has undergone some structural changes this suggests

some entities are communicating more or less frequently
there are new links between entities

Heard et al (2010) looked at a two-stage approach

treat nodes or edges independently and identify potentially
anomalous nodes through deviation from their usual connectivity
create a subgraph around anomalous nodes and use standard graph
analysis tools in this reduced subnetwork

Concentrate on stage 1 in a continuous time frame using changepoint
models...
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Continuous time changepoint model Bayesian Changepoint Model

Bayesian Changepoint Model for Communications

Suppose node or edge communications in the network follow a
Poisson process with piecewise constant intensity λ(t).
Jumps or changepoints represent anomalies and split up the data into
disjoint segments.
In the simplest case, the ith segment is modelled by a homogeneous
Poisson process with intensity λi.

-

6

λ
(t)

tτ1 τ2

λ0

λ1

λ2

××××× ××× × × × × ×××× × × ×× ××
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Continuous time changepoint model Priors

Priors

For a process observed over [t0, tn]
kn changepoints τ1:kn = (τ1, . . . , τkn) follow a homogeneous Poisson
process with intensity ν
(kn + 1) intensities follow independent conjugate priors,
λ0:kn = (λ0, . . . , λkn) iid

∼ Γ(α, β)

Intensity on the number of changepoints is assumed to be much smaller
than the rate of communications, i.e ν� λi.
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Continuous time changepoint model Posterior

Posterior

Given observed dataD over [t0, tn], the posterior distribution on the
changepoints and intensities π[t0 ,tn](τ1:kn , λ0:kn , kn|D) is known up to
proportionality through

γ[t0 ,tn](τ1:kn , λ0:kn , kn,D) = p
(
D|τ1:kn , λ0:kn , kn

)
p
(
τ1:kn , λ0:kn , kn

)
.

Integrating out λ gives

γ[t0 ,tn](τ1:kn , kn,D) = νe−νt
kn∏
i=0

βα

Γ (α)
Γ (α + ri)(

β + τi+1 − τi
)ri+α

where τ0 = t0, τkn+1 = tn and ri = # of observations in the ith segment.

For simplification of notation will drop the dependency onD.
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Continuous time changepoint model

Given a specific time frame we can use RJMCMC to obtain a sample
from the target distribution π[t0 ,tn](τ1:kn , kn).
In a sequential setting, using RJMCMC every time we want a real
time update would be computationally slow.
Can use Sequential Monte Carlo (SMC) ideas to exploit the similarity
of π[t0 ,tn] and π[t0 ,tn+1].
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Sequential Monte Carlo Algorithm SMC

SMC

Given a weighted sample {(τ1:kn , kn)(i),w(i)
n }

N
i=1 at tn from an IS approximation

of π[t0 ,tn], at tn+1 we seek to

extend each changepoint vector τ(i)
1:kn

to be a sample τ(i)
1:kn+1

from
π[t0 ,tn+1]

revise the weights recursively to obtain w(i)
n+1

so that {(τ1:kn+1 , kn+1)(i),w(i)
n+1}

N
i=1 is a weighted sample from π[t0 ,tn+1] .
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Sequential Monte Carlo Algorithm Particle Fusion

SMC: Particle Fusion

Suppose after observing a continuous time process for some initial period
we obtain a sample of size N, {(τ1:k1 , k1)(i)

}
N
i=1, where

(τ1:k1 , k1)(i)
∼ π[t0 ,t1](τ1:k1 , k1).

t0 t1

-× ×××× ×× × × ××× × × × × ×

τ1 τ2 τ3 t2

The process is further observed up till t2.

If we consider the distribution of changepoints in (t1, t2] independently
from the distribution over [t0, t1], then another sample of size M,
{(τk1+1:k2 , k)(i)

}
M
i=1 can be drawn from π(t1 ,t2](τk1+1:k2 , k), where k = k2 − k1 is

the number of changepoints in (t1, t2].
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Sequential Monte Carlo Algorithm Particle Fusion

The sample size for the new interval can be chosen so that M ≤ N; if
M < N, we create replicates of that sample so that there are equal size
samples from the posteriors on each interval.

Joining the samples drawn from π[t0 ,t1](τ1:k1 , k1) and π(t1 ,t2](τk1+1:k2 , k) will
give an approximate sample

{(τ1:k2 , k2)(i) = ((τ1:k1 , k1)(i), (τk1+1:k2 , k)(1+mod(i−1,M)))}Ni=1

from π[t0 ,t2](τ1:k2 , k2) under an assumption of independence between the
two intervals.

-

τ1 τ2 τ3

× ×××× ×× × × ××× × × × × ×

t0 t1 t2

Having M < N will decrease computational effort.
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Sequential Monte Carlo Algorithm Particle Fusion

This assumption of independence on each new interval observed over
time provides a proposal/importance distribution at tn which we know up
to proportionality

qn(τ1:kn , kn) =

n∏
j=1

γ(tj−1 ,tj](τkj−1+1:kj , k) = qn−1(τ1:kn−1 , kn−1)γ(tn−1 ,tn](τkn−1+1:kn , k).

The unnormalised importance weights given {(τ1:kn , kn)(i)
}
N
i=1 can then be

computed sequentially. For n ≥ 2

w(i)
n =

γ[t0 ,tn]((τ1:kn , kn)(i))
qn((τ1:kn , kn)(i))

= w(i)
n−1

γ[t0 ,tn]((τ1:kn , kn)(i))
γ[t0 ,tn−1]((τ1:kn−1 , kn−1)(i))γ(tn−1 ,tn]((τkn−1+1:kn , k)(1+mod(i−1,M)))

and w(i)
1 = 1.
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Sequential Monte Carlo Algorithm Particle Fusion

Remarks

The weights are quick to calculate, equivalent to a RJMCMC death
move at tn−1.

Preferably the interval [tn, tn+1] would be small enough that a priori we
will only have 0 or 1 changepoints i.e. Pr(1 changepoint) ≈ ν(tn+1− tn)

MCMC sampling from [tn, tn+1] then very straightforward

Allows for a smaller M, the size of the samples drawn from each
interval.

Standard resampling techniques can be incorporated into the
algorithm to deal with weight degeneracy
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Sequential Monte Carlo Algorithm Limitation

Limitation

When extending the particles for (tn−1, tn] the independence assumption
prevents a genuine changepoint near tn−1 being properly explored.
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Sequential Monte Carlo Algorithm Time of last changepoint

Time of last changepoint

At tn−1, let t∗n−1 be the time of the most recent changepoint. The posterior
expectation of t∗n−1 can then be calculated using the particle
approximation {(τ1:kn−1 , kn−1)(i),w(i)

n−1}
N
i=1 for π[t0 ,tn−1]

Eπ[t0 ,tn−1][t
∗

n−1] ≈
N∑
i=1

τ(i)
kn−1

W (i)
n−1

where W (i)
n−1 are the normalised weights.

When sampling changepoints for the interval (tn−1, tn], use the data from
(t∗n−1, tn]. However, only sample changepoints in (tn−1, tn].

-

t0 t1

× ×××× ×× × × ××× × × × × ×

τ1 τ2 τk1+1t∗1 t2
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Examples Function of interest

Function of interest

As a measure of anomaly at time t a natural function of interest g(t) would
be distance to the nearest changepoint to the left

g(t) = t − τi∗

i∗ = max
i
{τi ≤ t}

For t > 0 the prior expectation of g(t) is non-zero and increasing with t, so
standardising gives a revised function of interest

h(t) =
g(t) − E

[
g(t)

]√
Var

[
g(t)

]
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Examples Function of interest

We could now classify an anomaly at t if, given the data,

Pr(h(t) < 0) > α

for some α, say .95.
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Examples Function of interest

Alternatively, to control the length of time for which the change is
considered anomalous, only look back over a time δ

gδ(t) = min(t − τi∗ , δ)

0 10 20 30 40 50 60 70 80 90 100
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0

t

h(
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, δ
=
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Examples Function of interest

For any t satisfying Pr(h(t) < 0) > α, an estimate for the location of the
most recent changepoint is then given by

τ̂i∗ = t − Eπ[g(t)].
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Examples Function of interest

We can now approximate Pr(h(t) < 0) given the weighted sample:

Pr(h(t) < 0) ≈
N∑
i=1

I(h(i)(t) < 0)W (i)
n

If only interested in recent changepoints then consider calculating it
for tn−1 < t < tn (online estimate)

We might also choose to revise the estimates over t0 < t < tn in light
of the updated weights, this will give you a sequence of curves over
time (restrospective estimate).
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Examples Simulated datasets

500 simulated Poisson process datasets each over 100 time units.

Total number of simulated changepoints = 983.

Using N = 5,000, M = 500; update windows of two.

SMC MCMC
Significance level α 50% 70% 90% 50% 70% 90%

Detected changepoints
[Pr(hδ=2(t) < 0) > α]

813 777 718 819 790 720

False
detections

50 12 0 44 12 0

Average update intervals
till detection

0.70 0.79 1.08 0.70 0.79 1.11

Run times 15min 40secs 32min 45secs

Melissa Turcotte (Imperial) Real time changepoint detection 20 May 2011 23 / 32



Examples VAST Data

VAST Data

Synthetic data set of phone calls made between 400 individuals on a
fictitious island over a ten day period.
(http://www.cs.umd.edu/hcil/VASTchallenge08)

Anomalous activity is known to occur on the start of the eighth day
involving 11 individuals

Daily cyclical effects present in data
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Examples VAST Data
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Examples VAST Data

Seasonal component

Ignoring seasonality would lead to lots of “false” changepoints

Use MCMC to identify the seasonal changepoints and corresponding
intensities given the data across all individuals

Globally apply a set of seasonal changepoints s = (s1, . . . , sl) and
intensity multipliers µ = (µ0, . . . , µl) so that the intensity at any time
will be λiµj for some i, j. For identifiability, w.l.o.g. set µ0 = 1

Can integrate out λ as before so that our target distribution is
π[t0 ,tn](τ1:kn , kn|D, s, µ)
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Examples VAST Data

Finding anomalous individuals

Use the SMC algorithm with 1 hour time increments (240 update
windows) with N = 10,000 and M = 5,000

Declare an individual as anomalous at time t if Pr(h(t) < 0) > 0.95

At each time step tn we can recalculate the Monte Carlo estimate of
Pr(h(t) < 0) for all 0 < t < tn in light of the updated SMC weights, to
identify the individuals we currently regard as having behaved
anomalously now or in the past
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Examples VAST Data

Most anomalous time period involves 9 individuals at the start of the
eighth day.
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Examples VAST Data

Each individual took 20 secs to run, which is approximately 1/10th of
a second per update window.
Completely parallelizable across all individuals in the network.
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Examples VAST Data

Calls between cell
phones of nodes who
were in contact with the
anomalous individuals
before and during the
most anomalous time
period.
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Remarks and Future Work

Remarks
Can extend method to non-conjugate models
Not limited to poisson processes - have applied algorithm to a
piecewise AR process and Markov Chains

Further Work

Varying the number of particles sampled on each update window
over time according to the complexity of the process
If running more than one process allows you to allocate
computational resources to processes that are “harder”
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Non-conjugate models

Non-conjugate models

Suppose we have non-conjugate priors for the intensities. Then the
posterior of interest is π[t0 ,tn](τn, λn) where λn = (λn,0, . . . , λn,k).

Problem: Sample from the proposal distribution is over-parameterised.

-

τ1,1 τ1,2 τ′2,1

λ1,0 λ1,1 λ′2,1
× ×××× ×× × × ××× × × × × ×

t0 t2

λ∗λ1,2 λ′2,0

t1

Need to replace the intensity pair (λ1,2, λ
′
2,0) with a single intensity λ∗ to

cover the interval (τ1,2, τ
′
2,1].
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Non-conjugate models

At tn let s1(λn−1,k , λ
′
n,0) be a suitably chosen function to combine the

intensities. For example,

λ∗ = s1(λn−1,k , λ
′

n,0) =
(tn−1 − τn−1,k)λn−1,k + (τ′n,1 − tn−1)λ′n,0

τ′n,1 − τn−1,k
.

Marginal distribution of λ∗ is unlikely to be analytically available, instead
must settle for a joint change of variable

(λ∗, un) = s(λn−1,k , λ
′

n,0) = (s1(λn−1,k , λ
′

n,0), s2(λn−1,k, λ
′

n,0))

where s2 is some other transformation of (λn−1,k, λ′n,0) so that we have a one
to one mapping (λn−1,k, λ′n,0) 7→ (λ∗, un).

Let |Jn| be the Jacobian for the transformation s.
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Non-conjugate models

We now have a proposal distribution qn(τn, λn, u2:n) which generates
suitable intensities, λ∗, for each of the combined regions but also the
nuisance parameters u2:n

qn(τn, λn, u2:n) =

n∏
j=1

γ(tj−1 ,tj](τ
′

j , λ
′

j )|Jj|

= qn−1(τn−1, λn−1, u2:n−1)γ(tn−1 ,tn](τ′n, λ
′

n)|Jn|.

Proposal distribution is still of too high a dimension.
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Non-conjugate models

Solution: Extend the target distribution.

π[t0 ,tn](τn, λn, u2:n) = π[t0 ,tn](τn, λn)
n∏
i=2

f(ui|τi, λi)

where f can be any density with the correct support for ui.

As the target π[t0 ,tn](τn, λn) is a marginal of π[t0 ,tn](τn, λn, u2:n) we can use IS
to obtain estimates from this distribution where the importance weights
are now expressed as

w(i)
n = w(i)

n−1

γ[t0 ,tn](τ
(i)
n , λ

(i)
n )f(un|τn, λn)

γ[t0 ,tn−1](τ
(i)
n−1, λ

(i)
n−1)γ(tn−1 ,tn](τ

′(1+mod(i−1,M))
n , λ′(1+mod(i−1,M))

n )|Jn|
.
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Non-conjugate models

Choosing s

The parameter transformation s = (s1, s2) should be chosen so that if λn−1,k

and λ′n,0 are samples from their own conditional posterior distributions:
λ∗ = s1(λn−1,k, λ

′
n,0) should be close to a draw from the posterior for

the intensity on the joined segment.
un = s2(λn−1,k, λ

′
n,0) has a distribution which we might be able to

loosely identify and can guide how to extend the target.

For example, un = λn−1,k − λ
′
n,0 so that the domain of un is R and should be

near zero if the merger is a good match.

Then f(un|τn, λn) = φ(un), the density of a standard normal could be a
good choice.
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